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Nonlinear Circle-Criterion Observer Design for
an Electrochemical Battery Model

Pierre Blondel , Romain Postoyan, Stéphane Raël, Sébastien Benjamin, and Philippe Desprez

Abstract— Smart battery management systems require reliable
information on the internal state of the battery, which are
unavailable through direct measurements. Electrochemical mod-
els are relevant in this context as these describe the internal
phenomena governing the battery dynamics. These models can
thus be used to design observers, which provide estimates of
the state variables online. In this paper, we consider a single
particle electrochemical model of a lithium-ion battery given by
a set of ordinary differential equations built from the spatial
discretization of partial differential equations (PDEs) that locally
describe the mass and charge transport of lithium. We then
design a nonlinear observer, whose global exponential stability
and robustness are guaranteed provided that a linear matrix
inequality holds. The latter is shown to be verified for standard
model parameters values. Simulation results based on plug-in
hybrid electric vehicle tests on the original PDE model are
presented, which illustrate the good performances of the observer
in terms of speed of convergence and robustness.

Index Terms— Lithium batteries, Lyapunov methods, nonlin-
ear observer, stability.

I. INTRODUCTION

ENERGY storage for embedded systems remains one of
the technical challenges of the 21st century. Introduced in

the early 1990s, lithium-ion (Li-ion) batteries are widely used
and will play a key role in energetic transition. Compared
with other electrochemical devices, Li-ion batteries exhibit
a high-weight power density, a high-volume power density,
a low self-discharge current, and do not suffer from the
memory effect. On the other hand, this technology requires
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a careful management in terms of safety. This is the purpose
of the so-called battery management systems (BMS), which
also provides to the user useful information on the state of
the battery, such as the state of charge (SOC) and the state of
health (SOH) to mention a few.

A way to improve existing BMS is to exploit models, which
describe the internal dynamics of the battery. Two families
of models can be distinguished. The first category relies on
equivalent circuit models (ECMs), which are simple electrical
analogies of the battery dynamics that essentially consist of
a few coupled resistors and capacitors in series and parallel.
The design of these ECM-based techniques is usually easy
but the models are simplistic and nontrivial parameterization
is needed, which can either be data-driven [1] or done by a
bank of Kalman filters as in [2] or [3].

The second category of models are the electrochemical
ones, which describe the lithium concentrations in different
locations. These models offer a more faithful description
of the battery dynamics but are usually more difficult to
exploit for the BMS. In this paper, we consider such mod-
els, as we are convinced that electrochemical models are
a promising step toward the developments of the advanced
BMS. Doyle et al. [4] propose a full electrochemical model
known as pseudo-2-D model, which locally describes the
electrochemical phenomena through coupled partial differen-
tial equations (PDEs). Improvements of this work have been
done in [5] and [6] by extending the domain of validity
and the generality of these models. Zou et al. [7] develop
a comprehensive PDE battery model, which captures the
coupled electrochemical, thermal, and capacity-fade dynamics,
and they present a general methodology to obtain reduced
models, inspired by the singular perturbation theory, to adapt
the complexity of the PDE model to any kind of Li-ion battery
technology or any specific applications.

While PDE models provide an accurate description of
the battery dynamics, solving these models remains compu-
tationally intensive, which may make their implementation
on embedded devices difficult. A specific reduction of these
models, known as single particle models (SPMs), where each
electrode is approximated as a spherical particle, is often
used [8], [9]. This type of models is less accurate but compu-
tationally lighter than the previous ones and has been used for
the development of various estimation techniques, see the PDE
estimator in [9] and [10], the extended Kalman filter in [8],
the unscented Kalman filter in [11], or the deterministic finite-
dimensional observer [12].

In this paper, we aim at designing an observer for a finite-
dimensional SPM like in [8] and [12]. To work with such
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models may be essential in practice to make the implementa-
tion of the observer on embedded devices possible. Inspired
by [13], the SPM-like model we develop has the current
applied to the battery as the input and the battery voltage,
which is a nonlinear function with the states and the input as
arguments, as output. Its state dynamics are described by a
set of affine ordinary differential equations (ODEs) obtained
by the spatial discretization of the PDE governing the mass
diffusion of the lithium in its particle as in [8]. The state-
space representation takes the form of an affine dynamical
system with a nonlinear output map. This model differs from
the SPM model in [12], for instance, where a similar problem
is addressed. Indeed, in [12], the considered model only
describes the diffusion phenomenon in the negative electrode.
The surface concentration of the positive electrode, which is
needed to compute the output voltage, is obtained by a transfer
function based on the mass conservation of lithium. In our
model, both the electrodes are described, we can therefore
access to the lithium concentration in these and compute the
output voltage directly. Another main difference in [8] and [12]
is the geometric exactness of the spatial discretization we
choose, which guarantees the mass conservation of the lithium.

We then design an observer for the obtained model. The
key difficulty is that the output map is nonlinear. It appears
that none of the observer designs for systems with nonlinear
output maps we are aware of are applicable to our system,
either because the model is not of the right form [14], or
because the required assumptions are not satisfied [12], [15].
We, therefore, propose a new observer, which is inspired by
the designs in [16] and [17] where circle-criterion arguments
are used. The key idea is to write the state-dependent term
of the output map as the sum of an affine function and
nonlinear functions satisfying sector conditions. This formu-
lation is possible in our case as the output map is composed
of the open circuit voltage (OCV) versus state maps and
some current-dependent terms. We then design the observer,
provided that a linear matrix inequality (LMI) holds, which
is shown to be the case for standard model parameter values.
We ensure that the origin of the state estimation error system is
uniformly globally exponentially stable (UGES) in the absence
of exogenous inputs and noise, otherwise we guarantee
a L2-stability property. Contrary to [8] and [11], global
stability of the observer is established, which is also crucial
for critical applications. The design method we present is first
derived by assuming the battery temperature constant. We then
explain how to extend these results to the case where the
temperature varies within a given (potentially large) interval
by using a polytopic approach. We have finally implemented
the observer on the original PDE model. Good estimation
performances are obtained, even for high currents and noisy
measurements.

In our preliminary work in [18], we considered the same
SPM but we designed the observer very differently, using a
polytopic approach instead of invoking circle-criterion argu-
ments. As a result, the LMI condition presented in this paper
is different and has a much smaller dimension. We also think
that the design we present in this paper is a contribution in its
own right as it extends the results in [17] and [19] to the case

where the output map is nonlinear. In addition, we consider
the impact of temperature, which is not the case in [18].

Notations: Let IR := (−∞,∞), IR≥0 := [0,∞), and
IR>0 := (0,∞). We use In to denote the identity matrix of
size n. For A ∈ IRN×M , AT stands for the transpose of A.
For x ∈ IRN and y ∈ IRM , (x, y) denotes (xT , yT )T . For any
symmetric matrix A ∈ IRN×N , λmax(A) stands for the biggest
eigenvalue of A. The symbol ∗ in a matrix is for the symmetric

term, i.e.

[
A B
∗ C

]
=

[
A B

BT C

]
. For x ∈ IRN , |x | stands for the

Euclidean norm of x . Let f : IR+ → IRn , ‖ f ‖2,[0,t) denote
the L2 norm of f on the interval [0, t), where t ∈ [0,∞),
i.e., ‖ f ‖2,[0,t) = (

∫ t
0 | f (s)|2ds)1/2, when it is well-defined.

We write that f ∈ L2, when ‖ f ‖2,[0,∞) < ∞.

II. ELECTROCHEMICAL MODEL

The electrochemical model we consider describes the solid
diffusion of the lithium that occurs in the solid phase of the
electrodes. It is derived from a PDE-based model given in [13]
and takes the form of a finite-dimensional nonlinear state-
space representation.

In this section, we describe the system, then we derive the
model of the solid diffusion of lithium in the electrodes, and
finally, we give the output of the model. The parameters used
in this section are defined in Table I in Appendix B.

A. Description

A Li-ion battery cell is composed of the negative electrode,
the positive electrode, the separator, and the electrolyte. The
electrodes are separated by the well-named separator and
those three components are immersed in the electrolyte. The
electrolyte is an ionic solution that can exchange lithium
with the electrodes and provides electrical insulation. Each
electrode has a certain potential due to the electrochemical
couple formed by its material and the lithium dissolved in
the electrolyte. Electrons are attracted by this difference of
potential but cannot be exchanged from one electrode to the
other within the battery unlike lithium ions. An electron that
belongs to an electrode can go through an external electrical
circuit to reach the other electrode if this circuit exists. Then,
lithium is removed from its source electrode and another is
inserted in its electrode of destination. This conserves the
charges’ equilibrium in the electrodes and in the electrolyte
at any time. From a macroscopic point of view, this flow of
electrons between the electrodes through an external circuit
corresponds to the current.

B. Assumptions

To simplify the electrochemical model, we assume that
the behavior of a single particle of the average size of the
particles in the electrode represents the behavior of the whole
electrode as in [8]–[13] and [18], which corresponds to the
next assumption.

Standing Assumption 1 (SA1): Each electrode in the model
is composed of a single particle, which is a sphere of
the average size of the particles that compose the actual
electrode. �
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Fig. 1. SPM model schematic.

SA1 neglects the thickness of the electrode, allowing a
significant reduction in the order of the model and leads to
a friendly state-space form as we will show. Again, we will
see in Section III that although the observer will be designed
on a simplified model, good performances are obtained in
simulations of a PDE model, which does not rely on SA1.

Remark 1: In [12], only one particle is considered and the
surface concentration at the positive electrode, needed for
output computation, is deduced from the surface concentration
of the negative electrode thanks to a transfer function while
we estimate the lithium concentration in both the electrodes
like in [8]. The proposed model, therefore, describes in more
detail the concentration of lithium in the positive electrode. �

We also make the next assumption on the electrolyte.
Standing Assumption 2 (SA2): The electrolyte is

neglected. �
Model simulations with a standard set of parameters used in

this paper show that the contribution of the electrolyte to the
dynamics of the model and to the output voltage is negligible
for reasonable currents. SA2 simplifies the model and has a
low impact on its accuracy. Fig. 1 shows the SPM model under
SA2 and SA1.

We also assume that the model parameters are known
and leave the estimation of some of these, like diffusions
coefficients, for future work.

Standing Assumption 3 (SA3): All the parameters of the
model are known. �

C. Solid Diffusion in a Particle

In view of SA1, the main physical phenomenon is the
lithium diffusion in the electrodes. Lithium diffusions in the
negative and positive electrodes are ruled by the same physical
law, only the parameterization changes from one electrode to
the other.

According to SA1, the negative and positive particles are
spheres. We introduce the subscript s ∈ {neg, pos} for the sake
of convenience. The concentration of solid lithium with respect
to r , the radial coordinate, is driven by the solid diffusion
equation, which is described by the PDE

∂cs(r, t)

∂ t
= 1

r2

∂

∂r

[
Dsr2 ∂cs(r, t)

∂r

]
, (1)

where cs is the lithium concentration in the solid phase, along
with two boundaries conditions,

∂cs(r)

∂r

∣∣∣∣
r=0

= 0
∂cs(r)

∂r

∣∣∣∣
r=Rs

= K s
I I, (2)

with I the current, as := (3εs/Rs), and under active sign
convention, K neg

I = −1/(DneganegFAcelldneg) and K pos
I =

1/(DposaposFAcelldpos). All the subscripts, superscripts, and
indexes are given in Table II in Appendix B. The boundary

condition at r = 0 means that there are no lithium flux in the
center of the sphere for geometrical reasons. The boundary
condition in r = Rs means that the flux through the surface
of the sphere is proportional to the battery current.

We spatially discretize (1) and (2) to obtain a set of ODEs.
We consider Ns samples where the lithium concentration is
considered constant in each particle. The size of these samples
is voluntarily not given because any sampling rule can be
chosen to discretize the particles. We intend to accurately
estimate the surface concentrations in this paper, consequently
samples with identical volumes are chosen in Section IV to
generate the numerical values of the electrochemical model.
This sampling rule tends to tighten the thickness of the samples
near the surface of the particles. Samples with identical radius
are also relevant for other purposes [12].

Let Sn and Vn be the external surface and the volume of the
sample n ∈ {1, . . . , Ns }, respectively. We spatially discretize
(1) and (2) using right-sided Newton’s difference quotient, for
n ∈ {2, . . . , Ns − 1},
dcn

dt

= Sn−1

rn − rn−1

Ds

Vn
cn−1 −

(
Sn−1

rn − rn−1
+ Sn

rn+1 − rn

)
Ds

Vn
cn

+ Sn

rn+1 − rn

Ds

Vn
cn+1, (3)

for n = 1
dc1

dt
= S1

r2 − r1

Ds

V1
(−c1 + c2), (4)

and for n = Ns

dcNs

dt
= SNs −1

rNs − rNs −1

Ds

VNs

(cNs −1 − cNs ) + K̄ s
I I , (5)

with K̄ neg
I = − Sneg

Vneganeg FAcelldneg
and K̄ pos

I = Spos
Vposapos FAcelldpos

.

Remark 2: In [8] and [12], geometrical approximations in
the volumes and surfaces of the samples lead to some model-
ing uncertainties contrary to what our model considers. Indeed,
to ensure the geometric accuracy and mass conservation of the
lithium in our model, the volumes Vn and the surfaces Sn are
analytically obtained by integration along the r coordinate. �

The battery does not acquire or leak lithium materials over
short time horizons. A mass conservation of the lithium in
solid-phase equation can therefore be written. Let Nneg and
Npos be the number of samples of the negative and positive
electrodes radially discretized, respectively. The quantity of
lithium in the solid phase is defined as

Q := αneg

Nneg∑
i=1

cneg
i V neg

i + αpos

Npos∑
i=1

cpos
i V pos

i , (6)

with αneg := (F/3600)(εs,negAcelldneg/V neg
total), and

αpos := (F/3600) (εs,posAcelldpos/V pos
total), with

V s
total = 4

3π R3
s .). The term Q is expressed in

Ah, which explains the scaling term (F/3600)
in αneg and αpos.

To reduce the order of the model, we express the concen-
tration of lithium at the center of the negative electrode cneg

1
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Fig. 2. OCV curves extracted from an empirical formula given by [5].

as a linear combination of all the other sampled concentration
in the solid phase

cneg
1 = K̄ +

Nneg∑
i=2

β
neg
i cneg

i +
Npos∑
i=1

β
pos
i cpos

i , (7)

with K̄ := (Q/αnegV neg
1 ), β

neg
i := −(V neg

i /V neg
1 ) and β

pos
i :=

−(αposV pos
i /αnegV neg

1 ). This simple reduction appears to be
very useful to ensure the satisfaction of the conditions for the
stability of the observer in Section III.

Let x := (cneg
2 , . . . , cneg

Nneg
, cpos

1 , . . . , cpos
Npos

) ∈ IRN with N :=
Nneg −1+ Npos be the vector of lithium concentration in each
sample of both the electrodes and u ∈ IR be the current I .
From (3), (5), and (7), we obtain

ẋ = Ax + Bu + K , (8)

where A ∈ IRN×N , B ∈ IRN , and K ∈ IRN are constant
matrices whose expressions follow from (3), (5), and (7); recall
that all parameters are known according to SA3.

D. Output Voltage

The output voltage is the output of our model. The main
components of the output voltage are the potential differences
between the electrodes and the electrolyte without current,
called OCV, which vary with the lithium concentration at the
surface of the electrodes.

In view of SA1, the OCV depend on the insertion rate of
the lithium defined for the negative and positive electrodes as

ζneg := csurf
neg /cmax

neg

and

ζpos := csurf
pos /cmax

pos .

Fig. 2 shows standard OCV curves for Li-ion batteries.
Let Hneg := (0 . . . 0 1/cmax

neg 0 . . . 0) ∈ IR1×nx , where the
nonzero component is at the Nneg − 1 position and Hpos :=
(0 . . . 0 1/cmax

pos ) ∈ IR1×nx . Matrices Hneg and Hpos select and
scale the surface concentration to provide the OCV functions
the corresponding insertions rates as argument, hence, we have
Hnegx = ζneg and Hposx = ζpos, respectively. The output
voltage, y ∈ IR, is obtained from those maps knowing the
surface lithium concentration of each particles and the current,
leading to

y := OCVpos(Hposx) − OCVneg(Hnegx) + g(u), (9)

where g(u) is the current-dependent component of the output,
whose expression is provided in Appendix A.

E. Temperature

Some parameters arising in (8) and (9) depend on the tem-
perature θ , like the diffusion coefficients Ds , s ∈ {neg, pos}.
In practice, the temperature is usually measured, we therefore
assume that we know it. In Section III, we will first derive a
nonlinear observer in the case where θ is constant over the
time. We will then explain how to extend these results to the
case where θ varies with time.

III. OBSERVER DESIGN AND ANALYSIS

A. Constant Temperature
When the temperature θ is constant, system (8) and (9) is

of the form {
ẋ = Ax + Bu + K + Ew

y = h(x) + g(u) + z,
(10)

where h : IRnx → IR is continuous, w ∈ IRnw is a vector
of exogenous perturbations, which may model errors due to
parameter uncertainties, and z ∈ IRnz models the measurement
noise.

Remark 3: The matrix A is not Hurwitz in (10). Hence, the
observer presented in [12] is not applicable to this model as
conditions (23) and (37) are not satisfied. �

We propose the observer{ ˙̂x = Ax̂ + Bu + K + L(y − ŷ)

ŷ = h(x̂) + g(u),
(11)

where x̂ ∈ IRnx is the state estimate and L ∈ IRnx ×1 is the
observation matrix gain to be designed; recall that nx is the
dimension of the vector x (nx = N in Section II).

Let e := x − x̂ denote the estimation error. In view of (10)
and (11)

ė = Ae + Ew − L(h(x) − h(x̂)) − Lz. (12)

We make Assumption 1 on the output map h.
Assumption 1: There exist C ∈ IR1×nx and δmax

neg , δmax
pos ∈

IR≥0 ∪ {∞} such that for any x , x ′ ∈ IRnx

h(x) − h(x ′) = C(x − x ′) + δneg(x, x ′)Hneg(x − x ′)
+ δpos(x, x ′)Hpos(x − x ′), (13)

where δneg(x, x ′) ∈ [0, δmax
neg ] and δpos(x, x ′) ∈ [0, δmax

pos ]. �
Assumption 1 plays a fundamental role in the design of the

gain L in (11). It essentially means that the output can be writ-
ten as a sum of an affine term Cx+C0 for some C0 ∈ IR, and a
monotone nonlinearity. As a result, the difference between any
two values of h can be written as the sum of a linear term and
nonlinearities subject to sector conditions. We allow δmax

s to be
equal to ∞ with s ∈ {neg, pos} in which case we use the con-
vention (1/δmax

s ) = 0 in the following. We claim that Assump-
tion 1 is always satisfied for any battery model with the output
map given by (9). We can proceed as follows to verify it.
We write OCVpos(ζpos) = Cposζpos +C0

pos + vpos(ζpos) for any
ζpos ∈ [0, 1],1 where

Cpos = min
ζpos∈[0,1]

(
d OCVpos(ζpos)

dζpos

)
,

1OCV curves are the function of the insertions rates, which are the surface
concentration normalized with respect to the maximal admissible lithium
concentration (see Fig. 2). That is the reason why ζs takes values in [0, 1].
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and

C0
pos = − min

ζpos∈[0,1](OCVpos(ζpos) − Cposζpos).

This way (dvpos(ζpos)/dζpos) ≥ 0 for any ζpos ∈ [0, 1]. We
used a similar procedure2 for OCVneg in (9). Consequently,
h(x) = Cx + C0 + vneg(Hnegx) + vpos(Hposx). Assumption 1
then follows by the application of the mean value theorem.

Using Assumption 1, (12) becomes

ė = (A − L(C + δneg Hneg + δposHpos))e + Ew − Lz, (14)

where we omit the arguments of δneg and δpos for the sake of
convenience.

Theorem 1 ensures stability properties for system (10),
provided we can find matrix L verifying a given LMI.

Theorem 1: Suppose Assumption 1 holds and consider sys-
tem (14). If there exist ε, mneg, mpos, μw,μz ∈ IR>0, and
P ∈ IRnx ×nx symmetric and positive-definite such that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

G + ε Inx Kneg Kpos P E − P L

∗ − 2mneg

δmax
neg

0 0 0

∗ ∗ − 2mpos

δmax
pos

0 0

∗ ∗ ∗ −μw Inw 0
∗ ∗ ∗ ∗ −μz Inz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

< 0,

(15)

where G := (A − LC)T P + P(A − LC), Kneg := −P L +
mneg H T

neg, and Kpos := −P L + mposH T
pos, then system (14) is

L2-stable from w and z to e with the gain less than or equal to
(μw/ε)1/2 and (μz/ε)

1/2, respectively, i.e., there exists c ≥ 0
such that for any initial condition e0 ∈ IRnx , any w, z ∈ L2,
the corresponding solution e to (14) verifies for any t ≥ 0

‖e‖2[0,t) ≤ c|e0| +
√

μw

ε
‖w‖2,[0,t) +

√
μz

ε
‖z‖2,[0,t). (16)

Furthermore, when w = 0 and z = 0, e = 0 is UGES, i.e.,
there exist γ1, γ2 ∈ IR>0, such that for any e0 ∈ IRnx , the
corresponding solution e to (14) satisfies |e(t)| ≤ γ1|e0|e−γ2t

for any t ≥ 0. �
Proof: Let e ∈ IRnx , w ∈ IRnw , z ∈ IRnz , and V (e) :=

eT Pe, where P comes from Theorem 1. Let Z := A − L(C +
δneg Hneg + δpos Hpos), in view of (14)

〈∇V (e),Ze + Ew − Lz〉

= χT

⎛
⎜⎜⎜⎜⎝

G −P L −P L P E −P L
∗ 0 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0

⎞
⎟⎟⎟⎟⎠χ, (17)

2In this case, Cneg = maxζneg∈[0,1](d OCVneg(ζneg)/dζneg) and C0
neg =

minζneg∈[0,1](OCVneg(ζneg) − Cnegζneg).

where χ := (e, δneg Hnege, δposHpose, w, z). We derive
from (15)

〈∇V (e),Ze + Ew − Lz〉

≤ χT

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ε Inx − mneg H T
neg − mpos H T

pos 0 0

∗ 2mneg

δmax
neg

0 0 0

∗ ∗ 2mpos

δmax
pos

0 0

∗ ∗ ∗ μw Inw 0
∗ ∗ ∗ ∗ μz Inz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

χ

= −ε|e|2 + μw|w|2 + μz |z|2 − 2mneg
(
Hnege

)2
δneg

×
(

1 − δneg

δmax
neg

)
− 2mpos

(
Hpose

)2
δpos

(
1 − δpos

δmax
pos

)
. (18)

According to Assumption 1, 0 ≤ δneg ≤ δmax
neg and 0 ≤ δpos ≤

δmax
pos . Furthermore, mneg, mpos ∈ IR>0, hence

〈∇V (e),Ze + Ew − Lz〉 ≤ −ε|e|2 + μw|w|2 + μz |z|2.
(19)

Note that solutions to (14) are defined for any initial condition,
any positive time, and any piecewise continuous inputs w and
z in view of Assumption 1, according to [20, Th. 3.2]. In view
of (19), for any e0 ∈ IRnx , w, z ∈ L2, the corresponding
solution of e to (14) verifies for any t ≥ 0

V̇ (e(t)) ≤ −ε|e(t)|2 + μw|w(t)|2 + μz |z(t)|2, (20)

from which we deduce that

‖e‖2,[0,t ]≤
√

μw

ε
‖w‖2,[0,t)+

√
μz

ε
‖z‖2,[0,t)+

√
λmax(P)|e0|,

(21)

which corresponds to (16) with c = (λmax(P))1/2. When
w = 0 and z = 0, we immediately deduce that e = 0 is
UGES for system (14) from (19) and the definition of V .

Theorem 1 means that, if we can design L to satisfy (15),
the state estimates provided by (11) uniformly, globally, and
exponentially converge to the solutions to (10) when w = 0
and z = 0. When (w, z) �= 0, the state estimation error
system (14) is L2-stable from w and z to e with gains less than
or equal to (μw/ε)1/2 and (μz/ε)

1/2, respectively. In other
words, the observer is robust to w and z and these gains
quantify this property. Condition (15) is a matrix inequality,
which becomes linear after a standard change in variables,
namely W = P L, so that standard LMI solvers can then
be used to solve it. We can then use (15) to minimize the
L2-gains associated with the model disturbance w and the
noise z, i.e., (μw/ε)1/2 and (μz/ε)

1/2. In that case, we fix ε,
and minimize the weighted sum of μw and μz for instance.

B. Varying Temperature

We now consider the scenario where the battery tempera-
ture θ varies with time. We recall that we assume that we
measure θ (see Section II-E). We make Assumption 2 on θ .

Assumption 2: There exists θmin, θmax such that θ(t) ∈
[θmin, θmax] for any t ≥ 0. �
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Assumption 2 is often met in practice as the battery con-
structors define the range of operating temperatures of their
products and provide mechanisms to respect safety thresholds.

As a result, we write the corresponding system (8) and (9)
as {

ẋ = A(θ)x + B(θ)u + K (θ) + Ew

y = h(x, θ) + g(u, θ) + z.
(22)

The observer used to estimate the state of system (22) is{ ˙̂x = A(θ)x + B(θ)u + K (θ) + L(y − ŷ)

ŷ = h(x̂, θ) + g(u, θ).
(23)

The idea is to choose L independent of the temperature such
that the stability properties are guaranteed for any temperature
between θmin and θmax. The case where L depends on the
temperature will be addressed in future work.

The results of Section III-A are not directly applicable to
system (23) and we need to revisit Assumption 1.

Assumption 3: There exist Hneg, Hpos, C(θ) ∈ IR1×nx , and
δmax

neg , δmax
pos ∈ IR≥0 such that for any θ ∈ [θmin, θmax] and for

any x , x ′ ∈ IRnx

h(x, θ) − h(x ′, θ) = C(θ)(x − x ′)
+ δneg(x, x ′, θ)Hneg(x − x ′) + δpos(x, x ′, θ)Hpos(x − x ′),

(24)

where δneg(x, x ′, θ) ∈ [0, δmax
neg ] and δpos(x, x ′, θ) ∈

[0, δmax
pos ]. �

Compared with Assumption 1, the matrix C in Assump-
tion 3 depends on θ , as well as δneg and δpos; however, the
bounds where these two terms lie, namely, δmax

neg and δmax
pos ,

are assumed to be independent of the temperature. This is a
reasonable assumption as δmax

s can be chosen larger than the
maximum of the upper bound of δmax

s (θ) for θ ∈ [θmin, θmax].
We also assume that the matrices A(θ) in (22) and (23) and
C(θ) in (24) evolve in known polytopes, which is reasonable
in view of the definition of the matrices A in Section II and
C in Section III.

Assumption 4: For any θ ∈ [θmin, θmax] with θmin,
θmax ∈ IR, there exist constant matrices A1, . . . , A2nx ×nx and

C1, . . . , C2nx such that A(θ) =
2nx ×nx∑

i=1

λi (θ)Ai and C(θ) =
2nx ×nx∑

j=1

γ j (θ)C j with λi (θ) ∈ [0, 1] for i ∈ {1, . . . , 2nx ×nx },

γ j (θ) ∈ [0, 1] for j ∈ {1, . . . , 2nx }, ∑2nx ×nx

i=1 λi (θ) = 1, and∑2nx

j=1 γ j (θ) = 1. �
Using Assumption 3, the estimation error system is

ė = (A(θ) − L(C(θ) + δneg Hneg + δpos Hpos))e+Ew−Lz.

(25)

The idea is to design a common matrix L for each vertex
of the polytope defined by the matrices Ai and C j with
i ∈ {1 . . . 2nx ×nx } and j ∈ {1 . . . 2nx }.

Theorem 2: Suppose Assumptions 2–4 hold, consider
system (25). If there exist ε, mneg, mpos, μw,μz ∈ IR>0, and

P ∈ IRnx ×nx symmetric and positive definite such that
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Gi, j +ε Inx Kneg Kpos P E − P L

∗ − 2mneg

δmax
neg

0 0 0

∗ ∗ − 2mpos

δmax
pos

0 0

∗ ∗ ∗ −μw Inw 0
∗ ∗ ∗ ∗ −μz Inz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

<0,

(26)

for all i ∈ {1 . . . 2nx ×nx } and j ∈ {1 . . . 2nx }, where Gi, j :=
(Ai − LC j )

T P + P(Ai − LC j ), Kneg := −P L + mneg H T
neg,

and Kpos := −P L + mposH T
pos, system (25) is L2-stable from

w and z to e and when w = 0 and z = 0, e = 0 is UGES. �
Sketch of Proof: The proof follows the same lines as

the proof of Theorem 1 by replacing G by Gi, j and using∑2nx ×nx

i λi (θ) = 1 and
∑2nx

j γ j (θ) = 1. �
In practice, Theorem 2 requires to solve 2nx ×nx ×nx LMIs

of size greater than or equal to nx + 2. However, as shown
in [21, Sec. 3.3], the temperature has a negligible effect on
the OCV curves (Fig. 2), which implies that C(θ) = C and
the matrix A(θ) is not fully filled. This sparsity of problem
formulation can be exploited to drastically reduce the size of
the associated polytope.

IV. SIMULATION AND DISCUSSION

We have constructed observer (11) based on the model
derived in Section II with the set of parameters given in Table I
in Appendix B and assuming the temperature is constant.
We have taken Nneg = 4 and Npos = 4 samples with
identical volumes. In this case, the system is of dimen-
sion 7; recall that one dimension is removed in observer (11)
thanks to (6). This is a good compromise between model
accuracy and numerical cost. The matrix A is given at the
bottom of the next page, B = [0, 0, 1.3677, 0, 0, 0, 2.1794]
and K = (407.4844, 0, 0, 0, 0, 0, 0). We have constructed the
matrix L by solving (15) using the LMI solver Sedumi and
the LMI parser Yalmip [22], considering Hneg = 10−4 ×
(0 0 0.6211 0 0 0 0), Hpos = 10−4 × (0 0 0 0 0 0 0.4184),
δmax

neg = 24.5603, and δmax
pos = 638.3806, which gives L =

104 × (3.1292, 3.1398, 3.0693,−4.9557,−4.9493,−4.9628,
−5.0157). We have simulated the obtained observer (11) with
an output signal not generated by models (8) and (9) but by
a PDE model solved using the finite-element method, given
in [13, Sec. 2].

The latter is more accurate than the electrochemical model
described Section II (it notably does not rely on SA1), and
substitutes for the real battery data. The set of parameters
used to run this model is also given in Table I in Appendix B.
Note that σe, the ionic conductivity, is constant and that σDe ,
the ionic diffusion conductivity, is set to zero in order to
satisfy Assumption SA2. To have a representative cycle, we
have used a current profile derived from a referenced plug-in
hybrid electric vehicles (PHEV) power profile given in [23]
and we have repeated it seven times, as shown in Fig. 3, to
test different depths of discharge.
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Fig. 3. PHEV current profile repeated seven times.

Fig. 4. Lithium surface concentration of the positive electrode.

Fig. 5. Zoomed-in view of the lithium surface concentration of the positive
electrode.

A white unbiased noise of ± 30 mV has been added to
the output of the comprehensive PDE model to simulate
the measurement noise, which is a reasonable ratio signal
versus noise for embedded battery voltage measurement. The
estimates x̂ have been initialized with an error equivalent to
50% of the SOC. In the PDE model, the positive electrode is
spatially homogeneous, hence, only one surface concentration
is given as reference in Figs. 4 and 5. Fig. 5 shows that the
initial error takes about 2s to vanish. The negative electrode
in the PDE model is not spatially homogeneous, hence, the
lithium concentration near the separator and near the collector
differs. Both the surface lithium concentration at the collector
junction and at the separator junction of the negative electrode
are shown in Figs. 6 and 7. Fig. 7 is a zoomed-in view of
Fig. 6 in which we see that the estimated lithium surface
concentration at the negative electrode evolves in a domain
bounded by the surface concentrations at the sides of the
electrode and is often more representative of what happens
near the collector.

Fig. 6. Lithium surface concentration of the nonhomogeneous negative
electrode

Fig. 7. Zoomed-in view of the lithium surface concentration of the
nonhomogeneous negative electrode.

Estimating these surface concentrations is one of the main
advantages of this electrochemical model-based approach as
these are responsible of the OCV value, see (9), and play
a key role in the BMS. The simulation results given in
Figs. 4 and 6 clearly show the fastness and efficiency of the
proposed observer as well as its robustness to noisy measure-
ments. We can then exploit the state estimates provided by
the observer to estimate the SOC. When the states of the
model (10) are estimated, the SOC can be estimated,

̂SOC(t) = 100 × c̄pos(t) − cpos
0

cpos
100 − cpos

0

, (27)

with c̄pos(t) = ∑Npos
i=1 ĉpos

i (t)V pos
i /V pos

total, where ĉpos
i stands for

the components of x̂ , corresponding to lithium concentrations
in the positive electrode. We recall that cs

0 and cs
100 stand

for lithium concentration at SOC = 0% and SOC = 100%,
respectively, and that numerical values of these are given
in Table I in Appendix B.

To challenge this estimated SOC, we have used the coulomb
metric SOC as reference, which consists in integrating the
current applied to the battery over the time,

SOC(t) = SOC(0)

− 100

F(cpos
0 − cpos

100)Acelldposεpos
×

∫ t

0
icell(τ )dτ. (28)

While (28) is often used in practice, its weakness is the accu-
mulation of inaccuracy due to the integrator. This weakness

A = 10−2 ×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2.48 0.73 −0.58 −0.37 −0.37 −0.37 −0.37
1.32 −3.48 2.17 0 0 0 0

0 2.17 −2.17 0 0 0 0
0 0 0 −1.08 1.08 0 0
0 0 0 1.08 −3.51 2.44 0
0 0 0 0 2.44 −6.44 4.01
0 0 0 0 0 4.01 − 4.01

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Fig. 8. SOC estimation on a normalized PHEV current profile for a fully
charged battery with 50% of initial SOC error and under measurement noise.

TABLE I

PHYSICAL PARAMETERS OF THE ELECTROCHEMICAL MODEL FROM [5]

does not impact this simulation as the current is perfectly
known in our simulations.

Fig. 8 shows that under noise and significant initial error,
the estimated SOC in (27) fastly and robustly converges to a
small neighborhood of the true one.

V. CONCLUSION

We have presented a nonlinear observer for a finite dimen-
sional SPM model of a battery lithium ion, whose design
relies on circle-criterion-like arguments. The global stability
and robustness of the nonlinear observer are ensured, provided
that an LMI holds, which can be used to design the observation
gain. Simulation results on a comprehensive PDE model of
the battery show that the obtained estimates are accurate even
in the presence of noise measurements. Several applications
can then come out as SOC, as illustrated in simulations in
Section IV, SOH, or smarter safety and aging limitations.

APPENDIX A
DETAILED OUTPUT OF THE SYSTEM

For any u ∈ IR, the current-dependent component g(u)
of the electrochemical model output mentioned in (9) is
g(u) := g1(u) + g2(u) + g3(u). The term g1 represents
the activation overpotential of the positive electrode, g2 is
the activation overpotential of the negative electrode, and g3
are the electronic resistivity terms of the battery; they are

TABLE II

SYMBOL DESCRIPTION

defined as

g1(u) = −2
RT

F
Argsh

(
Rpos

6 εpos jpos
0 Acell dpos

u

)

g2(u) = 2
RT

F
Argsh

(
Rneg

6 εneg jneg
0 Acell dneg

u

)

g3(u) = −
(

1

2 Acell

(
dneg

σneg
+ dpos

σpos

)
+ �add

)
u

with Argsh(ξ) = ln(ξ + √
ξ2 + 1) for ξ ∈ IR.

APPENDIX B

See Tables I and II.
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