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The harmonic oscillator as a tutorial introduction to quantum mechanics

Stemming from the similar linearities of the Schrödinger equation in quantum mechanics on the one hand and of the harmonic oscillations in classical mechanics on the other hand, the idea that any N -degree-of-freedom harmonic oscillator (HON ) is formally equivalent to a N -level quantum system is put forward. It is shown that the complex dynamic variables α introduced by R. J. Glauber can be regarded as the components of a state vector belonging to some N -dimension complex Hilbert space, and whose time-evolution is ruled by a Schrödinger-like equation. In case the classical HON is parametrically excited, the unitarity of the time-evolution of the associated quantum system is related to the Ehrenfest adiabaticity of the parametric excitation.

I. INTRODUCTION

The undergraduate level is a fascinating stage in physics students' progress for more than one good reason. A wealth indeed of concepts and methods is introduced. Inter alia, in the field of mechanics, the problem of coupled systems is tackled, the Lagrangian and Hamiltonian formalisms are presented, generally derived from the least action principle; special relativity is taught -at least sketched. But the most disturbing topic is probably quantum mechanics and its formalism. In this connection, any bridge with classical mechanics is welcome from a pedagogical point of view.

In a couple of foregoing papers [START_REF] Leroy | Simulating a one-half spin with coupled pendula: the free Larmor precession[END_REF][START_REF] Leroy | Simulating a one-half spin with two coupled pendula II: The parametrically induced Rabi precession[END_REF], we have proposed such a bridge and shown that a quasi-degenerate two-degreeof-freedom harmonic oscillator (HO2) is formally analogous to a one-half spin in a magnetic field or equivalently to a Two-Level System (TLS): the physical state of the HO2 can be described by means of a state vector |ψ belonging to some two-dimensional complex Hilbert space Ê , the time-evolution of |ψ is unitary and ruled by a Schrödinger-like equation of motion. Besides, in a third foregoing paper [START_REF] Devaud | The adiabatic invariant of the n-degree-of-freedom harmonic oscillator[END_REF], we have derived a notable result concerning the adiabatic invariant of any N -degree-of-freedom harmonic oscillator (HON ) that will play an important role in the following of this article.

The present paper can be considered as both an extension and a simplification of [START_REF] Leroy | Simulating a one-half spin with coupled pendula: the free Larmor precession[END_REF] and [START_REF] Leroy | Simulating a one-half spin with two coupled pendula II: The parametrically induced Rabi precession[END_REF]: an extension in the sense that we no longer limit ourselves to the mere HO2 case but embrace the most general HON case; a simplification in the sense that we get rid of the quasi-degeneracy condition that severely impaired our foregoing paper's results. Our aim in the present article is to show that the dynamics of any free harmonic oscillator is exactly described by a Schrödinger equation. With this aim we shall consider here the most general HON and recall a few results concerning its dynamics. As for [START_REF] Leroy | Simulating a one-half spin with coupled pendula: the free Larmor precession[END_REF], [START_REF] Leroy | Simulating a one-half spin with two coupled pendula II: The parametrically induced Rabi precession[END_REF] and [START_REF] Devaud | The adiabatic invariant of the n-degree-of-freedom harmonic oscillator[END_REF], the prerequisite for an easy reading of this article is a rudimentary knowledge of Lagrangian et Hamiltonian classical mechanics, plus some basic linear algebra analysis. More precisely, the present paper is organized as follows.

In section II, we overfly the one-degree-of-freedom oscillator case, essentially to set the notations and introduce the notions we shall use throughout this article. The free movement is considered in subsection II A, the parametrically excited movement in subsection II B. A first, straightforward, bridge is then thrown with quantum mechanics.

In section III we generalize section II's results. After a brief mathematical insert (III A), we successively consider the free (III B) and parametrically excited (III C) movements of any N -degree-of-freedom harmonic oscillator and we show that, under conditions that will be specified in the parametric excitation case, its dynamics can be accounted for by means of a Schrödinger equation, thus extending section II's bridge.

Section IV is devoted to a few remarks, conclusions and prospects.

II. THE HO1 CASE

Let us recall that a one-degree-of-freedom physical system can be regarded as a HO1 if (and only if) one can find a dynamical variable θ and a couple of positive coefficients m and k such that one Lagrangian of this system could read

L(θ, θ) = 1 2 m θ2 - 1 2 kθ 2 , (1) 
where 1 2 m θ2 is a kinetic-like energy (m accounting for the "inertia") and 1 2 kθ 2 is a potential-like energy (k accounting for the "stiffness"). If both parameters m and k are time-independent, the motion will be said to bo free; if one or the other (a fortiori both) is time-dependent, the motion will be said to be parametrically excited.

From Lagrangian (1), one derives the corresponding Hamiltonian. Setting indeed σ = ∂L/∂ θ = m θ, we get, after a Legendre transformation,

H(θ, σ) = -L + θσ = σ 2 2m + 1 2 kθ 2 . ( 2 
)
Let us begin with the free HO1 case: m and k are then (positive) constants.

A. The free HO1

Either using Lagrangian [START_REF] Leroy | Simulating a one-half spin with coupled pendula: the free Larmor precession[END_REF] or Hamiltonian (2), we obtain the motion equation

m θ + kθ = 0 (3)
or equivalently the system

     θ = ∂H ∂σ = σ m σ = - ∂H ∂θ = -kθ. (4) 
The above equations are well known, but are not universal in the sense that parameters m and k as well as variable θ have various units, according to the HO under consideration. It may be a spring-mass oscillator: θ is then an abscissa (and σ a linear momentum); it may be a pendulum: θ is then an angle (and σ an angular momentum); it may be a self-capacitor oscillating electric circuit: θ is then an electric charge (and σ a magnetic flux); and so on.

A first temptation is then to introduce new dynamical variables whose dimensions are fixed once for all, whatever the physical nature of the oscillator of interest. There are in fact a lot of ways to do it. One solution (among many others) consists for instance in introducing the new variable

ξ = √ m θ. (5a) 
Expressed in this new variable, Lagrangian (1) reads

L(ξ, ξ) = 1 2 ( ξ2 -ω 2 ξ 2 ), (5b) 
where

ω = k m (5c)
is an angular frequency. Let π = ∂L/∂ ξ = m ξ be ξ's conjugate momentum. We have then π = σ/ √ m. Performing a Legendre transformation on Lagrangian (5b), we get the Hamiltonian

H(ξ, π) = 1 2 π 2 + ω 2 ξ 2 , (6) 
which is numerically equal to H(θ, σ) (see ( 2)).

The above Hamiltonian H(ξ, π) has now a universal form, but ξ and π have not the same dimension and consequently cannot play the same role in the above expression. For reasons that will get clear in the following, it is convenient to manage to have the same dimension for the dynamical variable and its conjugate momentum. This common dimension is then not arbitrary: it is necessarily the square root of an action, as easily checked. With this aim, let us slightly modify (5a) and set

q = s θ with s = √ mω. (7a) 
In this new variable q, that we shall henceforth call "standard", Lagrangians (1) and (5b) now read

L(q, q) = 1 2 q2 ω -ωq 2 . ( 7b 
)
Let p = ∂L/∂ q = q/ω be q's conjugate momentum. We have then p = σ/s and the Poisson bracket {q, p} = 1. Implementing a Legendre transformation on Lagrangian L, we get the Hamiltonian

H(q, p) = 1 2 ω(p 2 + q 2 ), (7c) 
from which we derive the Hamilton equations

       q = ∂H ∂p = ωp ṗ = - ∂H ∂q = -ωq. (7d) 
The above equation set is made of two real first-order coupled differential equations (as for any system in the Hamilton formalism). Furthermore, both right-hand sides are linear in variables q and p (this is a specificity of the HO). A second temptation is then to build a linear combination α of variables q and p that would gather the two equations of set (7d) in a unique first-order differential equation. Such a procedure is widespread. It has been discussed at some length by inter alia R. J. Glauber [4][START_REF] Glauber | Optical Coherence and Photon Statistics in Quantum optics and electronics[END_REF][START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF][START_REF] Merzbacher | Quantum Mechanics[END_REF] when aiming at quantizing the electromagnetic field. Glauber proposed to set

α = 1 √ 2 (q + ip), (8) 
where is the reduced quantum Planck constant. Observe that, in accordance with our above noticing that both q and p have the dimension of the square root of an action, the Glauber variable is dimensionless. With this choice,

{α, α * } = 1 i (9)
and the HO1's Hamiltonian reads

H = ωα * α. (10) 
As a consequence, the Glauber variable's evolution is ruled by

α = {α, H} = -iωα α(t) = α(0) e -iωt , (11) 
which shows that, in the complex plane of variable α, the HO's movement is described by a (clockwise) rotation of the representative point around the origin, |α| being constant simply expressing energy conservation. Although the HOs we are dealing with in the present paper are purely classical objects, we deliberately keep Glauber's definition of α in order to stick as far as possible to the quantum formalism. This has of course strictly no consequence on the motion equations we derive, as illustrated by result (11) for instance. At this step of our reflection, we can make the following remark. Once specified its inertia (m) and stiffness (k), the physical state of our HO1 is entirely accounted for by giving the values of its dynamical variables (q, p). These variables may be regarded as the two components of a state vector belonging to a two-dimension R-vector space. As suggested by (8), the same physical state can equivalently be accounted for by giving the value of the HO1's Glauber variable α. In this connexion, a third temptation is to associate each physical state of the HO1 characterized by this Glauber variable α to a state vector |α , henceforth called a ket, belonging to some C-vector space E 1 with the hereafter-defined two composition laws:

|α 1 ⊕ |α 2 = |α 1 + α 2 , (12a) λ |α = |λα . (12b) 
In the simplest case of the HO1, the vector space E 1 has dimension unity, and can therefore be generated by a unique vector. It is convenient to choose the ket |α = 1 = |1 as this basis vector. With this choice, we have naturally

|α = α |1 . ( 13 
)
From now on, in order to simplify notations, we shall omit the symbol when multiplying a state vector by a (complex) scalar, and substitute symbol + for symbol ⊕ when adding two state vectors. The above rough sketch of a bridge with quantum mechanics deserves a few comments. First, it should be observed that the vector space E 1 can be provided with an Hermitian scalar (dot) product

(|α , |β ) = β|α = β * α (14a) (bra β| is a 1-form, belonging to E 1 's dual space E * 1 ), defining the norm |||α || = √ α * α = |α|. ( 14b 
)
E 1 is in fact a Hilbert space, and its basis vector |1 has norm unity. Observe too, by the way, that substituting the basis vector |1 by the (unitary) basis vector |e iχ (χ real) leads to describe the same physical state of the HO1 by the Glauber component e -iχ α, which can read, owing to definition (8),

e -iχ α = α = 1 √ 2 (q + ip ), (15a) 
with q (q, p) = cos χ q + sin χ p, p (q, p) = -sin χ q + cos χ p.

Not surprisingly, the unitary transformation induced by (15a) corresponds to a rotation (with angle -χ) in the (q, p) plane. It is noteworthy that

|e iχ e iχ | = |1 1| = 1, ( 15c 
)
where 1 is the identity operator in E 1 ; this equation can be regarded as the so-called "closure relation" in E 1 . Since {q , p } = {q, p} = 1, relations (15b) characterize the most general linear canonical transformation of the standard variables (q, p), whose physical interpretation is particularly easy in the Glauber formalism. Observe at last that the motion equation (11) can read

i d|α dt = Ĥ|α , (16a) 
where Ĥ = ω|α α| is an operator acting in E 1 , whose action is here simply to multiply by ω ( Ĥ|α = ω|α ) and whose mean value in state |α is numerically equal to the classical Hamiltonian H, as displayed in (10):

α| Ĥ|α = ω|α| 2 = H. (16b) 
In the parametrically excited HO1 case, things are a bit less simple, as explained below.

B. The parametrically excited HO1

Let us now suppose that either m or k (possibly both) is time-dependent. Lagrangian (1) then reads

L(θ, θ, t) = 1 2 m(t) θ2 - 1 2 k(t)θ 2 . ( 17 
)
Still setting σ = ∂L/∂ θ = m(t) θ, the same Legendre transformation as in subsection II A leads to the same Hamiltonian (2), now denoted H(θ, σ, t) due to the time-dependence of parameters m and/or k. Observe that, contrary to the Lagrange equation (3), the Hamilton equation system (4) holds even if m or k is time-dependent. Let us still define the angular frequency ω(t) by (5c) and introduce the dynamical variable q = s(t) θ with s(t) = m(t)ω(t) like in (7a). In order to express Lagrangian (17) in terms of q and q, let us substitute θ by s -1 q and θ by s -1 q + £ s -1 q = s -1 ( q -f q), where

f (t) = ṡ(t) s(t) = d ln s(t) dt = d ln √ mω dt .
We have consequently

L(q, q, t) = 1 2 m s 2 ( q -f q) 2 - 1 2 k s 2 q 2 , (18a) 
hence the conjugate momentum

p = ∂L ∂ q = m s 2 ( q -f q) = m θ s = σ s (18b)
and the Hamiltonian

H(q, p, t) = -L + p q = 1 2 ω(q 2 + p 2 ) + f qp (18c) 
(which completes (7c)). Defining the complex dynamical variable α as in (8), we easily derive

q = 2 (α + α * ), p = -i 2 (α -α * ). ( 19a 
)
Hence the Hamiltonian

H(α, t) = ωα * α + i 2 f (α * 2 -α 2 ) (19b) 
(which completes (10)), yielding the motion equation

α = {α, H} = -iωα + f α * (19c) 
(which completes (11)). The above question has been discussed at some length in [START_REF] Devaud | The adiabatic invariant of the n-degree-of-freedom harmonic oscillator[END_REF]. We just recall here the conclusion of this discussion: if the parametric excitation of the HO1 is adiabatic in the Ehrenfest sense, i.e. if the Fourier spectrum of function f (t) contains no nonnegligible component in speaking terms with ω, then the f α * term in the right-hand side of (19c) brings no substantial contribution to α's time-evolution, and can therefore be neglected. At this so-called Secular Approximation (SA), the simplified motion equation (19c) is quite similar to (11):

α = -iω(t)α α(t) = α(0) e -iϕ(t) , with ϕ(t) = t 0 ω(t ) dt , (20a) 
entailing

|α(t)| 2 = |α(0)| 2 = cst, (20b) 
which means that |α| is an adiabatic invariant of our HO1. It is noteworthy that the SA can be applied directly to Hamiltonian H(α, t). Suppose indeed that α(t) oscillates like e -iϕ(t) as displayed in result (20a), and consider the time-evolution of both terms in the right-hand side of (19b). The ωα * α term varies like ω(t), i.e. adiabatically. On the other hand, the i 2 f α * 2 (resp. i 2 f α 2 ) term oscillates like e 2iϕ(t) (resp. e -2iϕ(t) ), since f (t) varies adiabatically. As a consequence, the secular part of Hamiltonian H(α, t) is simply

H sec (α, t) = ω(t)α * α, (21a) 
so that α's time-evolution is ruled, at the SA, by

α = {α, H sec } = -iω(t)α, (21b) 
as assumed in (20a). Observe that, not surprisingly, energy is no longer conserved in the course of the motion. The latter can be described in the complex plane of variable α: the representative point still moves on a circle centred at the origin, but now with a time-dependent angular frequency ω(t). The circle's radius is equal to the HO1's adiabatic invariant |α|.

The bridge with quantum mechanics is the same as in the free movement case. The motion equation (20a) can be rewritten in the form of the Schrödinger equation (16a), but with the Hamiltonian Ĥ now depending on time. Observe nevertheless that, in the latter case, the value of the Glauber variable α is not a sufficient piece of data to determine the physical state of the HO1: it should also be specified at what time t this determination is made, since the correspondence between (q, p) and (θ, σ) is time-dependent via the current values of parameters m(t) and ω(t) (see (7a) et (18b)).

The aim of the following section III is to show that all the notions we have introduced in this section II about the HO1 can be extended to the case of the HON .

III. THE HON CASE

Let us consider a N -degree-of-freedom system described by a set of N dynamical variables θ 1 , . . . , θ n , . . . , θ N and let us introduce the N -row and N -column matrices

Θ =         θ 1 . . . θ n . . . θ N         , t Θ = θ 1 • • • θ n • • • θ N . (22) 
(As displayed hereabove, superscript t indicates matricial transposition.) If we can find Θ such that one Lagrangian describing the system's dynamics can be written

L = 1 2 t ΘM Θ -t ΘKΘ , (23) 
where M and K are N × N symmetrical matrices of "positive type", i.e. associated with positive quadratic forms respectively accounting for the effective inertia and effective stiffness, then the latter system will be called a HON . Observe that (23) is just the generalization of (1). A further generalization consists in defining the conjugate momenta N -row and N -column matrices

Σ = ∂L ∂ t Θ = M Θ =         σ 1 . . . σ n . . . σ N         , t Σ = ∂L ∂Θ = t ΘM = σ 1 • • • σ n • • • σ N , (24) 
where ∂/∂ t Θ and ∂/∂Θ should be regarded here as nothing more than convenient notations. The Legendre transformation of Lagrangian (23) yields the Hamiltonian

H(Θ, Σ) = -L + t ΘΣ = 1 2 t ΣM -1 Σ + t ΘKΘ (25) 
(generalizing (2)), and the motion equations are

M Θ + KΘ = 0 (26) 
(generalizing (3)).

A. A mathematical insert

Nevertheless, any further generalization of section II's results needs a quick mathematical prelude, as explained hereafter. As indeed in section II, we would like to rewrite (23) in terms of new variables that would have a universal dimension. Suppose for instance that we try to generalize equations (5a-c) and thus introduce a set Ξ of new variables ξ n defined as

Ξ = M 1/2 Θ, (27a) 
where, like Θ, Ξ is a N -row column matrix. In these variables, Lagrangian (23) reads

L = 1 2 t Ξ Ξ -t ΞΩ 2 Ξ , (27b) 
where matrix Ω 2 is defined as

Ω 2 = M -1/2 KM -1/2 . ( 28 
)
The problem is that, to be able to perform the above variable change, we should beforehand properly define matrix M 1/2 , a N × N matrix that could be considered as the "square root" of matrix M . Let us sketch a solution to this issue. Take a symmetrical matrix, say M . This matrix can be diagonalized, i.e. one can find a passage matrix P M such that

P -1 M M P M = D =         m 1 . . . 0 m n 0 . . . m N         , with m n real ∀n. (29) 
Moreover, the eigenvectors associated with different eigenvalues are necessarily orthogonal, hence it is possible to choose P M orthogonal, with consequently P -1 M = t P M . Suppose now that in addition matrix M is of positive type. Then m n > 0 ∀n. It is therefore possible to define the matrix D r as

D r =         m r 1 . . . 0 m r n 0 . . . m r N         , (30a) 
r being any real number, and finally to define matrix M r as

M r = P M D r P -1 M . (30b) 
For instance, setting r = 1/2, we are able to define unambiguously the matrix M 1/2 = √ M . Note too that, following definition (30b), M -1 fortunately coincides with the inverse matrix of M . Observe nevertheless that, M and M being two symmetrical matrices of positive type, their product M M is a priori neither symmetrical nor positivetyped (unless they commute), so that the notation (M M ) r makes no sense (unless r is integer). As an illustration of the latter point, let us come back to the motion equation (26). It is of course possible to multiply (on the left) the latter by M -1 in order to get Θ + M -1 KΘ = 0. Nevertheless it is not possible to set M -1 K = Ω 2 : although matrices M -1 and K are themselves symmetrical and of positive type, M -1 K is a priori not so and cannot consequently be regarded as the square of some matrix Ω. Observe on the other hand that the matrix Ω 2 defined in (28) is fairly symmetrical and of positive type. It is then possible to define the matrices Ω = (Ω 2 ) 1/2 and Ω 1/2 = (Ω 2 ) 1/4 that we shall use in the following of this article. Observe at last that the procedure we use is perfectly available if matrix M , instead of being real and symmetrical, is Hermitian, provided that it is of positive type, i.e. associated with a positive Hermitian form. In this more general case, matrix P M is unitary, i.e. P -1 M = t P * M = P † M , superscript † indicating transconjugation (matricial transposition + complex conjugation), also called Hermitian conjugation.

B. The free HON

Equipped with the above mathematical definitions, we can generalize the variable change (7a) and introduce the standard dynamical variables set

Q = Ω 1/2 Ξ = SΘ with S = Ω 1/2 M 1/2 (31a)
and accordingly generalize (7b) in

L(Q, Q) = 1 2 t QΩ -1 Q -t QΩQ . ( 31b 
)
Let P = ∂L/∂ t Q stand for the conjugate momenta of Q. We have

P = Ω -1 Q (32a)
and consequently the usual Legendre transformation yields the Hamiltonian

H(Q, P ) = 1 2 t P ΩP + t QΩQ , (32b) 
which generalizes (7c).

At last, it is possible to group together the two real column-matrices Q and P in a unique complex column-matrix A, thus generalizing (8):

A = 1 √ 2 Q + iP (33a) with A =         α 1 . . . α i . . . α N         , A † = (α * 1 , • • • α * i , • • • α * N ), (33b) 
superscript † indicating Hermitian conjugation as mentioned above. With this notation, (10) is generalized in

H = A † ΩA, (34) 
and ( 11) in

Ȧ = {A, H} = -iΩA A(t) = e -iΩt A(0). ( 35 
)
We can resume and extend the remark we made in section II in the HO1 case: once specified the inertia (M ) and stiffness (K) matrices, the physical state of our HON is entirely accounted for by giving the 2N values of its standard variables (Q, P ). These variables may be regarded as the 2N components of a state vector belonging to a 2N -dimension R-vector space. As suggested by (33a), the same physical state can equivalently be accounted for by giving the values of the N Glauber components α i of a state vector |ψ , henceforth called a "ket" according to Dirac's designation, belonging to a N -dimension C-vector space E N . Let E * N be E N 's dual space, i.e. the vector space (with dimension N ) made of all the one-forms on E N , noted ψ| and called "bras". As any vector space with a finite dimension, E N can be provided with a basis. The most natural choice is the canonical basis {|ψ 1 , |ψ 2 , . . . |ψ N } associated with the Glauber column-matrices

A 1 =      α 1 = 1 α 2 = 0 . . . α N = 0      , A 2 =      α 1 = 0 α 2 = 1 . . . α N = 0      , • • • A N =      α 1 = 0 α 2 = 0 . . . α N = 1      . (36a) 
In the latter basis, and according to (33b), the Glauber matrices A and A † respectively read, with the Einstein understood summation (from i = 1 to N ) over repeated tensorial indices,

A = α i A i , A † = α * i A † i |ψ = α i |ψ i , ψ| = α * i ψ i |. (36b) 
Moreover, E N (as well as E * N ) can be equipped with a Hermitian dot product. Associating |ψ A (resp. |ψ B ) to the Glauber column-matrix A (resp. B), we define

(|ψ A , |ψ B ) = ψ B |ψ A = B † A = β * i α i , (37a) 
and consequently the Hermitian norm

|||ψ A || = ψ A |ψ A = √ A † A = α * i α i . (37b) 
The vector space E N has thus the characteristics of the state vectors Hilbert space in quantum mechanics. Nevertheless, prior to generalizing the bridge we have sketched in subsection II, we should tackle the further following issue.

In the very beginning of sections II and III, we have stated that one could tell a HO by the possibility of finding a dynamical variable θ, or more generally a set Θ of variables θ n , such that the Lagrangian of the system could be written in the quadratic form (1) or ( 23). But such a variable set Θ is far from unique. Starting from another available set Θ would involve another inertia matrix M , another stiffness matrix K and consequently another matrix Ω (see (28)); hence in fine another set (Q , P ) of conjugate standard Hamiltonian dynamical variables, itself combining in another Glauber variables set A . Now the most general linear transformation that should let Hamiltonian (34) invariant is A = U A , with matrix U unitary:

A = U A H = A † U † ΩU A = A † Ω A , (38a) 
with

Ω = U † ΩU. (38b) 
Observe that matrix Ω is an Hermitian matrix (similar to Ω since U † = U -1 ). Observe too that the Poisson relation {α k , α * } = δ k /i is left invariant by this unitary transformation A = U A . With Einstein's convention again, we have indeed

{α m , α n * } = {U -1 mk α k , U -1 * n α * } = δ k i U -1 mk t U n = 1 i U -1 mk U kn = 1 i (U -1 U ) mn = δ mn i . ( 39 
)
As a consequence, the motion equation ( 35) is left invariant and reads

Ȧ = {A , H} = -iΩ A A (t) = e -iΩ t A (0) = U † e -iΩt U A (0) U A (t) = A(t) = e -iΩt A(0). (40) 
It is noteworthy that the unitary transformation A = U A implements in fact the family of linear canonical transformations of the form

Q + iP = U (Q + iP ), (41a) 
or equivalently

Q(Q , P ) = (U )Q -(U )P , P (Q , P ) = (U )Q + (U )P . (41b) 
Observe that if matrix U is orthogonal (i.e. real), then the q i and the p j are not mixed with one another in the transformation, but transformed separately (the qs with the qs, the ps with the ps):

Q(Q ) = U Q , P (P ) = U P . (42) 
As an illustration of the above particular case, let us come back to equation (28) which allowed us to define a matrix Ω which is real, symmetrical and of positive type. Therefore, there exists an orthogonal passage matrix P Ω such that

P -1 Ω ΩP Ω = Ω e , (43a) 
with, indices m labelling the eigenmodes,

Ω e =         ω e1 . . . 0 ω em 0 . . . ω eN         , (43b) 
where ω em is the angular frequency of eigenmode m. Applying the canonical transformation (42) with matrix P Ω standing for U , we obtain the so-called normal variables (Q e , P e ):

Q = P Ω Q e with Q e =         q e1 . . . q em . . . q eN         , P = P Ω P e with P e =         p e1 . . . p em . . . p eN         . ( 44 
)
Combining Q e and P e like in (33a), we obtain the normal eigen Glauber variables

A e = 1 √ 2 (Q e + iP e ) =         α e1 . . . α em . . . α eN         . ( 45 
)
The Hamiltonian of our HON then simply reads (see (32b) and ( 34))

H = 1 2 ( t Q e Ω e Q e + t P e Ω e Q e ) = 1 2 N m=1 ω e 2 m (p e 2 m + q e m ) (46a) 
(to be compared with (7c)), or equivalently

H = A † e Ω e A e = N m=1 ω em |α em | 2 (46b) 
(to be compared with (10)). The above Hamiltonian is just the sum of the Hamiltonians of N independent HO1s, to which the results of subsection II can be applied separately. To say it simply, the eigenmodes evolve independently of one another. We shall see in the following subsection that the eigenstates may loose this independence when the HON undergoes a parametrical excitation.

We are now fully equipped to complete our bridge with quantum mechanics. As indicated above (see (36a)), choosing a set (Q, P ) of standard variables (entailing the choice of the corresponding set A of Glauber variables) is equivalent to choose a basis -textbooks [START_REF] Cohen-Tannoudji | Quantum Mechanics[END_REF][START_REF] Merzbacher | Quantum Mechanics[END_REF] sometimes call it a "representation" -in the Hilbert space E N . An example of basis is provided by (36a), which is orthonormalized. Besides, one easily checks that

A i A † i = 1 |ψ i ψ i | = 1, ( 47 
)
where 1 is the unity N × N matrix and 1 the identity operator in E N . The above result generalizes the closure relation (15c). It is noteworthy that changing an orthonormalized basis for another can be associated with a unitary transformation that consequently leaves relation (47) invariant.

Let us now consider the time-evolution of the state vector |ψ(t) . According to (35), it is ruled by the Schrödinger equation

i d|ψ(t) dt = Ĥ|ψ(t) , (48a) 
where Ĥ is an operator acting in E N and given by, using (47),

Ĥ = 1 Ĥ 1 = |ψ i ψ i | Ĥ|ψ j ψ j | = |ψ i Ω ij ψ j |, (48b) 
with Einstein's convention used for both indices i and j. The above definition is in fact intrinsic, i.e. it does not depend of the choice of a representation, and the solution of the Schrödinger equation is formally

|ψ(t) = e -i Ĥt/ |ψ(0) , (49) 
In the framework of the SA, the bridge with quantum mechanics is the same as in the free HON case. The motion equation

Ȧ = {A, H sec } = -i(Ω + δΩ)(t)A (55a)
is but the expression in a particular representation {|ψ i } of the intrinsic Schrödinger equation i d|ψ(t) /dt = Ĥ(t)|ψ(t) , with now

Ĥ(t) = |ψ i (Ω ij + δΩ ij )(t) ψ j |, (55b) 
completing (48b). As a last remark, it is noteworthy that, due to the off-diagonal terms in δΩ emm (t) in the eigenmodes representation {|ψ em (t) }, transitions may occur in the course of time between the latter, which consequently no longer evolve independently. Nevertheless, since the overall time-evolution of |ψ(t) is unitary at the SA, its norm remains constant. Hence ψ(t)|ψ(t) = N m=1 |α em (t)| 2 should be considered as an expression of the HON adiabatic invariant, as already outlined in [START_REF] Devaud | The adiabatic invariant of the n-degree-of-freedom harmonic oscillator[END_REF].

IV. CONCLUSION

The classical motion equation of the harmonic oscillator and the Schrödinger equation in quantum mechanics have in common to be both linear. This simple remark is the fundation stone of the present paper. We have shown that, following in Glauber's steps when choosing a relevant dynamic variable to describe the HO, it is possible to write its motion equation in a Schrödinger-like form. The set of physical states of the HON can be provided with a 2N -dimension R-vector space structure, or equivalently with a N -dimension C-vector space structure E N , on which an Hermitian dot product can be defined.

From a pedagogical point of view, the bridge thus thrown between classical and quantum mechanics allows a wealth of intuitive pictures of the otherwise abstract quantum formalism. To begin with, let us note that the dimension itself (N ) of E N is associated with the number of degrees of freedom of the classical HO. Moreover, the unitary transformation in the Hilbert space E N is associated with a (linear) canonical transformation of the classical standard variables (Q, P ). The Hermitian norm of the state vector |ψ is interpreted in terms of the number of (classical) quanta numbers |α i | 2 , and the conservation of the latter norm in the case of a time-dependent Hamiltonian is related to the adiabaticity (in the Ehrenfest sense) of the parametric excitation of the associated classical HO.

Nevertheless, it should be kept in mind that many issues of quantum mechanics are not addressed in the present work. Inter alia the quantum measurement problem is not tackled at all, the quantum entanglement not either.

Notwithstanding the above obvious limitations of the bridge proposed in this paper, it is noteworthy that the converse of our purpose may be contemplated: any N -level quantum system (whose physical state can be described by means of a ket |ψ evolving in a N -dimension complex Hilbert space E N ) can be associated with a N -degree-offreedom classical HO. Beyond the (well known) fact that the dynamics of both systems can be entirely calculated with the help of simple linear algebra, this raises a puzzling philosophical question: might things be so that quantum mechanics should originate in some hidden infrastucture of, say, space-time or so, in which oscillators would play an important role? Any speculation about this issue is of course far beyond the scope of the present paper.

Acknowledgments

The authors gratefully acknowledge Professor Jean-Claude Bacri and Damien Cossart for their constant interest concerning the genesis and the advancement of the present paper, the former as an open-minded teacher and the latter as a penetrating student.

corresponding to (35). Nevertheless, it is convenient to choose the basis {|ψ em } of Ĥ's eigenkets ( Ĥ|ψ em = ω em |ψ em ). With this choice, (49) yields

as suggested by (46b) and displayed in any quantum mechanics textbook.

To finish off, we shall consider the case of a parametrical excitation of our HON .

C. The parametrically excited HON

Let now matrices M and K depend on time. Let us still define Ω(t) by (28), and still set Q = SΘ, with now S = S(t) = Ω 1/2 (t)M 1/2 (t) (see (31a)). In order to express Langrangian (23) in terms of Q, Q, we have to substitute

where

generalizes f in equations (18a-c). With the above notation, we have

hence the set of conjugate momentum

(see (18b)). After a Legendre transformation, we get

, the above Hamiltonian can be expressed in terms of the Glauber set A:

which generalizes (19b)). The above expression can be much simplified by splitting matrix F in its symmetrical part S = 1 2 (F + t F ) and antisymmetrical part A = 1 2 (F -t F ). We have obviously t ASA * = A † SA, t AAA = A † AA * = 0 and t AAA * = -A † AA. The time-dependent Hamiltonian H consequently reads

As already discussed in subsection II B about expression (19b), the term associated with S in the right-hand side of the above equation is nonsecular. It can therefore be neglected at the SA provided that the parametrical excitation of the HON is adiabatic. Assuming this condition, we are left with the secularized Hamiltonian

where the additional Hermitian matrix δΩ(t) = iA(t). The above expression can be regarded as the generalization of (21a). Observe nevertheless that, in the N = 1 one-degree-of-freedom case, the matrix F introduced in (51b) is just the real number f = ṡ/s, and has consequently no antisymmetrical part, so that δω = 0.