

On multi-exit routings and AS relationships

Riad Mazloum, Marc-Olivier Buob, Jordan Auge, Bruno Baynat, Timur Friedman, D. Rossi

▶ To cite this version:

Riad Mazloum, Marc-Olivier Buob, Jordan Auge, Bruno Baynat, Timur Friedman, et al.. On multi-exit routings and AS relationships. ISMA 2013 - 5th AIMS Workshop, Feb 2013, San Diego, United States. hal-01698837

HAL Id: hal-01698837 https://hal.science/hal-01698837v1

Submitted on 2 Feb 2018

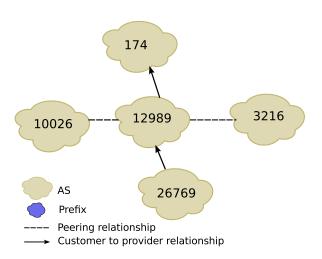
HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

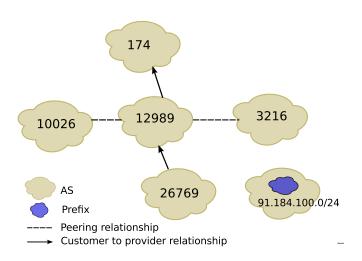
L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

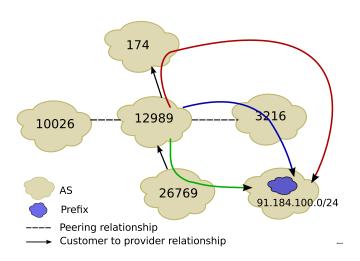
On multi-exit routings and AS relationships

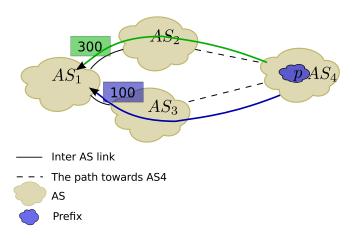
Riad Mazloum, Marc-Olivier Buob¹, Jordan Augé¹, Bruno Baynat¹, Timur Friedman¹ and Dario Rossi²

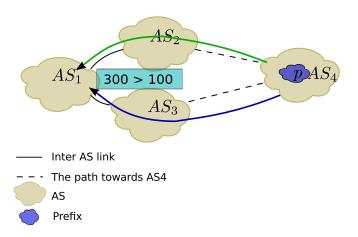
¹UPMC, France first.last@lip6.fr ²Telecom ParisTech, France dario.rossi@enst.fr

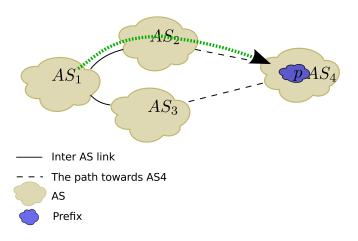

February 06th, 2013 -ISMA 2013 AIMS 5

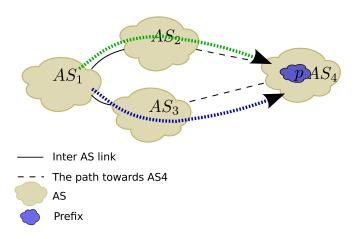


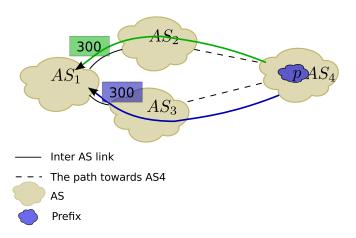

Internet routing example


Internet routing example

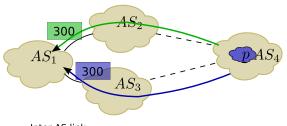

Surprising observations


BGP route with higher LP


A route has a higher LP


Single next-hop AS

Multi next-hop ASes


Equal LP for all next-hop ASes

Observed ME \implies equal LP for next-hop ASes

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Inter AS link

The path towards AS4

AS

Implementation of AS economical policies

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

client > peer > provider

Implementation of AS economical policies

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

(ME) + (POLICY)

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

(ME) + (POLICY)

 $ME(AS_1, p) = \{AS_2, AS_3\} \implies$ same type of relationship between AS_1 and AS_2, AS_3

Does it work?

(ME) + (POLICY)

 $ME(AS_1, p) = \{AS_2, AS_3\} \implies$ same type of relationship between AS_1 and AS_2, AS_3

Does it work?

(ME) + (POLICY)

 $ME(AS_1, p) = \{AS_2, AS_3\} \implies$ same type of relationship between AS_1 and AS_2, AS_3

- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship

Does it work?

(ME) + (POLICY)

 $ME(AS_1, p) = \{AS_2, AS_3\} \implies$ same type of relationship between AS_1 and AS_2, AS_3

- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship
- About 70% matching 30% mismatching

Multi-exit occurrences and relationship matching

Data

Multi-exit discovery:

• BGP: BGPmon, Colorado State University project¹

¹http://bgpmon.netsec.colostate.edu/

²http://www.top-hat.info/

³http://www.team-cymru.org/Services/ip-to-asn.html

⁴http://www.caida.org/data/active/as-relationships/

Data

Multi-exit discovery:

- BGP: BGPmon, Colorado State University project¹
- traceroute: TDMI/TopHat, UPMC project²
 - IP/AS aliasing: Team Cymru IP to AS mapping service³

¹http://bgpmon.netsec.colostate.edu/

²http://www.top-hat.info/

³http://www.team-cymru.org/Services/ip-to-asn.html

Data

Multi-exit discovery:

- BGP: BGPmon, Colorado State University project¹
- traceroute: TDMI/TopHat, UPMC project²
 - IP/AS aliasing: Team Cymru IP to AS mapping service³

AS relationships:

CAIDA AS relationship inference database⁴

Our data is available on request.

¹http://bgpmon.netsec.colostate.edu/

²http://www.top-hat.info/

³http://www.team-cymru.org/Services/ip-to-asn.html

Discussion

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship

Discussion

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship

Discussion

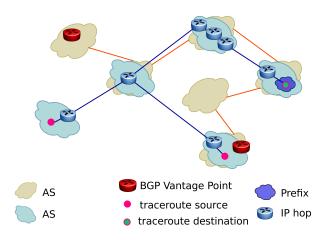
Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

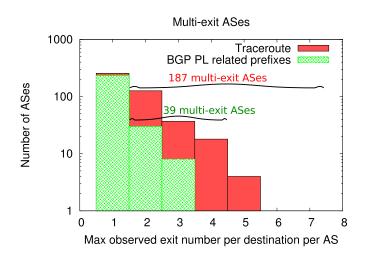
Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

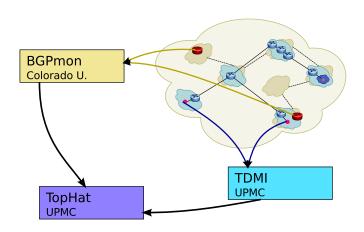
- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship



Have another ideas?

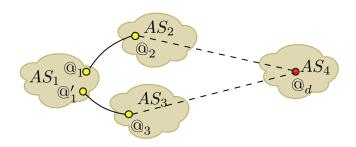

- Feedback about the problem and the analysis process
- Get confirmation about the results (we don't have a ground truth of AS relationships)
- Possible collaborations

Reserved slides...


BGP and IP overlap

Multi-exit routing, BGP and IP results

TopHat interconnection



Set of AS paths per prefix $p_1, AS_1 - AS_2 - ... - AS_5$ $p_2, AS_1 - AS_2 - ... - AS_5$ $p_1, AS_1 - AS_3 - ... - AS_5$ Set of AS triplets CAIDA inference DB p_2, AS_1, AS_2 $AS_1, AS_3, peer$ p_1, AS_1, AS_3 $AS_1, AS_2, peer$ p_1, AS_1, AS_2 Set of multi-exits $(p_1, AS_1, \{peer, peer\})$ $p_1, AS_1, \{AS_2, AS_3\}$

Set of AS paths per prefix $p_1, AS_1 - AS_2 - ... - AS_5$ $p_2, AS_1 - AS_2 - ... - AS_5$ $p_1, AS_1 - AS_3 - ... - AS_5$ Set of AS triplets CAIDA inference DB p_2, AS_1, AS_2 $AS_1, AS_3, peer$ p_1, AS_1, AS_3 $AS_1, AS_2, client$ p_1, AS_1, AS_2 Set of multi-exits $(p_1, AS_1, \{client, peer\})$ $p_1, AS_1, \{AS_2, AS_3\}$

- Inter AS link
- - Continuation of the link to the announcing AS
- An Autonomous System (AS)
- lacktriangle The destination prefix p

- ---- Inter AS link
- - Continuation of the link to the announcing AS
- An Autonomous System (AS)
 - \circ IP Hop $@_i$
 - The destination IP address $@_d$