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Abstract

We provide in-depth scrutiny of two methods making use of adjoint-based gradients to

compute the sensitivity of drag in the two-dimensional, periodic flow past a circular cylinder

(Re . 189). First, the time-stepping analysis used in Meliga et al. (Phys. Fluids 2014;

vol.26; 104101) that relies on classical Navier–Stokes modeling and figures out the sensitiv-

ity to any generic control force from time-dependent adjoint equations marched backwards

in time. Second, a novel self-consistent approach building on the model of Mantič-Lugo

et al. (Phys. Rev. Lett. 2014; vol.113; 084501) to compute semi-linear approximations of

the sensitivity to the mean and fluctuating components of the force. Both approaches are

applied to open-loop control by a small secondary cylinder, and allow identifying the sensitive

regions without knowledge of the controlled states. The theoretical predictions obtained by

time-stepping analysis reproduce well the results obtained by direct numerical simulation of

the two-cylinder system. So do the predictions obtained by self-consistent analysis, which

corroborates the relevance of the approach as a guideline for efficient and systematic control

design in the attempt to reduce drag, even though the Reynolds number is not close to the

instability threshold and the oscillation amplitude is not small. This is because, unlike sim-

pler approaches relying on linear stability analysis to predict the main features of the flow

unsteadiness, the semi-linear framework encompasses rigorously the effect of the control on

the mean flow, but also on the finite-amplitude fluctuation that feeds back nonlinearly onto

the mean flow via the formation of Reynolds stresses. Such results are especially promising

as the self-consistent approach figures out the sensitivity from time-independent equations

that can be solved iteratively, which makes it generally less computationally demanding.

We ultimately discuss the extent to which relevant information can be gained from a hy-

brid modeling computing self-consistent sensitivities from the post-processing of DNS data.

Application to alternative control objectives such as increasing the lift and alleviating the

fluctuating drag and lift is also discussed.

Keywords: Self-consistent modeling, sensitivity analysis, adjoint methods; drag reduction
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I. INTRODUCTION

The seminal analysis of Strykowski & Sreenivasan [1] provides experimental evidence

that a small circular cylinder positioned in the near wake of a main cylinder alters

vortex shedding at Reynolds numbers Re ∼ 50− 100 closely above the first instability

threshold. For specific locations of the control cylinder, the authors find a stabilization

of the wake accompanied by a decrease of the shedding frequency that can go towards

complete suppression of unsteadiness. Since then, similar results have been obtained

by direct numerical simulation (DNS) and global stability analysis of the two-cylinder

system performed at about the same Reynolds numbers [2–4]. The control cylinder

also acts on the resultant force, with specific positions reportedly reducing the (time-

averaged) mean drag and the fluctuating lift at larger but still moderate Reynolds

numbers ranging from 100 to 3, 000 [5, 6]. Experimentally, the method has proven

successful up to high, turbulent Reynolds numbers of order 104–105; see Refs. [7–11]

tackling circular, square and D-shaped geometries of the main cylinder. Depending on

the geometry, a maximum drag reduction by 20–30% is reported with either frequency

increase or decrease, but shedding itself would not be extinguished on behalf of the large

Reynolds numbers. Cadot, Thiria & Beaudoin [12] have also assessed the ability of a

second control cylinder (i.e., a third cylinder) in further increasing the base pressure

of the D-shaped cylinder, hence additionally reduced drag.

Strykowski & Sreenivasan [1] present their results in terms of sensitivity maps show-

ing regions close to the main cylinder where shedding is most affected by the control

cylinder. In the same vein, Refs. [7, 8, 11, 13] map global quantities (e.g., Strouhal

number, mean or root mean square values of drag and lift), the cost of which rapidly

becomes prohibitive since systematical experimental measurements, numerical simu-

lations or stability analyses must be performed over large parameter spaces including

chiefly the position and diameter of the control cylinder (to give a taste, the experi-

mental Strouhal number maps documented in Parezanovič & Cadot [11] and Meliga,

Cadot & Serre [13] assemble shedding frequencies measured at respectively ∼ 5, 000

and ∼ 12, 000 sampled positions). Only a limited number of positions (of about a few

ten) is considered in all other aforementioned studies, which yields an undersampled

estimate of the real optimal. As an illustration, Dalton, Xu & Owens [5] fix the gap dis-

tance separating the centers of the two cylinders to 1.4 diameters of the main cylinder,
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then vary only the angle between the center-to-center line and the free stream direc-

tion, and report a maximum drag reduction by 33% in flow past a circular cylinder at

Re = 100. For the exact same case, Yildirim, Rindt & Steenhoven [6] fix the stream-

wise position of the control cylinder to 0.75 diameter of the main cylinder, then vary

only its cross-wise position and report a maximum drag reduction by only 6.5%. The

discrepancy of course arises from both studies spanning different near-wake regions,

and motivates the development of more systematical approaches relying on theoretical

analysis to map quickly the best positions for placement of the control cylinder.

The experiment of Strykowski & Sreenivasan [1] has been revisited theoretically by

Hill [14] in the limit of infinitely small control cylinders. The key steps can be summa-

rized as follows : first, the growth rate and eigenfrequency of the eigenmode responsible

for the onset of vortex shedding is determined from a global stability analysis of the

steady, uncontrolled cylinder flow. The control-induced variation of the eigenvalue then

arises from the inner product between a sensitivity function making use of the adjoint

method (mathematically representing the variational derivative of the eigenvalue to a

source of momentum) and a body force mimicking the presence of the control cylinder.

By doing so, Hill identifies flow regions where the so-modeled cylinder stabilizes the

unstable eigenmode, or decrease its eigenfrequency, in good qualitative agreement with

the experimental data of Strykowski & Sreenivasan [1]. Such an approach offers an

attractive alternative to bottleneck “trial and error” procedures, as it allows spanning

quickly all possible positions of the control cylinder without ever calculating the actu-

ally controlled states. It has led a substantial body of recent work focusing on steady

and unsteady effects modeling the presence of the control cylinder, [15–21] and is now

applied to a variety of laminar [22–25] and turbulent [13, 26, 27] flows as a mean to

gain valuable insight into the most sensitive regions for open-loop control based on the

underlying physics.

This research intends to provide in-depth scrutiny of two methods making use of

similar adjoint-based gradients to compute the sensitivity of the (mean and fluctuat-

ing) drag and lift forces acting on a circular cylinder in the periodic regime. Such a

know-how is an asset in aerodynamic applications, where the ability to reduce the

mean drag, enhance the mean lift, and alleviate the fluctuating draft and lift is key

to improving the performances. We go back first to the time-stepping approach used
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by Meliga, Boujo, Pujals & Gallaire [28] to analyze the sensitivity of drag in flow

past a square cylinder (see also Refs. [29, 30]). The time-stepping approach relies on

DNS to calculate the uncontrolled cylinder flow, and figures out the sensitivity from

time-dependent adjoint equations marched backwards in time. We shall see that this

is computationally very demanding because the DNS solution must be available at all

adjoint time-steps, and the adjoint simulation must run long enough for a time-periodic

regime to develop and for the adjoint solution to reach statistical equilibrium. An al-

ternative approach is thus proposed, that builds on a single harmonic approximation

of the uncontrolled cylinder flow governed by the semi-linear model of Mantič-Lugo,

Arratia & Gallaire [31]. The latter couples a quasi-static, parameterized approximation

of the instantaneous mean flow to its leading eigenmode via the formation of Reynolds

stresses. This sets-up a closed, self-consistent description of the mean flow/fluctuation

interaction capturing accurately the main features of the saturated oscillation, as es-

tablished from comparisons with DNS data up to Re ∼ 100. In the same range of

Reynolds numbers, Meliga, Boujo & Gallaire [32] report that a self-consistent sensi-

tivity analysis successfully predicts the effect of the control cylinder on the limit-cycle

frequency and amplitude, as computed either by self-consistent modeling or DNS of the

two-cylinder system. The premise is that, unlike simpler methods unable to properly

describe the mean flow modification induced by the growth of unstable disturbances

and the nonlinear saturation of these disturbances, self-consistent sensitivity analy-

sis can predict with similar accuracy the effect on drag and lift, and thereby offer a

credible alternative to the time-stepping approach in so far as it relies on the iterative

resolution of time-independent adjoint equations, with no need for a full history of

time and space-accurate solutions.

The manuscript is organized as follows. The flow configuration is described in

Sec. II. Reference results obtained by time-stepping sensitivity analysis are reported

in Sec. III, together with DNS results of open-loop control by a small control cylinder

and a discussion on the physical mechanisms at play. Section IV gets back to the main

features of the semi-linear model, and assesses its relevance for drag and lift control.

Section V revisits the effect of the control cylinder by self-consistent sensitivity analysis,

and provides exhaustive comparison with DNS and semi-linear results obtained by self-

consistent modeling of the two-cylinder system. Finally, Sec. VI compares the costs
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of both methods and examines the extent to which meaningful theoretical predictions

can be obtained by a hybrid modeling computing self-consistent sensitivities from the

post-processing of DNS data.

II. FLOW CONFIGURATION

We investigate the two-dimensional (2-D), periodic, incompressible flow past a span-

wise infinite circular cylinder of diameter d∗. A Cartesian coordinate system is used

with origin at the cylinder center and drag force (resp. lift force) positive in the

stream-wise +x direction (resp. in the cross-wise +y direction). Constant density ρ∗

and kinematic viscosity ν∗ is assumed, therefore the sole parameter for this problem is

the Reynolds number Re = u∗
∞d∗/ν∗, with u∗

∞ the free-stream velocity. The velocity

vector is u = (u, v) with u and v the stream-wise and cross-wise components. Pressure

is denoted by p. The flow motion in space domain Ω is governed by the Navier–Stokes

equations (NSE)

∂tu+N(u) = 0 , (1)

with no-slip condition u = 0 at the surface of the cylinder, denoted by Γ. In Eq. 1,

N(u) ≡ N(p,u) = u·∇u−∇·σ(p,u) is the Navier–Stokes operator, whose dependency
on the pressure is omitted to ease the reading, and σ(p,u) = −pI+Re−1(∇u+∇uT ) is

the linear stress tensor. Because of incompressibility, it is understood that all velocity

fields are divergence free, therefore we will not write this condition explicitly. For

complex fields defined respectively in the space domain or at the surface of the cylinder,

we define the inner products

〈v |w〉
Ω
=

∫

Ω

v ·w dΩ =

∫

Ω

vHw dΩ , 〈v |w〉
Γ
=

∮

Γ

v ·w dΓ
=

∮

Γ

vHw dΓ ,

(2)

where · is the Hermitian dot product and H denotes the conjugate transpose.

Direct numerical simulations (DNS) of the NSE are performed using the finite

elements/Crank-Nicholson solver presented in Meliga et al. [28]. We use a rectan-

gular computational domain made of 108, 018 triangles (378, 660 degrees of freedom),

with upstream and downstream boundaries at x = −30 and x = 60, respectively, and

lateral boundaries at y ± 25. Classical open flow conditions are imposed on the outer

boundary of the space domain, namely a uniform free-stream at the inflow, symmetric
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conditions at the lateral boundaries, and an advective condition at the outflow with

zero pressure at the upper-right corner of the domain. The accuracy of the force co-

efficients in terms of mean and root mean square (rms) values has been checked to be

within 2%.

For purposes of flow control, we mimic the approach of Strykowski & Sreenivasan [1]

and assess how a small, secondary circular cylinder inserted at position xc in the flow

modifies the drag and lift coefficients per unit length of the main cylinder (simply

termed drag and lift) defined by

D = 2〈 i |T(u)〉
Γ
, L = 2〈 j |T(u)〉

Γ
, (3)

where i (resp.) j is the unit vector in the stream-wise (resp. cross-stream) direction,

T(u) ≡ T(p,u) = σ(p,u)·n is the stress vector and n is the unit outward vector normal

to the cylinder surface. The main focus here is on reducing the mean drag D, but we

also discuss alternative objectives, e.g., increasing the mean lift L or alleviating the rms

of drag and lift defined as D
rms

2 = D′2 and L
rms

2 = L′2, where an overline denotes a

mean quantity and a prime superscript denotes the zero-mean fluctuation. For several

positions of interest, we perform numerical simulations of the two-cylinder system with

no-slip condition at the surface of the control cylinder, accurately discretized using 300

points, as in Ref. [28]. In the most general case, we however invoke the limit of small

diameter ratios and figure out the effect of the control from the inner product between

a sensitivity function and a simple model of the force δf exerted by the cylinder on the

flow, namely a force opposite to the drag felt by the control cylinder in a uniform flow

at the local velocity

δf(x) = −1

2
ηDη(Reη)|u|u δ(x− xc) . (4)

In Eq. (4), δ is the 2-D Dirac delta function, |u| is the norm of the velocity induced by

the dot product, η is the diameter of the control cylinder, and Dη is its drag coefficient

taken to depend solely on the local Reynolds number Reη(x) = Reη|u|(x), which is

because the advection time scale in the vicinity of the control cylinder is much smaller

than the vortex shedding period (roughly by a factor of the diameter ratio), so the

large-scale vortices shed from the main cylinder are essentially sensitive to the mean of

the control cylinder flow. The relevance of this model for the intended application is

discussed extensively in Ref. [28], where it is shown to reproduce with good accuracy

the effect of the true control cylinder. Given the values of η and Re considered herein,
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the local Reynolds number remains below∼ 20, a range where the relationshipDη(Reη)

is approximated using the three-parameter power law defined in the above reference.

III. TIME-STEPPING SENSITIVITY ANALYSIS

For a comprehensive representation of the equations taking part in the time-stepping

approach, the reader is referred to Meliga et al. [28]. Only the main concepts are

reviewed in the sequel, while Sec. VI comments further on the numerical cost. The

intent here is not so much to discuss the detailed sensitivity of the circular cylinder,

as to give points of comparison for further analysis of the self-consistent results while

discussing the main physical mechanisms at play. As long as the meaning is clear from

the context, we denote by cylinder flow either the uncontrolled cylinder flow, i.e., the

solution to the NSE, or the controlled cylinder flow, i.e., the solution to the NSE with

body force δf as an additional right-hand side (RHS). Quantities obtained by DNS

are termed nonlinear, while their approximation obtained by sensitivity analysis are

termed linear. Unless specified otherwise, all results pertain to a control cylinder of

diameter η = 0.1.

A. Time-dependent adjoint equations

The linear sensitivity of the resultant force proceeds from inner products

〈u† | δf〉
Ω
= 〈u† | δf〉

Ω
+ 〈u†′ | δf ′〉

Ω
, (5)

where u† is the solution to the initial-value problem

− ∂tu
† + L†(u)u† = 0 , u†(t = 0) = 0 , (6)

and L†(u) = −u ·∇u† +u†
·∇uT −σ(−p†,u†) is the adjoint of the linearized Navier–

Stokes operator, hence the adjoint LNSE moniker. Equation (6) comes with adjoint

open flow boundary conditions under the form of homogeneous boundary conditions

at the inflow, symmetric conditions at the lateral boundaries and an adjoint stress-

free condition at the outflow [17]. The adjoint solution is driven by inhomogeneous

boundary conditions at the cylinder surface

u†|Γ = 2θ[ξ + (1− ξ)
D′(t)

D
rms

] i+ 2(1− θ)[ξ + (1− ξ)
L′(t)

L
rms

] j , (7)
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Table I. Boolean values of θ and ξ and relation to the mean and rms values of drag and lift .

δD δL δDrms δLrms

(θ, ξ) (1, 1) (0, 1) (1, 0) (0, 0)

where we use booleans θ and ξ to define the quantity subjected to the sensitivity

analysis (mean or rms, drag or lift, as synthesized in Tab. I), each of which requires

solving a dedicated adjoint problem. The general picture is that the sensitivity of

the mean drag (resp. mean lift) is driven by a steady velocity aligned on the mean

drag (resp. lift) vector, while that of the rms drag (resp. rms lift) is driven by a

time-dependent velocity following the zero-mean fluctuation of the drag (resp. lift)

vector.

From the numerical standpoint, one key feature of the adjoint equations is the

reversal in space-time directionality, which shows through the minus sign ahead of the

∂tu
†+u ·∇u† term accounting for the material derivative at the cylinder flow velocity.

This implies to march Eq. (6) backwards in time, which in turn requires knowledge of

the history of the cylinder flow solution through the entire time-span of the adjoint

simulation, as further discussed in Sec. VIA. All results presented in the sequel are

obtained using the approach described in [28], i.e., solving first the NSE, writing all

time steps to disk, solving the adjoint LNSE over the same time interval and with the

same time step, and discarding the early/late time steps (corresponding to transients of

the DNS and adjoint solutions) to compute meaningful time-averages of the sensitivity

integrands.

B. Mean drag sensitivity

We start by assessing the effect of the control cylinder on the mean cylinder drag.

The map of the variations δD shown in Fig. 1(a) at Re = 100 is largely reminiscent

of that documented for the square cylinder at the same Reynolds number (see Fig. 7

in [28]), with drag increase close to the mean separation points, and drag reduction

either upstream of the main cylinder, close to the centerline, or downstream, within

and on either side of the recirculation region. Although the non-fixed separation points

of the circular cylinder are classically expected to bring improved control efficiency, the
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(a) (b)

Figure 1. (a)-(b) Variations of time-averaged, mean drag induced by a control cylinder of

diameter η = 0.1 whose effect is modeled by Eq. (4) - Re = 100. (a) Main cylinder. (b)

Two-cylinder system. The grey circles mark the positions xc = (1, 0.7) and xc = (0, 0.6)

for which Fig. 2 provides a detailed comparison of the linear and nonlinear results. The

dash-dotted line is the time-averaged, mean recirculating streamline.

same maximum reduction by 20% prevails in the upstream region. This is much less

than the 33% reported by Dalton et al. [5], a difference that we believe is attributable

to these authors using quite arbitrarily a value D = 1.5 of the uncontrolled mean

drag. The present value D = 1.336 is lower by 12% (hence the lesser efficiency) but

obviously more consistent with the reference data ∼ 1.32− 1.33 of the literature; see,

e.g., [33–35]. The drag of the two-cylinder system varies by

δDtot = δD + 2〈 i | δf〉
Ω
, (8)

and is essentially reduced in the recirculation region (where both effects add to one

another in Eq. (8) since the drag of the main cylinder decreases and the control cylinder

is a source of thrust); see the map in Fig. 1(b) exhibiting a maximum reduction by 8%.

This is a noticeable difference with respect to the square cylinder, for which a maximum

drag reduction by 10% is achieved in the upstream region of largest sensitivity (we get

back to this matter in the next paragraph).

The effect of a control cylinder placed at xc = (1, 0.7) is further illustrated in

Fig. 2(a). Large, open (resp. filled) circles are used to represent the nonlinear un-

controlled (resp. controlled) drag against Re in the range [Re2Dc ;Re3Dc ], where Re2Dc

is the critical Reynolds number for the onset of 2-D instability, determined by linear
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stability analysis of the steady cylinder flow, and Re3Dc is the critical value for the onset

of 3-D instability, determined by Floquet analysis [36, 37] of the 2-D periodic flow.1

Drag decreases continuously with Re, by 8% at Re = 60, up to 15% at Re = 180.

Similar to previous results for forced wakes [40, 41], the interpretation can be made

that the control cylinder increases the formation length, i.e., the size of the region

bounded by the detached shears and the eddy roll-up [42]. The instantaneous flow at

the rear of the body is less curved, which weakens the pressure gradient due to the

centrifugal forces and raises the base pressure. This shows in Fig. 3(a) through the

damping of the Reynolds stresses and the downstream shift of their spatial structure,

as in Refs. [10, 11]. These trends carry over to the position xc = (0, 0.6) documented

in Fig. 2(b), where drag increases by up to 25% at Re = 120. For this position, the

control cylinder decreases the formation length, which enhances the pressure gradient

and lowers the base pressure; see the related strengthening of the Reynolds stresses

and the upstream shift of their spatial structure in Fig. 3(b). The same mechanism ex-

plains the drag reduction achieved inside the recirculation region and in the upstream

region of largest sensitivity. In this last case, however, the induced adverse pressure

gradient acts by lowering the upfront pressure, but leaves the base pressure essentially

unchanged, which results in the controlled and uncontrolled Reynolds stresses having

almost identical amplitude and position (not shown here). Compared to the square

cylinder, the pressure gradient is softened by the bluff circular shape, which results in

the velocity being larger by 10% in the in-between region. This inflates the drag of the

control cylinder by 5%, and explains the loss of efficiency when it comes to the drag

of the two-cylinder system.

For both positions, the linear approximations computed from Eq. (5) and superim-

posed in Fig. 2 as the small circles exhibit good agreement with the nonlinear data,

which gives confidence that sensitivity analysis can be used as a systematic path to

guide the best positions for placement of a control cylinder. There does exist a small

discrepancy between the linear and nonlinear values, that we ascribe to our cylinder

force model being excessively simple for a not-that-small diameter η = 0.1; see the

1 All threshold values are specific to a given position of the control cylinder, since the control modifies

also the growth rate of flow disturbances. For the same reason, we find the 3-D transition to be led by

the classical A-mode [38] for the uncontrolled case and for the controlled case with control cylinder

at xc = (0, 0.6), but by the so-called C-mode for the case with control cylinder at xc = (1, 0.7).

This mode is too weak to compete with the A and B modes under natural conditions, but shows11



(a) (b)

(c) (d)

Figure 2. (a)-(b) Mean drag against Re for control by a cylinder of diameter η = 0.1 at (a)

xc = (1, 0.7) and (b) xc = (0, 0.6). Large open (resp. filled) symbols denote nonlinear values

of the uncontrolled (resp. controlled) drag. Small symbols denote linear values obtained by

time-stepping sensitivity analysis, with dark and light grey shades to stress the contributions

of the mean and fluctuating components of the model force (4). (c)-(d) Same as (a)-(b) for

a control cylinder of diameter η = 0.02.

improved agreement reported in Figs. 2(c)-(d) using a smaller diameter η = 0.02.

The grey shade used to represent the contribution of the individual inner products

〈u† | δf〉
Ω
(dark shade) and 〈u†′ | δf ′〉

Ω
(light shade) suggests that the mean and fluctu-

ating components of the control force contribute equally to the drag reduction achieved

at xc = (1, 0.7), while the drag increase at xc = (0, 0.6) is triggered by the mean force

only. The general picture is that the control cylinder acts mainly through the mean

component of the force, except inside the recirculation region where the observed drag

reduction is driven by the fluctuating component. There is a region of overlap on either
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(a) (b)

Figure 3. (a) x-component of the Reynolds stresses divergence for the uncontrolled cylinder

flow (lower half plane) and for the flow controled by a cylinder of diameter η = 0.1 at

xc = (1, 0.7) (upper half plane). (b) Same as (a) for a control cylinder at xc = (0, 0.6) -

Re = 100.

side of the recirculation, where both components of the force are of the same order

of magnitude. Similar disjointness in the sensitive regions has ben reported for the

limit-cycle frequency and amplitude of the circular cylinder [32].

C. Mean lift and rms sensitivity

The mean lift variations mapped in Fig. 4(a) compare in every way to that of the

square cylinder. Lift increases in the bottom shear layer spreading from the upstream

stagnation point to the lower separation point, where the control essentially deflects

the shear layer upwards, and raises the pressure over the lower cylinder surface. The

similarity carries over to the variations of the rms, whose related maps in Fig. 4(b)

unveil a decrease (resp. an increase) in the upstream centerline region and downstream,

within and on either side of the recirculation region (resp. close to the separation

points and in a large secondary region surrounding the recirculation). Those are the

regions where the control cylinder decreases (resp. increases) the oscillation amplitude

(see Fig. 14 in [32]), so it can be inferred that the mitigation of the fluctuations is

correlated to a damping of the instability. Note, the map of rms lift shown in the lower

half of Fig. 4(b) displays variations larger by two orders of magnitudes, which reflects

the different amplitudes of the drag and lift oscillations. Given the uncontrolled values
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(a) (b)

Figure 4. (a) Variations of time-averaged, mean lift induced by a control cylinder of diameter

η = 0.1. (b) Same as (a) for the rms drag (upper half) and lift (lower half) - Re = 100.

of rms drag and lift (Drms = 0.0064 vs. Lrms = 0.23) the achieved relative variations

are actually comparable.

IV. A SELF-CONSISTENT MODELING OF DRAG AND LIFT

A. Model description

Mantič-Lugo et al. [31] have recently revisited the nonlinear saturation of the shed-

ding instability using a semi-linear model that couples a quasi-static, parameterized

approximation of the instantaneous mean flow to its leading eigenmode, considered

a relevant guess for the first harmonic of the fluctuation. The eigenmode feeds back

onto the mean flow via its Reynolds stresses, which sets up a closed, self-consistent

description of the mean flow/fluctuation interaction. Several recent studies [43, 44]

have breathed new life into this concept of a mean flow coupled to Reynolds stresses

modeled from the averaged product of single eigenmode disturbances, that dates back

to the early works of Malkus [45] and Stuart [46]. The main assumption is that the

flow nonlinearity involves little production of higher harmonics, which is true of the

cylinder flow [47]. Mantič-Lugo et al. [31] then proceed to show that saturation occurs

when the mean flow is neutrally stable [40, 48, 49], at which point the eigenfrequency of

the leading eigenmode predicts well the exact oscillation frequency, as early noticed in

cylinder flows and related bluff-body wakes [50–52]. Similar results have been reported

14



by Thiria, Bouchet & Wesfreid [53] using a weakly non-parallel stability analysis of an

instantaneous mean flow computed on-the-fly from DNS data. In contrast, the mean

flow is not taken for a given in the self-consistent approach, but comes instead as an

output of the model. Exhaustive comparison with uncontrolled DNS data corroborates

the relevance of this approach to accurately predict the frequency and amplitude of

vortex shedding, but also the spatial structure of the mean flow, the fluctuation and

the Reynolds stresses, up to Reynolds number Re ∼ 100 [31, 54]. Similar agreement

has been reported recently for vortex shedding control by means of a small control

cylinder [32].

In the periodic regime, the model quantities are governed by the self-consistent

equations (SCE)

N(Um) =A2ψ(û
1
) , (9)

(λ+ iω)û1 + L(Um)û1 = 0 , (10)

λ =0 , (11)

〈û
1
| û

1
〉
Ω
=1 , (12)

with boundary conditions Um|Γ = û1|Γ = 0. Here, L(Um)û1 = u · ∇Um + û1 ·

∇Um − σ(p̂
1
, û

1
) is the linearized Navier–Stokes operator, Um is the self-consistent

mean flow, û
1
is the unit-norm eigenmode of growth rate λ = 0, eigenfrequency ω and

real amplitude A, ℜ(·) and ∗ indicate respectively the real part and the conjugate of a

complex quantity, and we note ψ(û) = û · ∇û∗ + û∗
· ∇u. All quantities are termed

semi-linear to stress that the mean flow is forced nonlinearly by the Reynolds stresses

of the eigenmode, while the eigenmode is solution of a linear disturbance equation (not

to be confused with the semi-linear terminology used to classify partial differential

equations). For given Reynolds number, the analysis consists in determining the value

of A yielding neutral stability, which is achieved relaxing condition (11) and increasing

the amplitude up to the point where λ = 0. Numerically, we resort on the finite

elements solver presented in Meliga et al. [32] to solve iteratively the SCE with a

combination of Newton and shift-and-invert Arnoldi algorithms, as further discussed

in Sec. VIB. We take all solutions to be determined to a sufficient accuracy when

|λ| ≤ 10−6.
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We augment here the above SCE with the additional disturbance equation

A2[2(λ+ iω)û
2
+ L(Um)û2

] = −A2ζ(û
1
) , (13)

with boundary condition û
2
|Γ = 0, where we note ζ(u) = u · ∇u the compact form

of the nonlinear advection operator. This is the equation for the second harmonic û
2
,

taken with no loss of generality with amplitude A2. The latter is entirely slaved to its

forcing by the self-interaction of the eigenmode at frequency 2ω, since the Reynolds

stresses of û
2
does not feed back onto the mean flow, nor does its nonlinear interaction

with û1 onto the eigenmode. Numerically, we thus solve the SCE and the second har-

monic equation sequentially. The necessity to include higher harmonics shows through

the fact that the uncontrolled rms drag is otherwise trivially zero because of the reflec-

tional symmetry about the centerline. This is not true if the control cylinder is offset

from the centerline, but relying on the sole eigenmode can then be insufficient to predict

accurate rms values, which is a little counterintuitive given that the semi-linear model

has been said to overlook all harmonic contributions. Strictly speaking, the working

assumption is that the coupling with the higher harmonics has little effect on the mean

flow/fluctuation interaction, not that the higher harmonics are zero. Therefore, there

is no contradiction in ascribing part or all of the drag and lift fluctuations to higher

harmonics, as long as they remain slaved to their forcing by the lower harmonics.

B. Relevance for aerodynamic drag and lift control

Since the stress vector is linear in the flow quantities, the semi-linear mean drag

and lift are simply the drag and lift of the self-consistent mean flow

Dm = 2〈 i |T(Um)〉Γ , Lm = 2〈 j |T(Um)〉Γ . (14)

The semi-linear rms drag and lift follow after some elementary algebra as

D̂
rms

=
√
2
(
A2|D

1
|2 + A4|D

2
|2
)1/2

, L̂
rms

=
√
2
(
A2|L

1
|2 + A4|L

2
|2
)1/2

,

(15)

where we note Dk = 2〈 i |T(ûk)〉Γ and Lk = 2〈 j |T(ûk)〉Γ the contributions of û
1
and

û
2
to the fluctuating drag and lift. We show in Fig. 5 the results obtained for the

uncontrolled cylinder flow and for the controlled cases considered in Sec. III B, with

16



(a) (b)

(c) (d)

Figure 5. (a) Mean drag, (b) mean lift, (c) rms drag and (d) rms lift against Re: semi-linear

(blue diamonds) vs. nonlinear results (red circles). Open symbols pertain to the uncontrolled

cylinder flow. Dark (resp. light) filled symbols pertain to the flow controlled by a cylinder

of diameter η = 0.1 at xc = (1, 0.7) (resp. at xc = (0, 0.6)).

control cylinder either at xc = (1, 0.7) or at xc = (0, 0.6). All semi-linear values shown

as the blue diamonds fall onto their nonlinear counterparts (red circles), which proves

that self-consistent modeling captures accurately the mean and fluctuating forces acting

on the cylinder. The reported agreement advocates slaving the dynamics of the second

harmonic (which should not come as a surprise, otherwise the model would fail to

predict the main features of the saturated cylinder flow). Moreover we have checked all

semi-linear values to remain identical (to the fourth decimal) retaining up to the fourth

harmonic, which is consistent with the results of Protas & Wesfreid [56, 57] showing

that (at least in the uncontrolled case) the spectra of the drag and lift fluctuations

unveil significant contributions from the first two harmonics only. In contrast, retaining
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the sole eigenmode miscalculates the rms drag by up to 25% for the controlled case at

xc = (0, 0.6).

V. SELF-CONSISTENT SENSITIVITY ANALYSIS

We now use self-consistent modeling to revisit the sensitivity analysis performed

in Sec. III. All related quantities are simply termed linear. As long as the meaning

is clear from the context, we denote by cylinder flow either the uncontrolled cylinder

flow, i.e., the solution to the SCE, or the controlled cylinder flow, i.e., the solution to

the same SCE with body force

δFm(x) = −1

2
ηDη|Um|Umδ(x−xc) , δf̂

1
(x) = −A

2
ηDη

(

|Um|û1
+

Um · û1

|Um|
Um

)

δ(x−xc) ,

(16)

as additional RHSs in Eqs. (9)-(10), where δFm (resp. δf̂1) is the self-consistent ap-

proximation of the mean force (resp. of the fundamental component of the fluctuating

force) exerted by the cylinder on the flow. Rigorously speaking, the second harmonic

δf̂
2
of the fluctuating force should also be taken into consideration to compute the

sensitivity of the rms drag and lift (not that of the mean values, that do not depend on

û2). The above first-order force model however retains a sufficient degree of complexity

with respect to the intended purpose, in the sense that we have found the corrections

to the rms sensitivity maps documented in the sequel to be negligible. For all that, this

amounts not to assuming zero control-induced perturbation of the second harmonic,

rather to slaving the controlled harmonic to its forcing by the controlled eigenmode.

A. Self-consistent adjoint equations

In a manner similar to what has been presented in Sec. III, we show in Appendix A

that all relevant variations proceed from inner products

〈U†
m | δFm〉Ω + 2ℜ{〈û†

1 | δf̂1〉Ω} , (17)
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where U†
m, û

†
1
and û

†
2
are solutions to the adjoint self-consistent equations

L†(Um)U
†
m =− 2ℜ{Aφ†(û

1
, û†∗

1
)+A2φ†(û

2
, û†∗

2
)} , (18)

A[(λ− iω)û†
1
+ L†(Um)û

†
1
] =− A2φ†(û

1
,U†

m)−A2φ†(û∗
1
, û†

2
) , (19)

A2[2(λ− iω)û†
2 + L†(Um)û

†
2] = 0 , (20)

〈U†
m |A2ψ(û

1
)〉

Ω
= (1− ξ)[θ

A2|D1|2 + 2A4|D2|2

D̂
rms

+ (1− θ)
A2|L1|2 + 2A4|L2|2

L̂
rms

] ,

(21)

α† =− 2A〈û†
1 | û1〉Ω−4A2〈û†

2 | û2〉Ω , (22)

with inhomogeneous boundary conditions

U†
m|Γ= 2ξ[θ i + (1− θ) j] , (23)

û
†
1
|Γ= 2A(1− ξ)[θ

D
1

D̂rms

i+ (1− θ)
L
1

L̂rms

j] , (24)

û
†
2|Γ= 2A2(1− ξ)[θ

D2

D̂
rms

i+ (1− θ)
L2

L̂
rms

j] , (25)

and we note φ†(u,v) = −u · ∇v + v · ∇uT the adjoint of the linearized advection

operator φ(u,v) = u ·∇v+v ·∇u. The above SCE comprise of three equations (18)-

(20) for the adjoint mean flow U†
m and for the first two harmonics û

†
1 and û

†
2 of

the adjoint fluctuation. The first harmonic û
†
1
does not reduce to the leading adjoint

eigenmode of the self-consistent mean flow because Eqs. (18)-(19) are coupled and must

be solved simultaneously, together with compatibility condition (21) and normalization

condition (22), whose role is to guarantee the marginal stability of the controlled

solution through the adjoint scalar parameter α†. Equation (20) is decoupled from the

rest of the problem to reflect the slaving of the second harmonic, and is thus meaningful

only to the rms problem (otherwise ξ = 1, Eq. (25) reduces to û
†
2
|Γ = 0 and û

†
2
= 0 in

the absence of a stirring mechanism). The reader is referred to Appendix A for further

deepening regarding the derivation of these adjoint SCE, that differ from those derived

in [32] for the limit-cycle frequency and amplitude by the adjoint second harmonic

equation and by the specific compatibility condition and boundary conditions. The

key point to notice from a numerical perspective is that all equations are independent

of time, which allows resorting to the iterative algorithm detailed in Appendix B. We

further elaborate on the related cost in Sec. VI.
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(a) (b)

Figure 6. (a)-(b) Variations of self-consistent mean drag induced by a control cylinder of

diameter η = 0.1 whose effect is modeled by Eq. (16) - Re = 100. (a) Main cylinder. (b)

Two-cylinder system. The grey circles mark the positions xc = (1, 0.7) and xc = (0, 0.6)

for which Fig. 7 provides a detailed comparison of the linear and semi-linear results. The

dash-dotted line is the self-consistent, mean recirculating streamline.

B. Mean drag sensitivity

We revisit first the effect of the control cylinder on the mean drag at Re = 100.

The self-consistent variations δDm mapped in Fig. 6(a) reproduce accurately those

obtained by the time-stepping method and documented in Fig. 1(a), with drag increase

close to the separation points and drag reduction upstream of the cylinder, close to

the centerline, or downstream, within and on either side of the recirculation. The

magnitude of the variations is also well predicted, for instance we recover the same

maximum reduction by 20% in the upstream region. The total variations

δDm,tot = δDm + 2〈 i | δFm〉Ω , (26)

mapped in Fig. 6(b) display the same agreement, although there exist small discrep-

ancies with respect to the exact map shown in Fig. 1(b) close to the hyperbolic reat-

tachment point. This is because the velocity drops rapidly to zero in this region,

which results in all harmonics being of the same order of magnitude as the fundamen-

tal and strongly interacting with one another. The number of harmonics needed to

achieve a proper approximation of the fluctuation is thus arbitrarily large, while the

self-consistent fluctuations keeps being modeled from the fundamental only (not even
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(a) (b)

(c) (d)

Figure 7. (a)-(b) Mean drag against Re for control by a cylinder of diameter η = 0.1 at

(a) xc = (1, 0.7) and (b) xc = (0, 0.6). Large, open (resp. filled) diamonds denote semi-

linear values of the uncontrolled (resp. controlled) drag. Small symbols denote linear values

obtained by self-consistent sensitivity analysis, with dark and light grey shades to stress the

contributions of the mean and fluctuating components of the model force (16). Nonlinear and

linear values obtained by the time-stepping method are reported from Fig. 2 as the various

red circles. (c)-(d) Same as (a)-(b) for control by a cylinder of diameter η = 0.02.

the second harmonic, since the latter is slaved to its forcing by the leading eigenmode).

The detailed effect of control cylinders at xc = (1, 0.7) and xc = (0, 0.6) is reck-

oned in Fig. 7. The self-consistent sensitivity predictions (represented by the small

blue diamonds) are seen to approximate well the semi-linear values (large blue dia-

monds) but also the nonlinear ones (large red circles) and related sensitivity results

obtained by the time-stepping method (small red circles), which corroborates the abil-

ity of self-consistent sensitivity analysis to provide both qualitative and quantitative
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predictions, and thereby to guide accurately the best positions for placement of the

control cylinder. The individual contributions of the various mean and fluctuating

components of the control force are especially well predicted, as evidenced by the dark

and light grey shades stressing the contribution of the inner products 〈U†
m | δFm〉Ω and

2ℜ{〈û†
1 | δf̂1〉Ω}. The only noticeable difference is for a control cylinder at xc = (0, 0.6)

for Re > 150, as we find the achieved drag reduction variation to be driven essen-

tially by the fluctuating component of the force, while the variation computed by the

time-stepping approach features equal contributions from the mean and fluctuating

components. This is because subtle distortions in the sensitivity regions as Re in-

creases make the control cylinder drift from a region where the mean force yields a

large drag reduction, to an in-between region where it has almost no effect (hence the

fading of the dark grey shade in Fig. 7(b)), but keeps yielding a large drag reduction

if shifted down a little to follow the deformation of the sensitivity region (not shown

here). The contribution of the mean force is thus increasingly difficult to predict be-

cause the error committed is typically of the same order of magnitude as the effect to

be predicted, hence the small discrepancy with respect to the semi-linear results, even

for η = 0.02. However, the self-consistent analysis also slightly overestimates the drag

reduction caused by the fluctuating force. Both errors somehow compensate to make

the overall variation almost identical to that predicted by the time-stepping method.

C. Mean lift and rms sensitivity

The results obtained by self-consistent sensitivity analysis of the mean lift and of

the rms drag and lift exhibit the same consistency. We retrieve from the map in

Fig. 8(a) that the control cylinder increases the mean lift at Re = 100 if positioned in

the bottom shear region. The similarity with the exact results reported in Fig. 4(a)

is striking, which is because the lift sensitivity is large only in flow regions where

the magnitude of the Reynolds stresses is small. The variations of rms drag and lift

mapped in Fig. 8(b) are also in good agreement with those in Fig. 4(b), although the

same typical miscalculations are visible close to the hyperbolic reattachment point.

As has been said at the beginning of this section, we have checked the variations

2ℜ{〈û†
2
| δf̂

2
〉
Ω
} pertaining to the second harmonic of the fluctuating force to yield little

to no modifications of the above rms maps. This suggests that the control-induced
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(a) (b)

Figure 8. (a) Variations of self-consistent mean lift induced by a control cylinder of diameter

η = 0.1. (b) Variations of the self-consistent rms drag (upper half) and lift (lower half) -

Re = 100.

modification of the second harmonic can be slaved to that of the leading eigenmode,

consistently with the fact that the augmented model with slaved harmonic is relevant

to predict the rms drag and lift of the controlled cases considered herein.

VI. DISCUSSION

A. Cost of the time-stepping sensitivity analysis

The key steps for assessing the sensitivity of the resultant force by the time-stepping

approach are summarized as follows: (i) march the NSE forward in time to compute

the uncontrolled cylinder flow u, (ii) march the adjoint LNSE backwards in time to

compute the adjoint solution u†, (iii) average the sensitivity integrand 〈u† | δf〉
Ω
over

an appropriate time-span. The approach essentially offers the advantage it is meant

to offer, i.e., it allows predicting the effect of the control with no need to compute

the controlled state, which represents tremendous time saving compared to covering of

entire parameter spaces by DNS. It also has the advantage of correctness, in the sense

that the smallness of the control amplitude is the only underlying assumption. The

method especially supports arbitrarily large amplitude of oscillations, and can thus

be performed at Reynolds numbers not close to the instability threshold, unlike many

sensitivity analyses dedicated to assessing the effect of the control on the flow stability

23



[17, 21, 58, 59].

Its major drawback lies in the fact that the adjoint LNSE use the entire time history

of the cylinder flow solutions, which turns to be very computationally demanding.

Because of the time-reversal feature, marching the adjoint equations in time indeed

requires solving first the NSE and to make the DNS solution available at every adjoint

time-step, which is inconvenient and very costly in terms of storage. To give a taste, we

use here 70Gb to write to disk 600 time units of DNS solutions, plus 60Gb to store the

adjoint solutions relevant to the mean drag problem and another 200Gb to store the

adjoint solutions relevant to the mean lift and rms problems, which is not mandatory

but recommended to achieve time-efficient post-processing. In comparison, it would

take up to 5Tb to handle only the mean drag problem in a three-dimensional (3-D) case

distributing 40 points in the span-wise direction, which is beyond feasible limits. It

is of course possible to save memory using specific check-point schemes [60] consisting

in storing the solution only at sampled intervals (the so-called check-points) and in

subsequently recomputing on-the-fly from the closest check-point, but this comes at

the price of higher CPU-time.

B. Cost of the self-consistent sensitivity analysis

The key steps for assessing the sensitivity of the resultant force by the self-consistent

approach are similarly summarized as follows: (i) solve the SCE to compute the

self-consistent cylinder flow {Um, û1, û2}, (ii) solve the adjoint SCE to compute the

self-consistent adjoint solutions {U†
m, û

†
1
, û†

2
}, (iii) compute the sensitivity integrands

〈U†
m | δFm〉Ω and 〈û†

1
| δf̂

1
〉
Ω
. From a numerical perspective, the time-independence of

the equations is a significant advantage, as it allows resorting to iterative techniques.

The corrections made at each iteration must be under-relaxed to maintain the stability

of the iterative solution, but even so, the need to store entire time history of solutions

is eliminated, hence marginal storage requirements. In terms of CPU cost, it takes up

to a few hundreds of iterations to compute the adjoint solutions to a precision of 10−12

(in L2 norm), which can be achieved within a coupled of hours on a regular sequential

workstation. This is because all operators involved in Eqs. (18)-(19) are linear in the

unknowns, therefore, it suffice to perform the necessary matrix inversions beforehand

(2 for the mean drag and lift, 3 for the rms values), following which the resolution
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involves merely the repeated evaluation of matrix-vector products.

The cost of the approach is roughly that of computing the self-consistent cylinder

flow, which has been found to depend highly on the Reynolds number [54]. The diffi-

culty lies in the fact that the operators in Eqs. (9)-(10) are nonlinear in the unknowns,

which requires to perform repeated matrix inversions. This is worsened by the fact

that the model amplitude A itself is an unknown, hence the need to repeatedly solve

the system for increasing values of A up to the point where λ = 0. In practice, the cost

of solving the SCE to a precision of 10−12 (in L2 norm of the various solutions) is less

than that of performing the DNS on the same mesh by more than 80% at Re = 60 (us-

ing relaxation factors of ∼ 0.8) and roughly 40% at Re = 100 (using relaxation factors

of ∼ 0.3). For values Re > 130, the number of iterations increases rapidly because the

strong nonlinearities at play considerably slow down the convergence rate of iterative

methods, as discussed for instance in [61]. At Re = 150, we use a relaxation factor

∼ 0.1, which makes the cost of solving once the SCE about 3 times larger than at

Re = 100. However, the saturation amplitude being also larger, the cost of converging

the self-consistent solutions to the same precision is about 5 times larger, which ends

up being twice the cost of performing the DNS. For Re = 180, this figure increases

to 5 times, and no convergence could be achieved beyond Re = 190, as if the 3-D

instability about to show-up somehow left a trace on the self-consistent solution. For

all that, there is true added value in resorting to self-consistent sensitivity analysis :

the cost remains lower than that of the time-stepping approach over a significant range

of Reynolds numbers Re < 120 − 130, and while it is faster to compute the cylinder

flow by DNS for Re > 130, the advantage of the self-consistent approach regarding the

resolution of the adjoint equations remains unmatched.

From the accuracy standpoint, the fact that self-consistent modeling provides accu-

rate sensitivity predictions constitutes a promising achievement compared to simpler

approaches relying on classical, linear stability theory to predict the main features of

the flow unsteadiness. As an example, a so-called mean flow approach is proposed

in Meliga et al. [28] to compute approximated sensitivity results from knowledge of

only the mean cylinder flow, the cost of which is marginal since one solves only once a

steady equation for the adjoint mean flow

L†(U†
m) = 0 , (27)
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Figure 9. Variations of time-averaged mean drag induced by a control cylinder of diameter

η = 0.1, approximated in the mean flow approach solving Eqs. (27)-(28) - Re = 100.

with boundary condition

U†
m|Γ = 2θ i+ 2(1− θ) j . (28)

The approximation is harsh, however, because it amounts to set the harmonic of the

adjoint fluctuation to zero (as can be seen comparing to Eqs. (18)-(23)) and thus

inherently predicts zero rms sensitivity. For the mean drag and lift, the accuracy of

the predictions is questionable, as seen from Fig. 9 showing the so-computed variations

of the cylinder drag at Re = 100. This is because the approach fails to encompass the

nonlinear interaction between the mean flow and its fluctuation. Actually, it does allow

the control to modify both, but it does not allow the modification of the fluctuation to

feed back onto the mean, which is troublesome because the frequency and amplitude

of the oscillation, and thus the distribution of drag and lift, are precisely driven by

the flow response to the Reynolds stresses of the fluctuation. The upstream sensitive

region yielding the maximum drag reduction is well predicted in Fig. 9 (consistently

with the fact that the upstream amplitude of the Reynolds stresses is negligible),

but the method is clearly exposed in the wake as it misses on the drag reduction

occurring in the recirculation region (where the amplitude of the Reynolds stresses

peaks). Moreover, the sensitive region associated with drag reduction in the shear

layers comes with indisputably different location and spatial extension; see Figs. 1(a)

and 6(a) for comparison.
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C. Hybrid DNS/self-consistent sensitivity analysis

We examine now the extent to which relevant predictions can be obtained from

a hybrid approach combining DNS to compute the cylinder flow solution, and self-

consistent modeling to compute the sensitivities, which we believe is an interesting

compromise in terms of cost. We assume that only a few snapshots of the cylinder

flow (not the entire time history) are available from a DNS, together with an accurate

time-averaged mean flow U used to approximate the self-consistent mean flow Um.

We proceed to compute the leading eigenmode and its eigenfrequency from classical

mean flow stability analysis, and solve the eigenvalue problem

(λdns + iωdns)û1dns + L(U)û1dns = 0 , (29)

with boundary condition û
1dns|Γ = 0 and normalization condition 〈û

1dns | û1dns〉Ω = 1.

Since the cylinder mean flow is close to neutral stability [52], the obtained growth rate

λdns is automatically close to its self-consistent counterpart λ = 0. We leave aside

the second harmonic because the focus is only on the mean drag sensitivity, but it

is straightforward to compute the related approximation û
2dns from knowledge of the

eigenmode. For the model amplitude, we compute first the exact Reynolds stresses

divergence as

−ψ(u′) = N(U) , (30)

where the RHS can be evaluated from knowledge of the sole mean flow, then the

Reynolds stresses divergence of the leading eigenmode as ψ(û
1dns), and set the ampli-

tude to the least-square value

Adns =
〈ψ(û

1dns) |ψ(u′)〉
Ω

〈ψ(u′) |ψ(u′)〉
Ω

, (31)

minimizing the difference between the exact DNS solution and its expected self-

consistent approximation. Finally, we solve an adjoint system formally identical

to (18)-(21), only all approximations determined above have substituted for the exact,

self-consistent quantities.

We show in the upper half of Fig. 10(a) a map of the mean drag variations δDm

computed at Re = 100, using for simplicity the same body forces as in (16) to model the

presence of the control cylinder. The results exhibit reasonable agreement with those

obtained by self-consistent and time-stepping analysis, reproduced in the lower half of
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(a) (b)

Figure 10. (a) Variations of self-consistent mean drag induced by a control cylinder of

diameter η = 0.1. The variations in the upper half stem from a hybrid approach relying on

adjoint equations formally identical to (18)-(21), only extrapolated DNS approximations have

substituted for the exact, self-consistent solutions. The variations in the lower half are those

obtained by full self-consistent sensitivity analysis, reported for comparison from Fig. 6(a).

(b) Variations of time-averaged, mean drag obtained by the time-stepping method, reported

for comparison from Fig. 1(a) - Re = 100.

Fig. 10(a) and in Fig. 10(b), respectively. Nonetheless, there exist some discrepancies

in the magnitudes of sensitivity, as the hybrid method overestimates by almost 50%

the drag variations achieved in the downstream shear regions. The overall agreement

is encouraging, although the miscalculations tend to worsen as the Reynolds number

increases; see Fig. 11 providing similar comparisons atRe = 150 andRe = 180. Further

evidence is provided in Fig. 12 showing the detailed effect of the control cylinder at

xc = (1, 0.7) and xc = (0, 0.6). While the drag increase at xc = (0, 0.6) and Re < 130 is

predicted within 10%, the drag reduction at xc = (1, 0.7) is twice as large as expected.

The effect of the control is increasingly mispredicted as the Reynolds number increases.

At Re > 170, even the sign of the variation is erroneous, but this traces back to subtle

distortions of the sensitivity regions similar to those discussed in Sec. VB, for which

the approximations of hybrid modeling serve as a mere magnifier (see Fig. 11 showing

that the control cylinder drifts from a region where it yields a large drag reduction,

to the periphery of a region where it yields a large drag increase, but keeps yielding a

large drag reduction if shifted down a little to follow the deformation of the sensitivity

28



(a) (b)

(c) (d)

Figure 11. Same as Fig. 10 for (a)-(b) Re = 150 and (c)-(d) Re = 180. Approximated results

obtained by the mean flow approach are shown in the close-ups.

region).

Note, there is no unique way to determine the model amplitude. It is relevant as

well to rely on the mean oscillation amplitude defined as the rms of the fluctuation

energy, to give

A2

dns =
〈u′ |u′〉

Ω

〈û
1dns | û1dns〉Ω

. (32)

This is actually simpler than going through the Reynolds stresses, but we insist that

the Reynolds stresses can be evaluated a posteriori from the sole mean flow, while

the oscillation amplitude needs to be computed on-the-fly. Anyhow, the sensitivity

results are barely impacted, as indicated by the yellow symbols in Fig. 12. This sug-

gests that the miscalculated variations result from subtle differences between the exact,

self-consistent solutions {Um, û1
} and their approximations {U, û

1dns}, not from an

inaccuracy of the model amplitude. These differences are discussed extensively by
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Mantič-Lugo, Arratia & Gallaire [54], who report that the mean flows differ essentially

far downstream, in a region where the flow dynamics consists mainly in the advection

and diffusion of the shed vortices. This yields a velocity deficit that is more concen-

trated in the time-averaged mean flow U than in its self-consistent counterpart Um,

hence a stronger shear that yields larger amplitudes of its eigenmode û
1dns, but also

of the adjoint solutions {U†
m, û

†
1}, and thus of the sensitivities. In a sense, this warns

agains the temptation to retain only the mathematical aspect of the self-consistent

equations while ignoring the underlying physics : on the one hand, the subtle failure

of the self-consistent mean flow in correctly predicting the far field distribution of the

time-averaged mean flow is necessary to ensure a better approximation of the vortex

shedding structure based on a single eigenmode. On the other hand, the structure of

the self-consistent eigenmode is the only one whose Reynolds stresses force the self-

consistent mean flow in a manner such that it generates exactly the self-consistent

eigenmode. Even so, we believe the main result to keep in mind is that the approach

somehow predicts relevant information regarding the location of the sensitive regions.

As such, it constitutes a significant achievement over the mean flow approach, whose

related maps are shown in the close-ups of Figs. 11(a) and (c).

VII. CONCLUSION

We use various adjoint-based methods to compute sensitivity maps for the (mean

and fluctuating) drag and lift of a circular cylinder, a classical time-stepping analysis

that figures out the exact sensitivity to generic control force from adjoint equations

marched backwards in time, and a novel self-consistent analysis that builds on the

model of Mantič-Lugo et al. [31] to compute semi-linear approximations of the sen-

sitivity to the mean and fluctuating components of the force. Both approaches are

applied to open-loop control by a small secondary cylinder, whose presence in the flow

is modeled by a reacting force localized at the same location where the control cylinder

is placed, equal and opposite to the anticipated drag.

Consistently with sensitivity results reported for flow past a square cylinder [28],

the time-stepping approach provides a relevant and systematic guideline to map the

best positions for placement of the control cylinder, as established from comparisons

with dedicated DNS of the two-cylinder system. It is however very demanding be-
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(a) (b)

Figure 12. (a)-(b) Drag against Re for control by a cylinder of diameter η = 0.1 at (a) xc =

(1, 0.7) and (b) xc = (0, 0.6). Large, open (resp. filled) diamonds denote semi-linear values

of the uncontrolled (resp. controlled) drag. Small symbols denote linear values obtained

by hybrid self-consistent/DNS modeling, as obtained determining the model amplitude from

the Reynolds stresses of the DNS (blue symbols) or its mean oscillation amplitude (yellow

symbols). Nonlinear values are reported from Fig. 2 as the various red circles.

cause a DNS solution of the uncontrolled cylinder flow must be available at all adjoint

time-steps, and the adjoint simulation must be run long enough for a time-periodic

state to show up and for the adjoint solution to reach statistical equilibrium, which

yields considerable CPU and storage costs. The same agreement carries over to the

predictions obtained by self-consistent analysis, which constitutes a promising achieve-

ment compared to simpler but harsher methods overlooking the nonlinear coupling

between the mean and fluctuating components of the flow modification induced by

the control. Moreover, the self-consistent approach figures out all sensitivities from

time-independent adjoint equations, which allows resorting to efficient, iterative al-

gorithms and reduces the cost to that of computing the self-consistent, uncontrolled

cylinder flow. This is faster than performing the DNS for Reynolds numbers up to

Re = 120− 130. For Re > 130, the DNS is faster, but the flaws of the time-stepping

approach regarding the resolution of the adjoint equations specifics remains, so the

choice of a particular method is essentially a question of balancing constraints.

Finally, we show that valuable information regarding the sensitivity regions can be

gained from a hybrid method combining DNS to compute the cylinder flow, and self-
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consistent analysis to compute the sensitivity, although the magnitude of sensitivity in

the shear layers is systematically overestimated because of seemingly minor differences

between the self-consistent and time-averaged mean flows. This stresses the need

to devote further efforts to improve the numerical resolution of the self-consistent

equations (for instance using predictor-corrector techniques to anticipate the direction

of the corrections), as the related sensitivity has proven to be a valuable asset to

efficiently and accurately control unsteady flows, even though the Reynolds numbers

is not close to the instability threshold and the oscillation amplitude is not small. This

is especially true given that the relevance of such self-consistent models, coupling a

perturbation equation linearized around a mean flow forced in return by the Reynolds

stresses of the perturbation, goes well beyond periodic flows. Theoretical analysis

of turbulent flows is another important scope, for which the time-stepping approach

is bound to fail because the high sensitivity to initial conditions yields exponentially

diverging solutions if the length of the adjoint simulation exceeds the predictability time

scale [29]. We believe the time independence of the adjoint self-consistent equations

makes it a promising theory to build on in this regard, but further research is required to

assess how the small-scale turbulence feeds back on the mean flow/coherent structures

interaction, whether it be under the form of an eddy viscosity or of a stochastic forcing

in the linearized fluctuation equation. There is hope, however, as the latter approach

has recently led to savvy interpretations of how streamwise rolls and streaks self-sustain

in linearly stable wall-bounded shear flows [43, 62, 63].
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Appendix A: Derivation of the self-consistent sensitivity functions

We start from the augmented, forced SCE

N(Um) =− A2ψ(û
1
) + Fm , (A1)

A[(λ+ iω)û1 + L(Um)û1] = f̂1 , (A2)

A2[2(λ+ iω)û2 + L(Um)û2] =−A2ζ(û1) , (A3)

λ =0 , (A4)

〈û
1
| û

1
〉
Ω
=1 , (A5)

with homogeneous conditions Um|Γ = û
1
|Γ = û

2
|Γ = 0 at the cylinder sur-

face. We resort here to Lagrangian optimization, using the self-consistent solution

Vd = {Um, û1, û2, λ, ω, A} to Eqs. (A1)-(A5) as so-called direct variables, and the

body forces Vc = {Fm, f̂1} as control variables. We recall the definitions of the mean

and rms components of the self-consistent drag

Dm = 2〈 i |Tm〉Γ , D̂2

rms = 2

2∑

k=1

A2k|Dk|2 , Dk = 2〈 i |Tk〉Γ , (A6)

where we use Tm = T(Um) and Tk = T(ûk) for compact notation. In the sequel,

we note similarly δDm = 2〈 i | δTm〉Γ = 2〈 i |T(δUm)〉Γ where δUm is the control-

induced, linear perturbation to the mean flow, and δDk = 2〈 i | δTk〉Γ = 2〈 i |T(δûk)〉Γ
where δû1,2 are the related perturbations to the leading eigenmode and to the slaved

harmonic. All lift-related quantities by substituting j (resp. Lk) for i (resp. Dk).

It is convenient to use the compound variable

H = ξ[θDm + (1− θ)Lm] + (1− ξ)[θD̂
rms

+ (1− θ)L̂
rms

] , (A7)

that represents either the mean or rms value of drag and lift, depending on the value

of the Boolean doublet (θ, ξ) given in Tab. I. We seek sensitivity functions ∇F
m

H and

∇
f̂
1

H such that

δH = ξ[θδDm + (1− θ)δLm] + 2(1− ξ)
2∑

k=1

Akℜ{[θ D∗
k

D̂rms

δDk + (1− θ)
L∗
k

D̂rms

δLk]} ,

= 〈∇F
m

H | δF〉
Ω
+ 2ℜ{〈∇

f̂
1

H | δf̂
1
〉
Ω
} , (A8)
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for any small modification {δF, δf̂
1
} of the control forces. At this stage, we introduce

adjoint variables Va = {U†
m, û

†
1, û

†
2, α

†, β†} and define the functional

L(Vc,Vs,Va) = H−〈U†
m |N(Um) + A2ψ(û1)− Fm〉Ω

−2ℜ{〈û†
1 |A[(λ+ iω)û

1
+ L(Um)û1

]− f̂
1
〉
Ω
}

−2ℜ{〈û†
2
|A2[2(λ+ iω)û

2
+ L(Um)û2

+ ζ(û
1
)]〉

Ω
}

−α†λ− β† (1− 〈û
1
| û

1
〉
Ω
) , (A9)

that is real since the first and second harmonics û
†
1
and û

†
2
of the adjoint fluctuation

are complex, while the adjoint mean flow U†
m and the adjoint scalar parameters α†

(ensuring neutral stability) and β† (ensuring unit norm of the eigenmode) are real.

The functional reduces to H if the direct variables are solutions to the SCE (A1)-

(A5), in which case all differentials (in the sense of Gateau) with respect to the adjoint

variables are zero. Assuming the differentials with respect to the direct variables to be

similarly zero, the total variation is given by

dL = 〈U†
m | δFm〉Ω + 2ℜ{〈û†

1 | δf̂1〉Ω} = δH , (A10)

and it follows from (A8) that ∇F
m

H = U†
m and ∇

f̂
1

H = û
†
1. The stationarity with

respect to the direct variables is achieved using the divergence theorem to integrate by

parts the RHS in (A9). The adjoint equations

L†(Um)U
†
m =− 2ℜ{Aφ†(û

1
, û†∗

1
) + A2φ†(û

2
, û†∗

2
)} , (A11)

A[(λ− iω)û†
1 + L†(Um)û

†
1] =− A2φ†(û1,U

†
m)−A2φ†(û∗

1, û
†
2) + β†û1 , (A12)

A2[2(λ− iω)û†
2 + L†(Um)û

†
2] = 0 , (A13)

〈U†
m |A2ψ(û1)〉Ω + ℜ{〈û†

1 | f̂1〉Ω} =(1− ξ)

2∑

k=1

kA2k[θ
|Dk|2

D̂
rms

+ (1− θ)
|Lk|2

L̂
rms

] , (A14)

α† =− 2A〈û†
1 | û1〉Ω−4A2〈û†

2 | û2〉Ω . (A15)

are obtained canceling all terms on Ω. Canceling the bilinear concomitant on the outer

boundary ∂Ω \ Γ yields homogeneous conditions at the inflow, symmetric conditions

at the lateral boundaries, and an adjoint stress-free outflow condition [17]. The only

terms to survive are those

〈2ξ[θi+ (1− θ)j]−U†
m | δTm〉Γ+2(1−ξ)

2∑

k=1

ℜ{〈2Ak[θ
Dk

D̂rms

i+ (1− θ)
Lk

L̂rms

j]− û
†
k |AkδTk〉Γ ,

(A16)
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on the cylinder surface, whose cancellation yields inhomogeneous conditions

U†
m|Γ = 2ξ[θi+ (1− θ)j] , û

†
k|Γ = 2(1− ξ)Ak[θ

Dk

D̂rms

i + (1− θ)
Lk

L̂rms

j] . (A17)

As has been said in the body article, Eq. (20) is fully decoupled from the rest of the

problem to reflect the slaving of the second harmonic. It follows that û
†
2
is trivially

zero if ξ = 1, i.e., if the sensitivity analysis is applied to either the mean drag or

lift. The value of β† is determined taking the inner product of Eq. (A12) with û
1
and

integrating by parts, to give

〈U†
m |A2ψ(û

1
)〉

Ω
+ 〈û†

1
| f̂

1
〉
Ω
= −2A2〈û†

2
| ζ(û

1
)〉

Ω
+ 〈û†

1
|AT

1
〉
Γ
+ β† . (A18)

Substituting the LHS of (A3) for ζ(û1) and further integrating by parts, the RHS

of (A18) becomes

2〈A2[2(λ− iω)û†
2 + L†(Um)û

†
2]

︸ ︷︷ ︸

=0

| û
2
〉
Ω
+ 〈û†

1 |AT1
〉
Γ
+ 2〈û†

2 |A2T
2
〉
Γ
+ β† . (A19)

Using conditions (A17) to calculate the terms over Γ and retaining the real part yields

〈U†
m |A2ψ(û

1
)〉

Ω
+ℜ{〈û†

1
| f̂

1
〉
Ω
} = (1− ξ)

2∑

k=1

kA2k[θ
|Dk|2

D̂rms

+(1− θ)
|Lk|2

L̂rms

]+β† , (A20)

and ultimately β† = 0 comparing to (A14). Since we investigate the sensitivity of the

uncontrolled limit cycle (Fm = f̂1 = 0), the adjoint SCE reduce to

L†(Um)U
†
m =− 2ℜ{Aφ†(û1, û

†∗
1 ) + A2φ†(û2, û

†∗
2 )} , (A21)

A[(λ− iω)û†
1 + L†(Um)û

†
1] =−A2φ†(û1,U

†
m)−A2φ†(û∗

1, û
†
2) , (A22)

A2[2(λ− iω)û†
2
+ L†(Um)û

†
2
] = 0 , (A23)

〈U†
m |A2ψ(û1)〉Ω =(1− ξ)

2∑

k=1

kA2k[θ
|Dk|2

D̂
rms

+ (1− θ)
|Lk|2

L̂
rms

] , (A24)

α† =− 2A〈û†
1 | û1〉Ω−4A2〈û†

2 | û2〉Ω . (A25)

Appendix B: Resolution of the adjoint self-consistent equations

Prior to solving the above adjoint SCE, we use the Arnoldi method to compute the

leading adjoint eigenmode of the self-consistent mean flow, such that

(λ− iω)û†
10 + L†(Um)û

†
10 = 0 , (B1)
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with boundary conditions û
†
10
|Γ = 0, normalized to either 〈û†

10r | û1
〉
Ω

= 1/2A or

〈û†
10i | û1〉Ω = i/2A. We also compute the adjoint mean solutions to

L†(Um)U
†
0r,i = −2ℜ{Aφ†(û1, û

†∗
10r,i)} , (B2)

with homogeneous conditions U
†
0r,i|Γ = 0, as well as the inner products

χr,i = 〈U†
0r,i |A2ψ(û

1
)〉

Ω
with the Reynolds stresses of the eigenmode. While û

†
10i =

−iû†
10r, there is no such relation between U

†
0r and U

†
0i because only the real part of

the interaction with û1 shows up in the RHS of Eq. (B2). If the analysis relates

to the rms, we also compute the adjoint second harmonic û
†
2 and the inner product

γ
2
= γ

2r + iγ
2i = 〈û†

2
| û

2
〉
Ω
/4A2 (otherwise û

†
2
, and thus γ

2
, are trivially zero).

Since û
†
1 is solution to the forced eigenvalue problem (A22), it decomposes into the

sum of homogeneous and particular solutions according to

û
†
1 = −(α† + γ2r)û

†
10r − γ2iû

†
10i + û

†
1p , (B3)

where the particular solution û
†
1p is by construction such that 〈û†

1p | û1〉Ω = 0 and

the coefficients ahead of the homogeneous adjoint solutions deduce from (A25). The

adjoint mean flow equation is linear in both U†
m and û

†
1
, therefore its general solution

is given in general form by

U†
m = −(α† + γ2r)U

†
0r − γ2iU

†
0i +U†

p , (B4)

where U†
p is solution to

L†(Um)U
†
p =− 2ℜ{Aφ†(û

1
,u†∗

1p) + A2φ†(û
2
, û†∗

2
)} , (B5)

with boundary condition

U†
p|Γ = 2ξ[θi+ (1− θ)j] . (B6)

Starting from a certain guess for U†
m (for instance, U†

0r), we solve first Eq. (A22) and

deduce the particular component from the obtained numerical solution as

û
†
1p = û

†
1 − 2A〈û†

1 | û1〉Ωû†
10r . (B7)

This allows solving Eq. (B5) for U†
p and computing the inner product χp =

〈U†
p |A2ψ(û

1
)〉

Ω
, at which point the value of α† proceeds from the compatibility con-

ditions (A24) to give

χrα
† = χp − γ

2rχr + γ
2iχi − (1− ξ)

2∑

k=1

kA2k[θ
|Dk|2

D̂rms

+ (1− θ)
|Lk|2

L̂rms

] . (B8)
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A new guess for U†
m is built from Eq. (B4), and the process repeats until the difference

between two consecutive iterations is less than 10−12 in L2 norm (for both U†
m and

û
†
1).
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