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Using Stories to Create Qualitative Representations of Motion

Qualitative representations of motion transform kinematic floating point data into a finite set of concepts. Their main advantage is that they usually reflect a human understanding of the moving system, so we can more straightforwardly implement human-like navigation rules; in addition, they reduce the overhead of floating point computations. Therefore, they are an asset for mobile robots or unmanned vehiclesboth terrestrial and aerial-especially those that interact with humans. In this paper we provide a method to create new qualitative representations of motion from any qualitative spatial representation by using a story-based approach.

Introduction

Description and interpretation of moving entities (humans, animals, robots, or inert objects) are at the core of many disciplines such as mobile robotics, human-robot interaction, geographic information systems, animal behaviour, high-level computer vision, and knowledge representation, among others. Qualitative representations transform the mass of quantitative data (positions and velocities) into a reduced group of concepts. Therefore, they simplify data so that these are easier to understand and to process (e.g. in modelling, planning, learning, or control).

Nonetheless, the work in qualitative representations of motion is still reduced in number, when compared to spatial representations1 [5, p. 16 ][6, p. 5187], and mostly restricted to point-like entities moving in one or two dimensions [START_REF] Van De Weghe | Representing and Reasoning about Moving Objects: A Qualitative Approach[END_REF]. Moreover, spatial representations deal with regions [START_REF] Randell | A Spatial Logic based on Regions and Connection[END_REF] and three or more dimensions [START_REF] Egenhofer | Reasoning about binary topological relations[END_REF][START_REF] Albath | RCC-3D : Qualitative Spatial Reasoning in 3D[END_REF], but this is unusual in representations of motion.

To fill the gap, in this paper we profit from the available spatial representations to systematically increase the number of representations of motion: we introduce a method that creates qualitative representations of motion given any qualitative spatial representation. This has direct applications, for example, we may create a representation of motion using Hall's spatial categorisation, proxemics [START_REF] Hall | The hidden dimension[END_REF], which is based on the social distances. Such a representation of motion would describe trajectories according to the personal space and, thus, it could be used to make robot navigation in human environments more friendly.

Our method centres on the concept of 'stories' which, we believe, opens a new perspective in dealing with representations. A spatial representation can classify two static entities, or equivalently, each snapshot of two moving entities. If we therefore consider the complete sequence of snapshots-what we call the 'story' (Def. 2)-, we have a qualitative description of the motion.

Our method can use any spatial representation (e.g., OPRA m [START_REF] Moratz | Representing relative direction as a binary relation of oriented points[END_REF], Rectangle Algebra [START_REF] Balbiani | A model for reasoning about bidimensional temporal relations[END_REF]); however, it can be hampered by the generation of the stories set (Def. 3), because this is often an arduous manual task. For that reason we used as a example (Ex. 5) the simple and well-known spatial representation RCC [START_REF] Randell | A Spatial Logic based on Regions and Connection[END_REF] (See Fig. 3). As RCC relates regions, our method will generate, in this particular case, a novel representation of motion-we call it 'Motion-RCC' (Eq. ( 1) on page 7)-that deals with regions, and an extended variant, 'Augmented-Motion-RCC' (Eq. ( 2) on page 7).

Related Work

Qualitative Representations of Motion

An overview of representations is found in a survey by Dylla et al. [START_REF] Dylla | A Survey of Qualitative Spatial and Temporal Calculi -Algebraic and Computational Properties[END_REF]: in a total of 40 representations surveyed they classify three as representations of motion: QRPC [START_REF] Glez-Cabrera | QRPC: A new qualitative model for representing motion patterns[END_REF], RfDL-3-12 [START_REF] Kurata | Interpreting Motion Expressions in Route Instructions Using Two Projection-Based Spatial Models[END_REF], and, the most used, QTC [START_REF] Van De Weghe | Representing and Reasoning about Moving Objects: A Qualitative Approach[END_REF]. The survey of spatial representations of Chen et al. [START_REF] Chen | A survey of qualitative spatial representations[END_REF] also mentions three motion representations: Dipole Calculus [START_REF] Moratz | Qualitative spatial reasoning about line segments[END_REF], DIA [START_REF] Renz | A spatial odyssey of the interval algebra: 1. Directed intervals[END_REF], and QTC.

Representations of orientation and relative direction, such as OPRA [START_REF] Moratz | Representing relative direction as a binary relation of oriented points[END_REF] or Dipole Calculus [START_REF] Moratz | Qualitative spatial reasoning about line segments[END_REF], are sometimes used to represent moving entities; nevertheless, they are not primarily intended for such a task.

All the aforementioned representations are limited to point-like entities moving in one or two dimensions. There is, however, a particular qualitative relation of motion for regions [START_REF] Wu | Towards a Qualitative Representation of Movement[END_REF] that is built combining RCC and distances.

Sequences of Qualitative Relations

Continuous sequences of qualitative relations, such as the temporal sequences of Def. 1 (p. 3), are based on Freska's foundational concept conceptual neighbourhood [START_REF] Freksa | Temporal reasoning based on semi-intervals[END_REF]. Connecting the qualitative relations of a certain representation that are conceptual neighbours we obtain the conceptual neighbourhood graph [START_REF] Dylla | Qualitative Spatial Reasoning with Conceptual Neighborhoods for Agent Control[END_REF] (See example in Fig. 3). So paths in the conceptual neighbourhood graph and continuous sequences of qualitative relations are equivalent.

Sequences of relations are used to analyse real data by Delafontaine et al. [START_REF] Delafontaine | Implementing a qualitative calculus to analyse moving point objects[END_REF], and specifically in human-robot interaction by Hanheide et al. [START_REF] Hanheide | Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus[END_REF] from which we borrow the term 'temporal sequence of qualitative relations' (Def. 1). 

Temporal Sequences of Relations and Stories

In this section, we define and illustrate the key concepts-stories and stories set-that we use to create qualitative representations of motion (Sect. 5). But first of all we define the underlying concept: temporal sequence of relations. Definition 1. A Temporal Sequence of Relations [START_REF] Hanheide | Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus[END_REF] is a chronologically ordered sequence of qualitative relations of any kind, e.g., space or motion, generated by the motion of two entities in a time interval (t a , t b ).

The time interval (t a , t b ) can be freely chosen, e.g., it can be totally unbounded, i.e., extend to the whole time (-∞, ∞), be half-bounded (-∞, t b ), or bounded (t a , t b ).

We obtain the temporal sequence of relations of two entities in a certain time interval by mapping their trajectories x k (t) and x l (t) into the qualitative relations of the representation we are using. We describe a sequence of relations as a list in parenthesis: (R 1 , R 2 , . . . , R i , . . . ). We say a temporal sequence of relations is finite, if it has a finite number of relations, or infinite, if it has an infinite number. Notice that even though the entities' motion occurs in a continuous space throughout a continuous time interval, the temporal sequences are finite, when the trajectories have a finite number of transitions between qualitative relations; this happens in Fig. 1, the sequence is finite, (DC, EC, DC), because we have only two transitions: DC → EC and EC → DC. Now, based on the temporal sequences, we define the stories.

Definition 2. A Story is a temporal sequence of relations of two entities that is defined over the whole unbounded time interval (-∞, ∞).

A story describes the qualitative relation of two moving entities at any instant of time. Thus, any temporal sequence of relations is a substring of a certain story. 3). The snapshots correspond to different increasing times. This sequence is a story, because it remains the same, even if we extend the interval to (-∞, +∞). It corresponds to the story S5 of the created representation of motion 'Motion-RCC' (Sect. 5).

We can see each story as a complete qualitative description of the motion of a two-entities system. We characterise stories with the letter S and, if necessary, an appropriate subscript.

Example 1. The temporal sequence S =(DC, EC, DC) in Fig. 1 is a story. Any proper substring is not a story, but just a temporal sequence of relations, because it does not happen in the whole unbounded interval (-∞, ∞). For instance, the substring (EC,DC) is not a story, because it happens on [0, +∞).

Example 2. The temporal sequence (DC, EC, PO, TPP, NTPP, TPP, PO, EC, DC) in Fig. 2 is a story. Substrings, such as (PO, TPP, NTPP, TPP) or (DC, EC, PO), are not stories, but just temporal sequence of relations.

Definition 3. The Stories Set is the set of all possible stories of two entities.

If there is no constraint on the stories, the stories set contains an infinite number of stories. We refer to the stories set with the letter Σ; we add a subscript, e.g., Σ 0 , when we deal with a set of stories that is not the stories set, but a subset thereof.

Restricting the Stories: Uniform Motion

The central idea of this paper is to classify motions through stories: we assign the same category to the motions that belong to the same story. (Sect. 5). Thus, the total number of categories in our novel motion representation is the cardinality of the stories set, i.e., its number of elements. However, an awkward situation arises: the cardinality of the stories set is infinite-some stories are also infinite-, if we do not restrict the motions that create the stories. Consequently, we suggest restricting the type of motions considered in order to obtain a tractable motion representation. We choose to restrict the stories by considering, from now on, only uniform motion, i.e., the velocity vectors are constant. This has two desirable properties: i. Each story in uniform motion is finite, i.e., has a finite number of relations (See Prop. 1 in Appendix A). ii. The set of all possible stories in uniform motion, i.e., the stories set (Def. 3), is finite (See Prop. 2 in in Appendix A). Consequently it partitions the whole phase space, i.e., the coordinates space of the positions and velocities of the two entities (x k , v k ; x l , v l ).

The restriction to uniform motion stories is a standard assumption, if we classify motion situations that are specified only by the current position and velocity of two entities, i.e., (x k , v k ; x l , v l )-the acceleration is disregarded, as in QTC [START_REF] Van De Weghe | Representing and Reasoning about Moving Objects: A Qualitative Approach[END_REF]. Though we note that our method may remain valid with other kind of restrictions. Definition 4. A Rigid Story is the story of two entities that move with the same velocity, i.e., v k = v l .

Rigid stories play a special role in uniform motion: each of them is a singleton-it has a single element, a constant spatial relation. But not all singleton stories are rigid, e.g., the story S 11 = (DC) is not rigid but is a singleton (Fig. 4).

Creating New Qualitative Representations of Motions

We describe the method to create a representation of motion from any given spatial representation. In practice, our method yields always two representations of motion: the simple one, which is just formed by the stories, and the augmented variant, which is refined by adding the spatial relations to each story-we combine the power of 'story' and 'snapshots'. We illustrate the method in the example below using the spatial representation RCC (Fig. 3), and thus, the two new generated representations of motion are Motion-RCC (Eq. ( 1) on page 7, and Fig. 4), and its augmented variant Augmented-Motion-RCC (Eq. ( 2) on page 7).

The method is as follows:

1. We have a spatial representation.

2. We calculate the stories set, Σ, for the given spatial representation. In case it is a finite set, e.g., when restricted to uniform motion, we can work out a method to calculate it. 3. The obtained stories set is a novel representation of motion, where each story is a qualitative relation-every motion state is classified according to the story it belongs to. 4. (optional) We can create the augmented representation of motion from the first one by specifying the spatial relations in each story.

Example: Creating a representation of motion from RCC

We illustrate the method above using the spatial representation RCC. (Fig. 3). RCC relates two regions according to their overlapping. So it yields 8 possible relations: DC, regions do not overlap; EC, regions are tangent non-overlapping; PO, regions overlap in the interior but none is contained in the other; TPP, region x is contained in y and is tangent to the border; TPPI, region y is contained in x and is tangent to the border; EQ, both regions overlap completely; NTPP, x is contained in y and does not overlap the border of y; NTPPI, y is contained in x and does not overlap the border of x.

1. We have the spatial representation RCC 2. We calculate the RCC stories set restricted to uniform motion as 

Σ = Σ 0 ∪ Σ 1 . Σ 0 = {(DC), ( 
This representation assigns to every motion state (x k , v k ; x l , v l ) the corresponding story S i , i.e., the corresponding relation of motion.

(optional) We can augment the resolution of the representation of motion

Motion-RCC by specifying the spatial relations in each story-for the singleton stories this process is redundant, as they have a single spatial relation. So we obtain the representation of motion 'Augmented-Motion-RCC'. 

Augmented-Motion

Applications of Qualitative Representations of Motion

We outline two possible applications of qualitative representations -Recognition of trajectories (i.e., motion patterns) Through the qualitative relations in the new representation of motion, we can characterise and therefore recognise certain types of motion [START_REF] Delafontaine | Implementing a qualitative calculus to analyse moving point objects[END_REF][START_REF] Hanheide | Analysis of human-robot spatial behaviour applying a qualitative trajectory calculus[END_REF], for example an 'avoidance manoeuvre', as in Eq. ( 3). This motion sequence begins with the collision story, S 15 (DC -), and ends with a collision free story,S 11 (DC)-the augmented indices, DC, show that nowhere a collision takes place.

S 15 (DC -) → S 14 (DC -) → S 13 (DC -) → S 12 (DC -) → S 11 (DC) (3) 
-Trajectory control We can use the conceptual neighbourhood of our new representation of motion to take decisions in order to control trajectories [START_REF] Dylla | SailAway: Formalizing navigation rules[END_REF]. For example, in the case of Motion-RCC, if we want to avoid a collision we have necessarily to reach the relation S 11 (DC). Accordingly, the shortest paths in the conceptual neighbourhood leading to the relation S 11 (DC) may provide the needed control operations to avoid the collision.

Discussion

We have presented a a story-based method (Sect. 5) that should be able to generate qualitative representations of motion out of any spatial representation.

The created representation of motion inherits the properties of the used spatial representation, e.g., dimensions, or type of entities considered. The method has proven to be effective to generate meaningful qualitative representations of motions for the representation RCC (Sect. 5).

With our generated motion representation, Augmented-Motion-RCC, we have outlined two applications of motion representations: recognition of trajectories, i.e., motion patterns; and control of trajectories. Our generating method is most effective, when we restrict the trajectories of the entities, e.g., setting velocity constant, so that our stories set is finite. This can be seen as a limitation or as the advantage to tailor the generated representation of motion to the features of our trajectories. We have restricted the trajectories to have uniform motion.

We argue that the use of 'stories' to classify motions borrows from a cognitive idea: we can better recall a series of items, when they are linked by way of a story-Stories seem quite a natural way for humans to relate, connect, or classify items.

The next steps are to test the effectiveness of this method with other spatial representations, for instance, three dimensional [START_REF] Egenhofer | Reasoning about binary topological relations[END_REF] or those dealing with orientation [START_REF] Mossakowski | Qualitative Reasoning about Relative Direction on Adjustable Levels of Granularity[END_REF].

A Appendix Proposition 1. Finitude of the Stories in Uniform Motion

We can reasonably show that for two regular enough2 entities the stories in uniform motion are finite.

We build the proof on two properties: first, stories in uniform motion have extreme relations (Lemma 1); second, temporal sequences of relations in uniform motion are finite over a finite time interval (Lemma 2).

Proof. According to Lemma 1 two regular enough entities in uniform motion have extreme relations. That is, we can find two time instants t a and t b , with t a < t b , so that in the time interval (-∞, t a ) the entities' relation remains constant-we call it r a -and in the time interval (t b , +∞) the entities' relation remains constant.-we call it r b . Now, According to Lemma 2, these regular enough entities moving in uniform motion have a finite temporal sequence of relations in the interval [t a , t b ], say (r 1 , . . . , r n ).

Consequently the story of the two entities, i.e., the temporal sequence of relations in the interval (-∞, t a )

[t a , t b ] (t b , ∞), would be finite, as it is obtained by concatenating the two extreme relations and the temporal sequence: (r a , r 1 , . . . , r n , r b ). In case any extreme relation coincides with its border relation, i.e., r a = r 1 or r b = r n , we exclude the repeated ones.

Definition 5. Extreme Relations

The extreme relations are those relations of a story that remain unchanged when t → -∞ or t → +∞. That is, a relation r a is extreme in t → -∞, if and only if ∃t a , so that in the time interval (-∞, t a ) the relation between entities is r a . Analogously, a relation r b is extreme in t → +∞ if and only if ∃t b , so that in the time interval (t b , +∞) the relation between entities is r b . Lemma 1. Existence of extreme relations for two entities in uniform motion. Two regular enough 2 entities that move in uniform motion and are described by a qualitative representation based on overlapping, intersection, or orientation, have a story with extreme relations both for t → -∞ and t → +∞.

Proof. We name the entities k and l and they have constant velocities v k and v l .

1. In the case v k = v l the relation between both entities, r i , remains constant -this relation is the whole story -, therefore, trivially, r i is the extreme relation for both t → -∞ and t → +∞. 2. In the case v k = v l we distinguish two subcases regarding what feature the representation bases on: overlapping-intersection of entities, or relative orientation.

(a) Representations based on overlapping-intersection of finite entities have either one or two qualitative relations for the case of 'no overlappingintersection', e.g., the relation DC in RCC (Fig. 3); the relation disjoint in 9-Int [START_REF] Egenhofer | Reasoning about binary topological relations[END_REF]; or the relations '<' and '>' in Allen's Algebra [START_REF] Allen | Maintaining knowledge about temporal intervals[END_REF]. The mentioned relations must be the extreme relations for each representation, because the distance between two entities that move at different velocities tends to infinity for t → ±∞; and consequently the entities do not overlap-intersect any more. (b) Representations based on relative orientation between entities use the connecting unit vector between them, i.e., kl(t) = x l (t)-x k (t)

x l (t)-x k (t) , for which in uniform motion, i.e., x k (t) = v k t+x k0 and x l (t) = v l t+x l0 , we obtain both limits :

lim t→+∞ kl(t) = v l -v k v l -v k (4a) lim t→-∞ kl(t) = -lim t→+∞ kl(t) (4b)
Because both limits for the connecting vector exist, the extreme relations of any story exist; they are the relations neighbouring each limit.

Lemma 2. Finitude of the Temporal Sequences of Relations in Finite Time Intervals

In uniform motion, for regular enough 2 entities, a temporal sequence of relations in a finite time interval is also finite.

Proof. A qualitative representation partitions the phase space of two regular enough finite entities in a finite number of regions, i.e., the qualitative relations. Therefore by moving in uniform motion in a finite time interval the system goes through a finite number of such regions, i.e., the resultant temporal sequence of relations must be finite.

Proposition 2. Finitude of the Stories Set

The set of stories in uniform motion, i.e., the stories set, is finite.

Proof. We cannot rigorously prove that the stories set is finite, but Lemma 3 gives an equivalent condition that help us to see that the number of possible stories must be finite in most qualitative representations: if we prove that there is a story with more or an equal number of relations than any other, then the stories set must be finite. This is the case in RCC (Fig. 4), where the longest story is S 5 .

Lemma 3. The longest story

The stories set is finite, if and only if it exists a longest story, i.e., a story that has more or equal relations than any other.

Fig. 1 .

 1 Fig. 1. An RCC story with three qualitative relations. Two circular entities k (radius = 1m) and l (radius 2m) moving with velocities v k = (2, 0) m/s and v l = (-1, 0) m/s in the interval [t1, t3]. The snapshots depict the temporal sequence of relations (DC, EC, DC) in the qualitative representation RCC (Fig. 3).

Fig. 2 .

 2 Fig.2. A RCC story with nine qualitative relations. Two circular entities k (radius = 1m) and l (radius 2m) moving in uniform motion with velocities v k = (1, -1) m/s and v l = (-1, 0) m/s. They depict the Temporal Sequence of Relations (DC, EC, PO, TPP, NTPP, TPP, PO, EC, DC) in the qualitative representation RCC (Fig.3). The snapshots correspond to different increasing times. This sequence is a story, because it remains the same, even if we extend the interval to (-∞, +∞). It corresponds to the story S5 of the created representation of motion 'Motion-RCC' (Sect. 5).

Fig. 3 .

 3 Fig.3. The RCC qualitative relations depend on how two entities overlap. This Figure depicts the 8 RCC relations: DC, EC, PO, TPP, NTPP, EQ, TPPI, and NTPPI as a conceptual neighbourhood graph[START_REF] Freksa | Temporal reasoning based on semi-intervals[END_REF][START_REF] Dylla | Qualitative Spatial Reasoning with Conceptual Neighborhoods for Agent Control[END_REF]: the arrows connect relations that are conceptual neighbours[START_REF] Freksa | Temporal reasoning based on semi-intervals[END_REF] -we switch between conceptual neighbours by a continuous translation without going through any other relation.

Fig. 4 .

 4 Fig. 4. In the representation RCC these are all the possible non-rigid stories, Σ1, i.e, the stories of two circles k and l moving in uniform motion with velocities v k and v l , so that v k = v l . The total number is five. Two stories are associated with directions: S12 = (DC, EC, DC); S14 = (DC, EC, PO, TPP, PO, EC, DC). The remaining three stories are associated with the regions between the directions: S11 = (DC), S13 = (DC, EC, PO, EC, DC), S15 = (DC, EC, PO, TPP, NTPP, TPP, PO, EC, DC). Note: The figure represents an equivalent simplification that considers l being motionless and k moving with the difference of velocities v kl = v k -v l . The story depends on the direction of v kl .

  For example, the relation S 12 (EC) indicates that the entities are moving in the story S 12 at the moment of tangency, i.e., EC. If the spatial rela-tion appears multiple times in the story, such as EC in S 3 , we distinguish each appearance, for example, S 13 (EC -) is chronologically the first EC, and S 13 (EC + ), the last EC.

-RCC = { S 02 (EC), S 03 (PO), S 04 (TPP), S 05 (NTPP), S 11 (DC), S 12 (DC -), S 12 (EC), S 12 (DC + ), S 13 (DC -), S 13 (EC -), S 13 (PO), S 13 (EC + ), S 13 (DC + ), S 14 (DC -), S 14 (EC -), S 14 (PO -), S 14 (TPP), S 14 (PO + ), S 14 (EC + ), S 14 (DC + ), S 15 (DC -), S 15 (EC -), S 15 (PO -), S 15 (TPP -), S 15 (NTPP), S 15 (TPP + ), S 15 (PO + ), S 15 (EC + ), S 15 (DC + )} (2)

Wherever we mention the term 'representation' throughout this paper, it is understood that we are talking about 'qualitative representations' -We drop the term 'qualitative' for sake of readability.

Enough regular entities are those finite in size with a finite number of features, i.e., a finite number of vertices, edges, concavities, holes, . . .