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Abstract

We introduce a new class of automata on infinite trees called alternating nonzero automata, which

extends the class of non-deterministic nonzero automata. We reduce the emptiness problem for

alternating nonzero automata to the same problem for non-deterministic ones, which implies

decidability. We obtain as a corollary algorithms for the satisfiability of a probabilistic temporal

logic extending both CTL* and the qualitative fragment of pCTL*.

1 Introduction

The theory of automata on infinite trees is rooted in Rabin’s seminal theorem which estab-

lishes an effective correspondence between the monadic second order logic (MSO) theory

of the infinite binary tree and the non-deterministic automata on this tree [20]. In this

correspondence, the satisfiability of the logic is dual to the emptiness of the algorithm and

both these algorithmic problems are mutually reducible to one another.

This elegant setting has been partially extended to probabilistic logics [15, 7, 16, 17,

3] and automata with probabilistic winning conditions [20, 19, 1, 8, 3]. In this pa-

per we make another step in this direction: we show a correspondence between the logic

CTL∗[∃, ∀,P>0,P=1] and nonzero alternating automata with limited choice. Moreover we

show that the emptiness problem of the automata is decidable and obtain as a corollary the

decidability of the satisfiability of the logic.

Automata.

Alternating nonzero automata are an alternating version of non-deterministic nonzero auto-

mata introduced in [4], which themselves are equivalent to non-deterministic zero automata

introduced in [3].

An alternating nonzero automaton takes as input a binary tree. Some states of the

automaton are controlled by Eve, while other states are controlled by Adam, and the player

controlling the current state chooses the next transition. Some transitions are local trans-

itions, in which case the automaton stays on the same node of the input tree while other

are split transitions in which case the automaton proceeds to the left son or to the right son

of the current node with equal probability 1
2 .

This interaction between Eve and Adam is seen as a game where Eve and Adam play

according to some strategies. Once the strategies are fixed, one obtains a Markov chain whose

trajectories are all possible plays consistent with the strategies. The winner is determined

with respect to winning conditions introduced in [3, 4], using a total order on the set of

states (used to compute the limsup of a play which is the largest state seen infinitely often

during the play) and three subsets of states, respectively called the sure, almost-sure and

positive states. Eve wins if and only if the three acceptance conditions hold:

sure winning: every play has limsup in sure states; and

almost-sure winning: almost-every play has limsup in almost-sure states; and

positive winning: whenever the play enters a positive state there is positive probability

that the play never exits positive states.



XX:2 Alternating Nonzero Automata

The input tree is accepted by the alternating automaton iff Eve has a winning strategy.

Alternating nonzero automata generalize both classical alternating automata with parity

conditions [9, 18] (when all states are almost-sure and positive) as well as non-deterministic

nonzero automata [4] (in case Eve controls all states).

We do not know whether the emptiness problem for these automata is decidable or not,

however we show that the answer is positive for the subclass of alternating nonzero automata

with limited choice for Adam. In these automata, some choices of Adam are canonical, at

most one in every state, and Adam may perform at most a bounded number of non-canonical

choices during a single play.

We establish some properties of alternating nonzero automata with limited choice for

Adam.

First, we show that the emptiness problem for alternating nonzero automata with limited

choice for Adam is in nexptime∩ co-nexptime (Theorem 23). The proof is an exp-

time reduction to the emptiness problem for non-deterministic automata. This proof

relies on the positional determinacy of the acceptance games for Eve (Lemma 10) and a

characterization of positional winning strategies for Eve (Lemmas 12, 13 and 18).

Second, we show that in the particular case where the sure winning condition is a Büchi

condition, emptiness of non-deterministic nonzero automata is in ptime (Theorem 3)

hence, in case of a Büchi sure winning condition, emptiness of nonalternating nonzero

automata is in exptime (Theorem 23).

Logic.

The temporal logic CTL∗ introduced by Emerson and Halpern [10] and its fragments CTL

and LTL are prominent tools to specify properties of discrete event systems.

A variant of CTL∗ is the logic pCTL∗ [12] in which the universal and existential path

quantifiers are replaced by probabilistic path quantifiers which set upper or lower bounds on

the probability of a path property in a Markov chain. For example the formula P≥ 1
2
(FGa)

specify that with probability at least 1
2 eventually all the visited states are labelled with a.

To our knowledge, the satisfiability problem for this logic is an open problem.

However, for the qualitative fragment of pCTL∗, where only two probabilistic quantifiers

P>0 and P=1 are available, the satisfiability is decidable [7]. In a variant of pCTL∗ called

pECTL the path subformula are replaced by deterministic Büchi automaton, and the satis-

fiability of the qualitative fragment is 2-exptime complete [7], the same complexity as for

CTL∗ [21].

Remark that neither pCTL∗ nor pECTL includes the path operators ∀ and ∃, thus these

two logics are incomparable in expressivity with CTL∗. For example, on the alphabet {a, b},

the CTL∗ formula φ1 = ∀FG¬b, and the pCTL∗ formula φ2 = P=1(FG¬b) specify, that

every branch, respectively almost-every branch, of the model has finitely many b. Neither

φ1 can be expressed in pCTL∗ nor φ2 can be expressed in CTL∗.

In this paper, we consider the logic CTL∗[∃, ∀,P>0,P=1] which is an extension of both

CTL∗ and qualitative pCTL∗and establish several properties of this logic.

The satisfiability by an arbitrary Σ-labelled Markov chain reduces to the satisfiability

by (Σ ∪ {◦})-labelled a binary tree with ◦ a fresh letter (Theorem 25).

The satisfiability of CTL∗[∃, ∀,P>0,P=1] reduces to the emptiness of alternating nonzero

automata with finite choice for Adam thus it is decidable in 3-nexptime∩co-3-nexptime.



Paulin Fournier and Hugo Gimbert XX:3

In the variant ECTL[∃, ∀,P>0,P=1], where path formula are deterministic Büchi auto-

mata, this reduction gives a 2-nexptime∩ co-2-nexptime complexity and for the frag-

ment CTL[∃, ∀,P>0,P=1] the complexity is nexptime∩ co-nexptime (Theorem 24).

For the fragments CTL∗[P>0,P=1], ECTL[P>0,P=1] and CTL[P>0,P=1] (i.e. qualitative

pCTL∗, pECTL and pCTL respectively), the F∀ acceptance condition of the automaton

is a Büchi condition and we retrieve the optimal complexity bounds of [7, 6], i.e. 3-

exptime, 2-exptime and exptime, respectively.

Organization of the paper.

Section 2 introduces alternating nonzero automata, an example is given in Section 3. Sec-

tion 4 focuses on non-deterministic automata, and provide an optimal algorithm to decide

emptiness when the F∀ condition is Büchi. In Section 5 we prove that emptiness is decid-

able (23) when Adam has limited choice. Section 6 presents our complexity results for the

satisfiability of CTL∗[∃, ∀,P>0,P=1] and its variants and fragments.

2 Alternating nonzero automata

An alternating nonzero automaton on a finite alphabet Σ is a finite-state machine processing

binary trees, equipped with a game semantics: every tree is either accepted or rejected by

the machine depending on who wins the acceptance game on the tree.

Trees.

A Σ-labelled binary tree is a function t : {0, 1}∗ → Σ. An element n ∈ {0, 1}∗ is called a

node of the tree and has exactly two sons n0 and n1. We use the usual notions of ancestors

and descendants. A node n′ is (strictly) below n if n is a (strict) prefix of n′. A path in the

tree is a finite or infinite sequence of nodes n0, n1, . . . such that for every k the node nk+1 is

a son of the node nk.

A branch b is an element of {0, 1}ω. If a node n is a prefix of b we say that n belongs to

b or that b visits n. The set of branches is equipped with the uniform probability measure,

denoted µ, corresponding to an infinite random walk taking at each step either direction 0

or 1 with equal probability 1
2 .

Automata.

An alternating nonzero automaton on alphabet Σ is presented as a tuple

A = (Q, q0, QE, QA,→, F∀, F1, F>0) where:

Q is a finite set of states, equipped with a total order ≤, containing the initial state q0.

(QE , QA) is a partition of Q into Eve and Adam states.

→ is the set of transitions, there are two types of transitions:

local transitions are tuples (q, a, q′) with q, q′ ∈ Q and a ∈ Σ, denoted q →a q
′.

split transitions are tuples (q, a, q0, q1) ∈ Q× Σ × Q2, denoted q →a (q0, q1).

F∀, F1 and F>0 are subsets of Q defining the acceptance condition.

The input of such an automaton is an infinite binary tree t : {0, 1}∗ → Σ. The source

(resp. the target) of a local transition q →a q
′ is q (resp q′). The source (resp. the targets)

of a split transition q →a (q0, q1) is q (resp q0 and q1). A state is said to be controlled by Eve
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or Adam whether it belongs to QE or QA. The controller of a transition is the controller of

its source state. We always assume that

(HC) the automaton is complete: for every state q and letter a there is at least one transition

with source q on a.

The (HC) condition makes it easier to define the game semantics of the automaton.

Game semantics.

The acceptance of an input binary tree by the automaton is defined by mean of a stochastic

game between Eve and Adam called the acceptance game.

The game of acceptance of a binary tree t : {0, 1}∗ → Σ by A is a two-player stochastic

game with perfect information played by two strategic players Eve and Adam. The vertices

of the game are all pairs (n, q) where n ∈ {0, 1}∗ is a node of the infinite binary tree and q

is a state of the automaton. The game starts in the initial vertex (ǫ, q0).

Each vertex (n, q) is controlled by either Eve or Adam depending whether q ∈ QE
or q ∈ QA. The controller of the current state chooses any transition with source q and

letter t(n). Intuitively, depending whether the transition is a local or a split transition, the

automaton stays on the current node n or move with equal probability 1
2 to either node n0

or n1. If the transition is a local transition q →t(n) q
′, the new vertex of the game is (n, q′).

If the transition is a split transition q →t(n) (r0, r1) then the new vertex is chosen randomly

with equal probability 1
2 between vertices (n0, r0) or (n1, r1).

A play is a finite or infinite sequence of vertices π = (n0, q0)(n1, q1) . . .. We denote

first(π) = (n0, q0) and last(π) = (nk, qn) (for finite plays).

A strategy for Eve associates with every finite play whose last vertex is controlled by

Eve a transition with source qn and letter t(nk) (such a transition always exists since the

automaton is complete). Strategies for Adam are defined in a symmetric way. Strategies of

Eve are usually denoted σ while strategies for Adam are denoted τ .

Measuring probabilities.

Once both players Eve and Adam have chosen some strategies σ and τ , this defines naturally

a non-homogenous Markov chain whose states are the vertices of the game. According to

Tulcea theorem, if we equip the set of plays with the σ-field generated by cylinders, then

there is a unique probability measure Pσ,τ such that after a play π = (n0, q0) . . . (nk, qk), if

δ(π) denotes the transition chosen by Eve or Adam after π (depending whether qk ∈ QE or

qk ∈ QA), the probability to go to vertex (nk+1, qk+1) is:





1 if δ(π) is the local transition qk →t(nk) qk+1 ,

1
2 if δ(π) is the split transition qk →t(nk) (r0, r1) and{

nk+1 = nk0 and qk+1 = r0 ; or

nk+1 = nk1 and qk+1 = r1 .

0 otherwise .

This way we obtain a probability measure Pσ,τ on the set of infinite plays.

Consistency and reachability.

If a finite play π is the prefix of another finite or infinite play π′ we say that π′ is a continu-

ation of π. A finite π play is consistent with a strategy σ or, more simply, is a σ-play if there
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exists a strategy τ such that π may occur in the non-homogenous Markov chain induced by

σ and τ . In this case, the number N of split transitions which occurred in π is exactly the

depth of the node of last(π) and

P
σ,τ ({ continuations of π }) = 2−N .

A vertex w is σ-reachable if there exists a finite σ-play from the initial vertex to w. An

infinite play is consistent with σ if all its prefixes are.

Bounded vs. unbounded plays.

There are two kinds of infinite plays: bounded plays are plays whose sequence of nodes

is ultimately constant, or equivalently which ultimately use only local transitions while

unbounded plays use infinitely many split transitions.

Bounded plays consistent with σ and τ are the atoms of Pσ,τ : a play π is bounded and

consistent with σ and τ iff Pσ,τ ({π}) > 0.

In this paper we will focus on subclasses of automata whose structural restrictions forbids

the existence of bounded plays (see the (NLL) hypothesis below).

So in practice, every play π = (n0, q0)(n1, q1) . . . we consider will visit a sequence of

nodes n0, n1, n2, . . . which enumerates all finite prefixes of an infinite branch b ∈ {0, 1}ω of

the binary tree, in a weakly increasing order: for every index i either ni+1 = ni (the player

controlling (ni, qi) played a local transition) or ni+1 = nid for some d ∈ {0, 1} (the player

controlling (ni, qi) played a split transition and the play followed direction d).

Winning strategies.

Whether Eve wins the game is defined as follows. The limsup of an infinite play (n0, q0)(n1, q1) . . .

is lim supi qi i.e. the largest automaton state visited infinitely often. An infinite play π′ is a

positive continuation of π if all states of π′ visited after π belongs to F>0.

Eve wins with σ against τ if the three following conditions are satisfied.

Sure winning. Every play consistent with σ and τ has limsup in F∀.

Almost-sure winning. Almost-every play consistent with σ and τ has limsup in F1.

Positive winning. For every finite play π consistent with σ and τ whose last state

belongs to F>0, the set of positive continuations of π has nonzero probability.

We say that Eve wins the acceptance game if she has a winning strategy i.e. a strategy

which wins the acceptance game against any strategy of Adam.

Büchi conditions.

A Büchi condition is a set of states R ⊆ Q which is upper-closed with respect to ≤ . Then

a play has limsup in R iff it visits R infinitely often.

Language of an automaton.

◮ Definition 1 (Acception and language). A binary tree is accepted by the automaton if Eve

has a winning strategy in the acceptance game. The language of the automaton is the set

of its accepted trees.

We are interested in the following decision problem:

Emptiness problem: Given an automaton, decide whether its language is empty or

not.
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The use of game semantics makes the following closure properties trivial.

◮ Lemma 2 (Closure properties). The class of languages recognized by alternating nonzero

automata is closed under union and intersection.

Normalization.

We assume all automata to be normalized in the sense where they satisfy:

(N1) every split transition whose source is in F>0 has at least one successor in F>0; and

(N2) every local transition whose source is in F>0 has its target in F>0 as well.

We can normalize an arbitrary automaton by removing all transitions violating (N1)

and (N2). This will not change the language because such transitions are never used by

positively winning strategies of Eve. This normalization could lead to a violation of the

completeness hypothesis, (HC). In this case we can also delete the corresponding states

without modifying the language of the automaton.

If one would drop (HC) then the game graph may have dead-ends and the rules of

the game would have to be extended to handle this case, typically the player controlling the

state in the dead-end loses the game. This extension does not bring any extra expressiveness

to our model of automaton, we can always make an automaton complete by adding local

transitions leading to losing absorbing states.

Moreover, we assume:

(N3) F1 ⊆ F∀ .

This is w.l.o.g. since replacing F1 with F1 ∩ F∀ does not modify the language of the auto-

maton.

3 An example: the language of PUCE trees

A tree t on the alphabet {a, b} is positively ultimately constant everywhere (PUCE for short)

if for every node n,

i) the set of branches visiting n and with finitely many a-nodes has > 0 probability; and

ii) the set of branches visiting n and with finitely many b-nodes has > 0 probability.

No regular tree is PUCE.

There are two cases. If the regular tree has a node n which is the root of a subtree labelled

with only a or b then clearly the tree is not PUCE. Otherwise, by a standard pumping

argument, every node labelled a (resp. b) has a descendant labelled b (resp. a) at some

depth ≤ |S|, where S is the set of states of the regular tree. But in this second case from

every node n there is probability at least 1
2|S| to reach a descendant with a different label,

thus almost-every branch of the regular tree has infinitely many a and b, and the tree is not

PUCE either.

There exists a PUCE tree.

However it is possible to build a non-regular tree t whose every node satisfies both i) and

ii). For that, we combine together two partial non-regular trees. Let H ⊆ {0, 1}∗ be a

subset of nodes such that a) the set of branches which visit no node in H has probability
1
2 , b) no node of H is a strict ancestor of another node in H (H is a cut), c) every node in

{0, 1}∗ is either a descendant or an ancestor of a node in H . For example we can choose
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H = {00, 100, 0100, 11000, 011000, 1010000, 11100000,

010100000, 011100000, . . .}.

To obtain t, we combine two partial trees ta and tb whose domain is {0, 1}∗ \H and ta
is fully labeled with a while tb is fully labelled with b. Since H is a cut, the nodes in H are

exactly the leaves of ta and tb. To obtain t, we plug a copy of tb on every leaf of ta and

a copy of ta on every leaf of tb. Then from every node, according to c) there is non-zero

probability to enter either ta or tb and according to a) there is non-zero probability to stay

in there forever.

An automaton recognizing PUCE trees.

We can design one automaton for each of the two conditions and combine them together

with an extra state controlled by Adam (cf proof of Lemma 2).

We provide an alternating nonzero automaton checking condition ii), the automaton for

condition i) is symmetric. The state space is:

Q = {s < w < g < ♯} .

Intuitively, Adam uses states s to search for a node n from which condition i) does not

hold. Once on node n, Adam switches to state w and challenges Eve to find a path to an

a-node n′ which is the root of an a-labelled subtree Tn of > 0 probability. For that Eve

navigates the tree in state w to node n′, switches to state g on node n′, stays in g as long

as the play stays in Tn and switches definitively to ♯ whenever leaving Tn.

Formally, the only state controlled by Adam is s, i.e. QA = {s}, from which Adam

can choose, independently of the current letter, between two split transitions s → (s, ♯) and

s → (♯, s) and a local transition s → w. The state ♯ is absorbing. From state w, Eve can

guess the path to n′ using the split transitions:

w → (♯, w) w → (w, ♯) .

Once n′ is reached Eve can switch to state g with a local transition w → g and, whenever

the current node is an a-node, she can choose among three split transitions:

g →a (g, g) g →a (g, ♯) g →a (♯, g) .

The acceptance conditions are:

F∀ = F1 = Q \ {w} F>0 = {g} ,

so that from w Eve is forced to eventually switch to g (otherwise lim sup = w 6∈ F∀) and

the a-subtree labelled by g must have positive probability for Eve to win. Adam may never

exit the pathfinding state s, in which case Eve wins.

4 Non-deterministic nonzero automata

Non-deterministic zero automata were introduced in [3], followed by a variant of equivalent

expressiveness, non-deterministic nonzero automata [5, Lemma 5]. In those automata, Adam

is a dummy player, i.e. QA = ∅ and moreover all transitions are split-transitions.

◮ Theorem 3. The emptiness problem for non-deterministic nonzero automata is in np∩conp.

If F∀ is a Büchi condition then emptiness can be decided in ptime.
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The first statement is established in [4, Theorem 3]. The second statement is proved in

the appendix. The proof idea is as follows. Assume the alphabet to be a singleton, which

is w.l.o.g. for non-deterministic automata. The existence of a winning strategy for Eve

can be witnessed by a subset W ⊆ Q which contains the initial state and two positional

winning strategies σ1, σ2 : W → W ×W . Strategy σ1 should be almost-surely and positively

winning while strategy σ2 should be surely winning. These two strategies can be combined

into a (non-positional) strategy for Eve which satisfies the three objectives, thus witnesses

non-emptiness of the automaton.

5 Deciding emptiness of automata with limited choice for Adam

In this section, we introduce the class of automata with limited choice for Adam, and show

that emptiness of these automata is decidable.

For that we rely on a characterization of positional strategies of Eve which satisfy the

surely and almost-surely winning conditions (Lemma 12, Lemma 13) and the positively

winning condition (Lemma 18). Then we represent the positional strategies of Eve as la-

belled trees, called strategic trees (Definition 19). Finally we show that the language of

strategic trees whose corresponding positional strategy is winning can be recognized by a

non-deterministic nonzero automaton (Theorem 20).

5.1 Automata with limited choice for Adam

In the rest of the paper, we focus on the class of automata with limited choice for Adam. Our

motivation is that these automata capture the logic we are interested in and their acceptance

games have good properties. In particular the existence of positional winning strategies for

Eve is one of the key properties used to decide emptiness.

To define the class of automata with limited choice for Adam, we rely on the transition

graph of the automaton.

◮ Definition 4 (Equivalent and transient states). The transitions of the automaton define

a directed graph called the transition graph and denoted G→. The vertices of G→ are Q

and the edges are labelled with Σ, those are all triplets (q, a, r) such that q →a r is a local

transition or such that q →a (r, q′) or q →a (q′, r) is a split transition for some state q′.

Two states q, r are equivalent, denoted q ≡ r, if they are in the same connected component

of G→.

A state is transient if it does not belong to any connected component of G→, or equival-

ently if there is no cycle on this state in G→.

◮ Definition 5. An automaton has limited choice for Adam if for every state q controlled

by Adam,

all transitions with source q are local transitions; and

for every letter a, at most one of the (local) transitions q →a q
′ satisfies q ≡ q′. Such a

transition is called a canonical transition.

In a limited choice for Adam automaton, the only freedom of choice of Adam, apart

from playing canonical transitions, is deciding to go to a lower connected component of the

transition graph. This non-canonical decision can be done only finitely many times, hence

the name limited choice.

In the classical (non-probabilistic) theory of alternating automata, similar notions of

limited alternation have already been considered, for example hesitant alternating auto-

mata [14].
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◮ Definition 6 (Canonical plays and transient vertices). A canonical play is a play in which

Adam only plays canonical transitions. A vertex (n, q) of an acceptance game is transient

if it has no immediate successor (n′, q′) (by a local or a split transition) such that q ≡ q′.

In the acceptance game of an automaton with limited choice for Adam, every infinite

play visit finitely many transient vertices and has a canonical suffix.

The no local loop assumption.

We assume that every automata with limited choice for Adam also satisfies:

(NLL) the automaton has no local loop: there is no letter a and sequence of local

transitions q0 →a q1 →a · · · →a qi such that q0 = qi.

Under the hypothesis (NLL), for every infinite play π there is a unique branch of the binary

tree b ∈ {0, 1}ω whose every prefix is visited by π. We say that π projects to b.

Assuming (NLL) does not reduce expressiveness.

◮ Lemma 7. Given an automaton A with limited choice for Adam and set of states Q

one can effectively construct another automaton A′ with limited choice for Adam satisfying

(NLL) and recognizing the same language.

The interest of the (NLL) assumption is to make the acceptance game acyclic, which in

turn guarantees positional determinacy for Eve, as shown in the next section.

The transformation performed in the proof of Lemma 7 creates an exponential blowup

of the state space of the automaton, which is bad for complexity. We could do without this

blowup by dropping the (NLL) assumption, in which case Eve might need one extra bit of

memory in order to implement local loops with priority in F∀ \ F1.

However, we prefer sticking to the (NLL) assumption, which makes the alternating

automata and their accepting games simpler and is anyway not restrictive when it comes

to translating temporal logics into alternating automata: the natural translation produces

automata with no local loop.

Another interest of the (NLL) assumption is:

◮ Lemma 8. Assume the automaton has the (NLL) property. Let µ be the uniform measure

on the set of branches of the infinite binary tree, equipped with the usual Borel σ-field. Let

t be an input tree, σ and τ be two strategies in the corresponding acceptance game and X

be a measurable set of plays consistent with σ and τ . Let Y ⊆ {0, 1}ω be the set of infinite

branches that X projects to. If X is measurable then Y is measurable and

P
σ,τ (X) = µ(Y ) .

5.2 Positional determinacy of the acceptance game

A crucial property of automata with limited choice for Adam is that their acceptance games

are positionally determined for Eve.

◮ Definition 9 (Positional strategies). A strategy σ of Eve in an acceptance game is positional

if for every finite plays π, π′ whose last vertices are controlled by Eve and coincide, i.e.

last(π) = last(π′) ∈ {0, 1}∗ ×QE , then σ(π) = σ(π′).

◮ Lemma 10 (Positional determinacy for Eve). Every acceptance game of an automaton with

limited choice for Adam is positionally determined for Eve: if Eve wins then she has a

positional winning strategy.
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Sketch of proof. Since the (NLL) hypothesis is assumed, the underlying acceptance game is

acyclic. The construction of a positional winning strategy σ′ from a (non-positional) winning

strategy σ relies on the selection of a canonical way of reaching a σ-reachable vertex w with

a σ-play π(w) and setting σ′(w) = σ(π(w)). ◭

5.3 On winning positional strategies of Eve

In the next section we show how to use use automata-based techniques to decide the existence

of a (positional) winning strategy for Eve. These techniques rely on characterizing whether

a positional strategy of Eve is surely, almost-surely and positively winning.

5.3.1 Surely and almost-surely winning conditions

We characterize (almost-)surely winning strategies.

◮ Definition 11 (q-branches). Let q ∈ Q and σ a strategy. An infinite branch of the binary

tree is a q-branch in σ if at least one σ-play which projects to this branch has limsup q.

◮ Lemma 12. Assume the automaton has limited choice for Adam. Let σ be a positional

strategy for Eve. Then σ is surely winning iff for every q ∈ (Q \F∀) there is no q-branch in

σ. Moreover σ is almost-surely winning iff for every q ∈ (Q \ F1) the set of q-branches in σ

has measure 0.

Proof. We denote µ the uniform probability measure on {0, 1}ω. For every state q, Yq
denotes the set of q-branches in σ.

We show the first statement about sure winning. For every σ-play π there exists a

strategy τ of Adam such that π is consistent both with σ and τ . Thus there is q ∈ (Q \F∀)

such that Yq 6= ∅ iff there is a strategy τ of Adam and a play consistent with σ and τ with

limsup in Q \ F∀, iff σ is not accepting.

We show that the condition ∀q ∈ Q \F1, µ(Yq) = 0 is sufficient for σ to be almost-surely

winning. Let τ be a strategy of Adam and Y ′ the set of branches of plays consistent with

σ and τ which have limsup in Q \ F1. Then Y ′ ⊆
⋃
q∈Q\F1

Yq. According to Lemma 8,

Pσ,τ (lim sup 6∈ F1) = µ(Y ′) ≤ µ
(⋃

q∈Q\F1
Yq

)
= 0. Thus σ is almost-surely winning.

We show that the condition µ(Yq) > 0 for some q ∈ Q \ F1 is sufficient for σ not to

be almost-surely winning. For every infinite branch b ∈ Yq choose one σ-play πb with

lim sup ∈ Q \ F1. Since the automaton has limited choice for Adam, a suffix of πb is

canonical, let wb be the first vertex of this suffix. For every σ-reachable vertex w denote

Zw = {b ∈ Yq | wb = w}. Since Yq is the countable union of the sets (Zw)w σ-reachable there is

at least one σ-reachable vertex w such that µ(Zw) > 0. Let πw be a finite σ-play to w. Let

τw a strategy for Adam which enforces πw with positive probability and plays canonically in

every continuation of πw whenever possible. We show that Pσ,τw(lim sup 6∈ F1) > 0. Let Xw

be the set of continuations of πw consistent with σ and τw whose branch belongs to Zw. An

easy induction shows that every play π′ ∈ Xw with branch b coincide with πb after wb (σ is

positional and τw plays only canonical moves). Thus every play in Xw has lim sup ∈ Q \F1.

Then Pσ,τw (lim sup 6∈ F1) ≥ Pσ,τw(Xw) = µ(Zw) > 0, according to Lemma 8. ◭

Whether a branch is a q-branch can be checked by computing a system of σ-indexes.

Intuitively, all σ-reachable vertices receives a finite index, such that along a σ-play the

index does not change except when Adam performs a non-canonical move or when two plays

merge on the same vertex, in which case the smallest index is kept. After a non-canonical
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move of Adam, a new play may start in which case it receives a fresh index not used yet

in the current neither in the parent node. For this less than 2|Q| indices are required. The

important properties of σ-indexes are:

◮ Lemma 13 (Characterization of q-branches). Every positional strategy σ of Eve can be

associated with a function

indexσ : {0, 1}∗ ×Q → {0, 1, . . . , 2|Q|,∞}Q

with the following properties.

First, indexσ can be computed on-the-fly along a branch. For every node n denote σn
the restriction of σ on {n} ×Q. Then indexσ(ǫ) only depends on σǫ. And for every node n

and d ∈ {0, 1}, indexσ(nd) only depends on indexσ(n) and σnd.

Second, a vertex (n, q) is reachable from the initial vertex by a σ-play iff indexσ(n)(q) is

finite.

Third, let b ∈ {0, 1}ω be an infinite branch of the binary tree, visiting successively the

nodes n0, n1, n2, . . .. Denote R∞(b) the set of pairs (k, q) ∈ {0, . . . , 2|Q|} ×Q such that:

k ∈ indexσ(ni)(Q) for every i ∈ N except finitely many;

and k = indexσ(ni)(q) for infinitely many i ∈ N.

Then for every state q, the branch b is a q-branch if and only if there exists k ∈

{0, 1, . . . , 2|Q|} such that q = max{r ∈ Q | (k, r) ∈ R∞(b)}.

5.3.2 Checking the positively winning condition

In order to check with a non-deterministic automaton whether a positional strategy is pos-

itively winning, we rely on the notion of positive witnesses. The point of positive witnesses

is to turn the verification of up to |Q| positively-winning conditions - depending on the

decisions of Adam, there may be up to |Q| different σ-reachable vertices on a given node -

into a single one. This single condition can then be checked by a non-deterministic nonzero

automaton equipped with a single positively-winning condition.

Everywhere thick subtrees.

We need the notion of everywhere thick subtrees. We measure sets of infinite branches with

the uniform probability measure µ on {0, 1}ω.

◮ Definition 14 (Subtree). A set of nodes T ⊆ {0, 1}∗ is a subtree if it contains a node r,

called the root of T , such that every node n ∈ T is a descendant of r, T contains all nodes

on the path from r to n.

◮ Definition 15 (Everywhere thick sets of nodes). For every set T ⊆ {0, 1}∗ of nodes denote
~T the set of branches in {0, 1}ω whose every prefix belongs to T . Then T is everywhere

thick if starting from every node n ∈ T there is nonzero probability to stay in T , i.e. if

µ
(
~T ∩ n{0, 1}ω

)
> 0.

Everywhere thick subtrees are almost everywhere.

◮ Lemma 16. Let P ⊆ {0, 1}ω be a measurable set of infinite branches. Assume µ(P ) > 0.

Then there exists an everywhere thick subtree T , with root ǫ such that ~T ⊆ P .

The proof relies on the inner-regularity of µ, so that P can be assumed to be a closed

set, i.e. a subtree from which we can prune leaves whose subtree has probability 0.
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Positive witnesses.

Positive witnesses can be used to check whether a strategy is positively winning:

◮ Definition 17 (Positive plays and witnesses). Let t be a Σ-labelled binary tree and σ a

positional strategy of Eve in the acceptance game of t. Let Z be the set of σ-reachable

vertices whose state is in F>0.

A play is positive if all vertices it visits belong to {0, 1}∗ × F>0. A positive witness for

σ is a pair (W,E) where:

W ⊆ Z are the active vertices,

E ⊆ {0, 1}∗ × {0, 1} is the set of positive edges,

and they have the following properties.

a) From every vertex z ∈ Z there is a positive and canonical finite σ-play starting in z

which reaches a vertex in W or a transient vertex.

b) Let z = (n, q) ∈ W . Then (n, 0) ∈ E or (n, 1) ∈ E, or both. If z → z′ is a local transition

then z′ ∈ W as well whenever (q ∈ QE and z → z′ is consistent with σ) or (q ∈ QA and

z → z′ is canonical). If z is controlled by Eve and σ(z) is a split transition q → (q0, q1)

then ((n, 0) ∈ E =⇒ (n0, q0) ∈ W ) and ((n, 1) ∈ E =⇒ (n1, q1) ∈ W ).

c) The set of nodes {nd ∈ {0, 1}∗ | (n, d) ∈ E} is everywhere thick.

◮ Lemma 18 (Characterization of positively winning strategies). Assume the automaton has

limited choice for Adam. A positional strategy σ for Eve is positively winning iff there exists

a positive witness for σ.

5.4 Deciding emptiness

A Σ-labelled binary tree t and a positional strategy σ in the corresponding acceptance game

generate a tree

Tt,σ : {0, 1}∗ → (Q ∪Q×Q)QE .

For every vertex (n, q) controlled by Eve, if σ(n, q) is a local transition q →t(n) q
′ then

Tt,σ(n)(q) = q′ and if σ(n, q) is a split transition q →t(n) (q0, q1) then Tt,σ(n)(q) = (q0, q1).

◮ Definition 19 (Strategic tree). A tree T : {0, 1}∗ → (Q ∪ Q × Q)QE is strategic if there

exists a tree t : {0, 1}∗ → Σ and a positional strategy σ for Eve such that T = Tt,σ .

We are interested in the strategic trees associated to winning strategies. The rest of the

section is dedicated to the proof of the following theorem.

◮ Theorem 20. Fix an alternating nonzero automata with limited choice for Adam. The

language of strategic trees Tt,σ such that σ wins the acceptance game of t can be recognized

by a non-deterministic nonzero automaton of size exponential in |Q|. If F∀ = Q in the

alternating automaton, then the sure condition of the non-deterministic automaton is Büchi.

Proof. The characterizations of surely, almost-surely and positively winning strategies given

in lemmas 12, 13 and 18 can be merged as follows.

◮ Corollary 21. Let σ be a positional strategy σ for Eve. For every branch b denote

M(b) = {max{q | (k, q) ∈ R∞(b)} | k ∈ 0 . . . 2|Q|} .

Then σ is winning if and only if
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for every branch b, M(b) ⊆ F∀;

and for almost-every branch b, M(b) ⊆ F1;

and there exists a positive witness for σ.

First of all, the non-deterministic automaton B checks whether the input tree is a stra-

tegic tree, for that it guesses on the fly the input tree t : {0, 1}∗ → Σ by guessing on node n

the value of t(n) and checking that for every q ∈ QE, q →t(n) T (n)(q) is a transition of the

automaton.

On top of that B checks the three conditions of Corollary 21. For the first two conditions,

it computes (asymptotically) along every branch b the value of R∞(b) and thus of M(b). For

that the automaton relies on a Last Appearance Record memory (LAR) [11] whose essential

properties are:

◮ Lemma 22 (LAR memory [11]). Let C be a finite set of symbols. There exists a determin-

istic automaton on C called the LAR memory on C with the following properties. First, the

set of states, denoted Q, has size ≤ |C||C|+1 and is totally ordered. Second, for every u ∈ Cω

denote L∞(u) the set of letters seen infinitely often in u and LAR(u) the largest state seen

infinitely often during the computation on u. Then L∞(u) can be inferred from LAR(u),

precisely there is a mapping φ : Q → 2C such that: ∀u ∈ Cω, L∞(u) = φ(LAR(u)) .

In order to compute R∞(b) along a branch b, the non-deterministic automaton B com-

putes deterministically on the fly the σ-index of the current node n, as defined in Lemma 13,

and implements a LAR memory on the alphabet

C = {0, . . . , 2|Q|} × (Q ∪ {⊥}) .

When visiting node n, B injects into the LAR memory all pairs (indexσ(q), q) such that

q ∈ Q and indexσ(q) 6= ∞ plus all pairs (k,⊥) such that k 6∈ indexσ(n)(Q). For every

branch b, the set R∞(b) is equal to all pairs (k, q) seen infinitely often such that (k,⊥) is

seen only finitely often. Thus, the LAR memory can be used to check the first two conditions

of Corollary 21, more details are given at the end of the proof.

For now, we describe how the non-deterministic automaton B checks whether there exists

a positive witness (W,E) (Definition 17). Denote by Z the set of σ-reachable vertices whose

state is in F>0. On node n the automaton guesses (resp. computes) the vertices of W (resp.

Z) of the current node and guesses the elements of E by storing three sets of states:

Wn = {q ∈ Q | (n, q) ∈ W}

Zn = {q ∈ F>0 | indexσ(n, q) < ∞}

En = {b ∈ {0, 1} | (n, b) ∈ E} .

Then B checks all three conditions a), b) and c) in the definition of a positive witness as

follows.

B checks condition a) in the definition of a positive witness by guessing on the fly for

every vertex in Z a canonical positive σ-play to a vertex which is either transient or in W ,

in which case we say the canonical positive play terminates.

For that B maintains an ordered list Pn of states. On the root node, Pǫ is Zǫ \Wǫ. When

the automaton performs a transition, it guesses for each state q in Pn and direction bq a

successor sq, such that (nbq, sq) can be reached from (q, n) by a positive canonical σ-play.

In direction b, every state q for which bq 6= b is removed from the list, while every state q for

which bq = b is replaced by the corresponding sq. Then all states in Znb are added at the
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end of the list. In case of duplicates copies of the same state in the list, only the first copy

is kept. In case the head of the list is in Wnb or is transient, a Büchi condition is triggered

and the head is moved at the back of the list. Finally all entries of the list which are in Wnb

are removed.

This way, condition a) holds iff the Büchi condition is triggered infinitely often on every

branch. We discuss below how to integrate this Büchi condition in the sure accepting

condition of the automaton.

B checks condition b) in the definition of a positive witness by entering an absorbing

error state as soon as

1) there is some local transition (n, q) →t(n) (n, q′) such that q ∈ Wn and (q ∈ QE and

z → z′ is consistent with σ) or (q ∈ QA and z → z′ is canonical); or

2) there is some q ∈ Wn controlled by Eve and b ∈ En such that σ(n, q) is a split transition

q →t(n) (q0, q1) but qb 6∈ Wnb.

The guessed sets Wn are bound to satisfy condition 1) and condition 2) is checked by storing

a subset of Q.

B checks condition c) in the definition of a positive witness by triggering the positive

acceptance condition whenever it moves in direction b on a node n such that b ∈ En.

The sure and almost-sure acceptance condition are defined as follows. The Büchi condi-

tion necessary for checking condition a) in the definition of a positive witness is integrated

in the LAR memory, for that we add to the alphabet C of the LAR memory a new symbol

⊤ which is injected in the LAR memory whenever the Büchi condition is triggered. The

order between states of B is induced by the order of the LAR memory.

This way, according to Lemma 22, the largest state seen infinitely often along a branch

b reveals whether ⊤ was seen infinitely often, and reveals the value of R∞(b) (the set of

pairs (k, q) seen infinitely often such that (k,⊥) was seen finitely often) hence of M(b) as

well. The state is surely (resp. almost-surely) accepting iff ⊤ was seen infinitely often and

M(b) ⊆ F∀ (resp. M(b) ⊆ F1). In case F∀ = Q in the alternating automaton then the sure

condition boils down to the Büchi condition.

According to Corollary 21, and by construction of B, the computation of B is accepting

iff the input is a strategic tree whose corresponding strategy of Eve is winning. ◭

◮ Theorem 23. Emptiness of alternating nonzero automata with limited choice for Adam

is decidable in nexptime∩co-nexptime. If F∀ = Q, emptiness can be decided in exptime.

Proof. Emptiness of an alternating automaton reduces to the emptiness of a non-deterministic

automaton of exponential size. This non-deterministic automaton guesses on-the-fly a tree

{0, 1}∗ → (Q ∪ Q × Q)QE and checks it is a winning strategic tree, using the automaton

given by Theorem 20. In case the alternating automaton is F∀-trivial, the sure condition of

the non-deterministic automaton is Büchi (Theorem 20). We conclude with Theorem 3. ◭

6 Satisfiability of CTL∗[∃, ∀,P>0,P=1]

Our result on alternating nonzero automata can be applied to decide the satisfiability of

the logic CTL∗[∃, ∀,P>0,P=1], a generalization of CTL* which integrates both deterministic

and probabilistic state quantifiers.
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Markov chains.

The models of CTL∗[∃, ∀,P>0,P=1] formulas are Markov chains. A Markov chain with

alphabet Σ is a tuple M = (S, p, t) where S is the (countable) set of states, p : S → ∆(S)

are the transition probabilities and t : S → Σ is the labelling function.

For every state s ∈ S, there is a unique probability measure denoted PM,s on Sω such

that PM,s(sS
ω) = 1 and for every sequence s0 · · · snsn+1 ∈ S∗, PM,s(s0 · · · snsn+1S

ω) =

p(sn, sn+1)·PM,s(s0s1 · · · snSω). When M is clear from the context this probability measure

is simply denoted Ps. A path in M is a finite or infinite sequence of states s0s1 · · · such that

∀n ∈ N, p(sn, sn+1) > 0 .. We denote PathM(s0) the set of such paths.

A binary tree t : {0, 1}∗ → Σ is seen as a specific type of Markov chain, where from every

node n ∈ {0, 1}∗ there is equal probability 1
2 to perform transitions to n0 or n1.

Syntax.

For a fixed alphabet Σ, there are two kinds of formula: state formula (typically denoted ψ)

and path formula (denoted φ), generated by the following grammar:

ψ ::=⊤ | ⊥ | a ∈ Σ | ψ ∧ ψ | ψ ∨ ψ | ¬ψ

| ∃φ | ∀φ | P>0(φ) | P=1(φ)

φ ::=ψ | ¬φ | φ ∧ φ | φ ∨ φ | Xφ | φUφ | Gφ .

Semantics.

Let M = (S, t, p) a Markov chain. We define simultaneously and inductively the satisfaction

M, s |= ψ of a state formula ψ by a state s ∈ S and the satisfaction M, w |= φ of a path

formula φ by a path w ∈ PathM. When M is clear from the context, we simply write s |= ψ

and w |= φ.

If a state formula is produced by one of the rules ⊤ | ⊥ | p | ψ ∧ ψ | ψ ∨ ψ | ¬ψ, its

satisfaction is defined as usual. If φ is a path formula and ξ ∈ {∃φ, ∀φ,P>0(φ),P=1(φ)} then

s |= ∃φ if ∃w ∈ PathM(s), w |= φ

s |= ∀φ if ∀w ∈ PathM(s), w |= φ

s |= P∼b(φ) if PM,s(w ∈ PathM(s) | w |= φ) ∼ b .

The satisfaction of a path formula φ by an infinite path w = s0s1 · · · ∈ PathM(s0) is

defined as follows. If φ is produced by one of the rules ¬φ | φ∧φ | φ∨φ then its satisfaction

is defined as usual. If φ is a state formula (rule φ := ψ) then w |= ψ if s0 |= ψ . Otherwise,

φ ∈ {Xφ′, Gφ′, φ1Uφ2} where φ′, φ1 and φ2 are path formulas. For every integer k, we

denote w[k] the path sksk+1 · · · ∈ PathM(sk). Then:

w |= Xφ′ f w[1] |= φ′

w |= Gφ′ if ∀i ∈ N, w[i] |= φ′

w |= φ1Uφ2 if ∃n ∈ N, (∀0 ≤ i < n,w[i] |= φ1 ∧ w[n] |= φ2).

The Markov chain given in Figure 1 satisfies the formula (∀(G∃(⊤Ua))) ∧ (P>0(G¬a)).

Variants and fragments.

A formula of CTL∗[∃, ∀,P>0,P=1] belongs to the fragment CTL if in each of its state sub-

formula ψ of type ∃φ | ∀φ | P>0(φ) | P=1(φ) the path formula φ has type Xψ′ | ψ′Uψ′′ | Gψ′

where ψ′ and ψ′′ are state subformulas.
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Figure 1 A model of (∀(G∃(⊤Ua))) ∧ (P>0(G¬a))

In the variant ECTL, every path formula φ is described as the composition of a determ-

inistic Büchi automata on some alphabet {0, 1}k with k state subformulas. A path satisfies

φ if the Büchi automaton accepts the sequence of letters obtained by evaluating the k state

subformulas on every state along the path. This variant augments both the expressivity and

the conciseness of the logic at the cost of a less intuitive syntax. For more details see [7].

We are also interested in the fragments where the operators ∃ and ∀ are not used, i.e.

the qualitative fragments of the logics pCTL∗, pECTL and pCTL.

Satisfiability problem.

A Markov chain M satisfies a formula ξ at state s, or equivalently (M, s) is a model of ξ,

if M, s |= ξ. We are interested in the problem:

MC-SAT: given a formula, does it have a model?

The satisfiability of tmso+zero is known to be decidable [3, 4]. Since CTL∗[∃, ∀,P>0,P=1]

is a fragment of tmso+zero, MC-SAT is decidable with non-elementary complexity. A

reduction to the emptiness of alternating nonzero automata gives better complexity:

◮ Theorem 24. For CTL∗[∃, ∀,P>0,P=1] the satisfiability problem is in 3-nexptime ∩ co-

3-nexptime. The following table summarizes complexities of the satisfiability problem for

various fragments and variants of CTL∗[∃, ∀,P>0,P=1]:

[∃, ∀,P>0,P=1] [P>0,P=1]

CTL∗
3-nexptime

∩ co-3-nexptime

3-exptime [7]

(qualitative pCTL∗)

ECTL
2-nexptime

∩ co-2-nexptime

2-exptime [7]

(qualitative pECTL)

CTL
nexptime

∩ co-nexptime

exptime [6]

(qualitative pCTL)

According to [6, 7], the complexities for ECTL[P>0,P=1] and CTL[P>0,P=1] are optimal.

The first step in the proof of Theorem 24 is a linear-time reduction from MC-SAT to:

BIN-SAT: given a formula, does it have a model among binary trees?

◮ Theorem 25. Any formula ξ of CTL∗[∃, ∀,P>0,P=1] on alphabet Σ can be effectively

transformed into a formula ξ′ of linear size on alphabet Σ ∪ {◦} such that ξ is MC-SAT iff

ξ′ is BIN-SAT. As a consequence, MC-SAT linearly reduces to BIN-SAT. This trans-

formation stabilizes the fragment CTL∗[P>0,P=1].

The second step is a standard translation from logic to alternating automata [14].

◮ Lemma 26. For every formula ξ of CTL∗[∃, ∀,P>0,P=1] (resp. ECTL[∃, ∀,P>0,P=1]),

there is an alternating automaton A with limited choice for Adam whose language is the set

of binary trees satisfying the formula at the root. The automaton is effectively computable,

of size O(22|ξ|

) (resp. O(2|ξ|)). If ξ is a CTL formula, the size of A is O(|ξ|). In case the

formula does not use the ∃ and ∀ operators, the F∀ condition is trivial i.e. F∀ = Q.
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Proof of Theorem 24. All the complexity results are obtained by reduction of MC-SAT to

the emptiness problem for an alternating nonzero automaton with limited choice for Adam,

which is decidable in nexptime∩co-nexptime (Theorem 23). The size of the automaton

varies from doubly-exponential to linear size depending whether the formula is in CTL∗,

ECTL or CTL (Lemma 26). In case the formula does not use the deterministic operators ∃

and ∀ (i.e. for qualitative pCTL∗, pECTL and pCTL) the F∀ condition of the alternating

automaton is trivial thus its emptiness is decidable in exptime (Theorem 23). ◭

Conclusion

We have introduced the class of alternating nonzero automata, proved decidability of the

emptiness problem for the subclass of automata with limited choice for Adam and obtained

as a corollary algorithms for the satisfiability of a temporal logic extending both CTL* and

the qualitative fragment of pCTL*.

A natural direction for future work is to find more general classes of alternating nonzero

automata with a decidable emptiness problem, which requires some more insight on the

properties of the acceptance games.
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Appendix

A Closure properties

Proof of Lemma 2. Take the disjoint union of the automata, plus an initial state which

is not in F>0 and two transitions leading to the initial states of the original automata,

controlled by Adam for intersection and Eve for union. ◭

B Emptiness problem in the non-deterministic case: a proof of
Theorem 3

In this section we prove Theorem 3.

For the sake of completeness, we provide an algoritm to decide emptiness of nonzero auto-

mata in np∩conp and show that complexity drops to ptime when F∀ is a Büchi condition.

In the sequel we fix a non-deterministic automaton

A = (Q, q0, QE,→, F∀, F1, F>0) .

Recall that in a non-deterministic automaton is the special case of alternating nonzero

automata where all transitions are controlled by Eve and are split transitions.

Single-letter alphabets

In the case where the input alphabet has a single letter, there is a single possible input tree,

thus a single possible acceptance game, which makes things easier.

There is a linear-time reduction of the emptiness problem for non-deterministic nonzero

automata to the special case of single-letter alphabet: if one has an algorithm for the latter

problem, then the former problem can be solved by having the non-deterministic automaton

guesses the letters of the input tree on the fly, and perform its computation as usual.

In the sequel we assume the alphabet contains a single letter.

Accepting runs

In a non-deterministic automaton, only Eve takes decisions. Once the strategy of Eve is

fixed, there is for every node n a single vertex (n, q) which is σ-reachable, and the strategy

of Eve can be represented as a mapping S : {0, 1}∗ → Q such that S(ǫ) = q0 and for every

node n, (S(n), S(n0), S(n1)) is a transition of the automaton. Such a mapping is called a

run of the automaton.

Notions of sure, almost-sure and positive acceptance extend naturally to runs (see [4] for

full details).

Almost-sure policies

◮ Definition 27 (Policy). Let W ⊆ Q. A policy with domain W is a mapping σ : W → W 2

such that for every q ∈ W , q → σ(q) is a (split) transition of the automaton.

A policy σ induces a Markov chain Mσ with states W , whose transition probabilities

are defined as follows. From every state q ∈ W with σ(q) = (q0, q1), if q0 6= q1 there is

probability 1
2 to go to either states q0 or q1 and if q0 = q1 there is probability 1 to go to the

state q0 = q1.

◮ Definition 28 (Almost-sure policies). A policy σ with domain W is almost-sure if:
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the maximal state of every ergodic class of Mσ is in F1,

from every state in F>0 ∩W there is a path in Mσ staying in F>0 ∩W and reaching an

ergodic class included in F>0.

We will use twice this auxiliary lemma.

◮ Lemma 29. Let σ1 and σ2 be two almost-sure policies with domains W1 and W2. Then

there exists an almost-sure policy with domain W1 ∪W2.

Proof. We define σ3(w) =

{
σ1(w) if w ∈ W1

σ2(w) otherwise
. Then σ3 is a almost-sure policy. For that,

remark that once a play in the Markov chain Mσ3 enters W1 it stays in W1. Thus every

ergodic class of Mσ3 is an ergodic class of either σ1 or σ2. ◭

The notion of almost-sure policy is similar to the notion of acceptance witnesses in [4,

Definition 11], where is established the following result:

◮ Theorem 30. [4, Theorem 10] Assume the non-deterministic automaton is F∀-trivial i.e.

F∀ = Q. Then it is non-empty iff there exists an almost-sure policy whose domain contains

the initial state of the automaton. This is decidable in ptime.

Perfect plays

It is an exercice to design a sequence of integers 0 = n0 ≤ n1 ≤ n2 ≤ . . . which is (very

slowly) converging to ∞ and such that, starting from any vertex of any ergodic component

of Mσ, there is at least probability 1
2 that for every k, at step k every state of the ergodic

component has already been visited at least nk times. This sequence can be constructed

either explicitely, by elementary calculations, or using the inner-regularity of the probability

measure (cf. [13, Theorem 17.10]).

Let Mσ be a Markov chain induced by an almost-sure policy σ. A perfect play of σ is a

path in Mσ with the following properties:

a) whenever the path enters F>0, its stays in F>0 afterwards,

b) each step of the path strictly reduces the distance to the ergodic classes , until such a

class is reached,

c) k steps after the entry inside an ergodic class, every state of the ergodic class has been

visited at least nk times.

◮ Lemma 31 (Perfect plays happen with > 0 probability). For every almost-sure policy σ and

every state q of its domain, the set of perfect plays starting from q has probability ≥ 1
2|Q|+1 .

Proof. Properties a) and b) hold with probability at least 1
2|Q| because by definition of

almost-sure policies, there is at least one direction which reduces the distance to the ergodic

classes, and moreover stays in F>0 once it enters F>0. Property c) holds with probability

at least 1
2 by choice of n1, n2, . . .. ◭

The F∀-Büchi case

◮ Lemma 32. Assume F∀ is a Büchi condition. Then its language is non-empty iff there

exists W ⊆ Q and two policies σ1, σ2 with domain W such that:

W contains the initial state of the automaton.

σ1 is almost-sure.
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σ2 guarantees infinitely many visits to F∀ in the sense where every infinite play in Mσ2

visits F∀ infinitely often.

Proof. Similar proof techniques have been independently used in the framework of beyond

worst-case synthesis [2].

We first show that the conditions are sufficient. Eve can win by combining σ1 and σ2

into a strategy σ defined as follows. Eve starts with playing σ1 and keeps playing σ1 as

long as the play is perfect. In case the play is not perfect anymore, Eve switches to σ2 until

F∀ ∩ W is reached. Once F∀ ∩ W has been reached, Eve switches again to σ1 and keeps

playing σ1 as long as the suffix of the play since the last switch is perfect. Since there is

probability ≥ 1
2|Q|+1 that a play consistent with σ1 is perfect (Lemma 31), almost-surely Eve

switches only finitely many times to σ2, thus almost-surely a suffix of the play is perfect and

consistent with σ1.

The strategy σ is almost-surely winning because almost every play consistent with σ has

a perfect suffix. Such a suffix enters an ergodic component of Mσ1 and visits all its states

infinitely often. Since σ1 is almost-surely winning, the maximal state of every of its ergodic

components is in F1, thus almost-every play consistent with σ has limsup in F1.

Moreover σ is positively winning: the automaton is normalized thus every finite play π

reaching F>0 has at least one infinite continuation π′ in F>0. In π′ Eve eventually switches

to σ1 and with positive probability from this moment on the play is perfect thus eventually

stays in an ergodic component of Mσ1 intersecting F>0. Such a component is actually

included in F>0 because σ1 is positively winning.

And σ is surely-winning. There are two types of plays. In plays where Eve switches

infinitely often from one strategy to the other then infinitely many F∀ states are visited,

because switches from σ2 to σ1 occur precisely under this condition. And plays where Eve

switches finitely often have a perfect suffix, and as already seen these plays have limsup in

F1, which is included in F∀ since the automaton is normalized.

To show that the conditions are necessary, start from a surely, almost-surely and posit-

ively accepting run S : {0, 1}∗ → Q. Let W be the image of S.

Remark that for every node n, the run Sn : m → S(nm) is also almost-surely and

positively accepting. Then according to Theorem 30, for every state q ∈ W , Eve has an

almost-sure policy σq whose domain contains q. According to Lemma 29, Eve has an almost-

sure policy σ1 whose domain contains W .

Now we construct σ2. Since S is surely accepting, then every branch of S visits F∀

infinitely often. As a consequence, Eve wins the Büchi game to F∀ where Eve chooses the

transitions and Adam chooses the direction. The policy σ2 is a positional winning strategy

for Eve in this Büchi game. ◭

Proof of Theorem 3

The np∩conp upperbound is established by [4, Theorem 3].

For the Büchi case, we show that the caracterization given in Lemma 32 can be decided

in polynomial time, thanks to a fixpoint algorithm.

We can compute in polynomial time the largest domain X(W ) ⊆ W of an almost-

sure policy σ1, which exists according to Lemma 29. For every w ∈ W and W ⊆ Q, we

denote Aw,W the F∀-trivial automaton with initial state w and restricted to states in W and

transitions in W × W 2. For that for every w ∈ W we check whether the language of Aw,W

is empty or not, which can be done in ptime according to [4, Theorem 10]. Then X(w) is

exactly the union of all w for which Aw,W has a non-empty language.
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We can also compute in polynomial time the largest domain Y (W ) ⊆ W of a policy

σ2 which guarantees infinitely many visits to F∀. This simply amounts to computing the

winning vertices of the Büchi game played on W where from state w ∈ W Eve chooses any

transition w → (w0, w1) with both w0 ∈ W and w1 ∈ W , loses if there is no such transition,

and Adam selects either w0 or w1. The play is won by Eve iff F∀ is visited infinitely often.

Now consider the largest fixpoint W∞ of the monotonic operator on 2Q defined by W →

Y (X(W )) . We claim that W∞ contains the initial state of the automaton if and only

if the characterization given in Lemma 32 holds. Since W∞ is a fixpoint, then W∞ =

X(W∞) = Y (W∞) thus there are policies σ1 and σ2 with domain W∞ which satisfy the

characterization. Conversely, if there is W and σ1 and σ2 which satisfy the characterization

then W = X(W ) = Y (W ) thus by monotonicity , W ⊆ W∞. ◭

C Proof of Lemma 7

Let π be a path which arrives for the first time on a node n in a vertex (n, q), such that q

belongs to some connected component Cq. Let P be the player controlling q.

The exit-profile of π in σ is the set of pairs (q′, t) such that there is an extension of π

consistent with σ which leaves node n in which t is the last transition played before leaving

the node and q′ is the largest state seen on the path from (n, q) up to now. The loop-profile is

the set of states q′ such that there is an extension of π consistent with σ which never leaves

the current node n and has limsup q′. The set of possible exit-profiles and loop-profiles

actually implementable by a strategy is easy to precompute, since only one bit of memory

is needed to implement any implementable profile.

Then in A′, P announces an exit-profile and a loop-profile that she effectively can imple-

ment Her opponent P ′ picks up an element of these profiles. If this element is a cycle profile

q′ then the new state is the sink state (q′, ∗) and the only transition available from there

is a split transition staying in (q′, ∗) on both directions. If this element is an exit profile

(t, q′) then the transition t is performed. The accepting sets are adapted in A′ in order to

have the natural correspondence between plays in A and plays in A′ which preserves sure,

almost-sure and positive winning conditions.

D Positional determinacy for Eve

Proof of Lemma 10. Fix an input tree t and an automaton A.

We show that if Eve has a winning strategy σ then she has a positional winning strategy.

A finite σ-play π has a canonical σ-extension to some vertex w if π has a continuation π′

consistent with σ, whose last vertex is w and in which Adam only play canonical moves after

the prefix π. In other words, if after π Eve continues to play σ and Adam is bound to play

only canonical moves then there is positive probability that the play reaches w.

We equip the set of finite plays with any total order � such that the shorter is a play

the smaller it is.

Let P be a player and σ a winning strategy for P .

For every vertex w, denote f(w) the smaller play for the order � among the plays

starting in the initial vertex which have a canonical σ-extension to w. According to the

(NLL) hypothesis, the game graph is acyclic, thus there are finitely many plays having a

canonical σ-extension to w and f(w) is well-defined.

Denote l(w) = last(f(w)). Let g(w) be a finite play such that f(w)g(w) is a canonical σ-

extension of f(w) to w. Remark that g(w) is uniquely defined: this is the unique continuation
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of f(w) in which Eve plays σ, Adam plays only canonical moves and the play follows the

branch connecting the node of l(w) to the node of w. For every vertex w we define

h(w) = f(w)g(w) .

The winning positional strategy σ′ of Eve is defined by:

σ′(w) = σ(h(w)) .

This strategy σ′ is well-defined because its definition inductively guarantees that a play

consistent with σ′ visits only σ-reachable vertices.

Let π = w0, w1, . . . = (n0, q0)(n1, q1), . . . be an infinite play consistent with σ′.

Remark first that,

(†) if all moves of Adam between some dates i ≤ j are canonical, then f(wt)i≤t≤j is non-

increasing for the �-order.

The reason is that for every i ≤ t < j, the concatenation of g(wt) and wt+1 is a canonical

σ-extension of f(wt) to wt+1. Hence by minimality of f(wt+1), we get f(wt+1) � f(wt).

The sequence (qi)i∈N is a path in the transition graph G→ thus it ends up in a connected

component C of G→. Let tπ be minimum such that qtπ ∈ C. Then after date tπ all moves of

Adam in π are canonical. According to (†), the sequence (f(wi))i≥tπ is non-increasing. And

the shorter is a play the smaller it is thus according to (NLL) this sequence takes finitely

many values. Thus it becomes constant after some index, denote it kπ and denote P (π) the

prefix of π of length kπ and S(π) the suffix of π such that π = P (π)S(π). By definition of

σ′ and since kπ ≥ tπ,

(††) S(π) is canonical and h(wkπ
)S(π) is a σ-play.

We show that σ′ is winning. We fix for the rest of the proof a strategy τ for Adam and

show that σ′ is almost-surely and positively winning against τ .

For every finite play π1 denote

W (π1) = {S(π) | π a play consistent with σ′ and τ such that P (π) = π1} .

Then, according to (††),

(† † †) every play π ∈ W (π1) is canonical and h(last(π1))π is a σ-play.

As a consequence, σ′ is surely-winning: let π be an infinite σ′-play then S(π) ∈ W (P (π))

thus according to († † †) the play S(π) is the suffix of a σ-play and since σ is surely-winning

the limsup of S(π) is in F∀ hence the limsup of π as well since π = P (π)S(π).

Fix some finite play π1 consistent with σ and τ and focus onW (π1). Let π′
1 = h(last(π1)).

Let τ ′ a strategy for Adam such that π′
1 is consistent with τ ′ and after π′

1 happens, τ ′

performs canonical moves whenever possible. We show that for every measurable set of

plays E,

P
σ′,τ (π1W (π1) ∩ π1E) = P

σ,τ ′

(π′
1W (π1) ∩ π′

1E) . (1)

According to († † †), for every play π2 ∈ W (π1), π1π2 is consistent with σ′ and τ and π′
1π2 is

consistent with σ and τ ′. Moreover, since π1 and π′
1 have the same last vertex last(π1) then

the set of (σ′, τ)-plays in π1W (π1)∩π1E and the set of (σ, τ ′)-plays in π′
1W (π1)∩π′

1E project

to the same set of branches. Thus according to Lemma 8 the two probabilities coincide.
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We can use (1) to show that σ′ is almost-surely winning against τ . When E is the event

lim sup 6∈ F1, since σ is almost-surely winning, we get from (1) that Pσ
′,τ (π1W (π1) ∩ {lim sup 6∈ F1}) =

0. There are countably many sets π1W (π1), these sets are measurable and their union con-

tains all infinite σ′-plays. Thus Pσ
′,τ ({lim sup 6∈ F1}) = 0 hence σ′ is almost-surely winning.

Now we prove that σ′ is positively winning. Let π2 be a play consistent with σ′ and

τ whose last state is positive. Let π3 be a positive continuation of π2 whose last state is

minimal for the topological order on the transition graph of the automaton. Then in every

positive continuation of π3, Adam has no choice but playing canonical moves. According

to (†), the value of f decreases along these continuations, let π4 be a positive continuation

of π3 which minimizes f(last(π4)) among all positive continuations of π3. Then for every

positive play π, π4π is consistent with σ′ and τ iff h(last(π4))π is consistent with σ and τ ′,

where τ ′ is a strategy playing canonical moves whenever possible. As a consequence, using

Lemma 8,

P
σ′,τ ({ positive extensions of π4}) = P

σ,τ ′

({ positive extensions of h(last(π4))}) . (2)

Since h(last(π4)) is a σ-play whose last vertex is last(π4) the right handside is positive thus

the left handside as well. Thus σ′ is positively winning. ◭

E Characterization of q-branches (Proof of Lemma 13)

Proof. For every vertex w = (n, q), indexσ(n)(q) is defined by induction on the game graph,

which is acyclic thanks to the (NLL) assumption. First in two simple cases:

indexσ(n)(q) =

{
0 if (n, q) is the initial vertex,

∞ if (n, q) is not reachable by a σ-play.

Then denote A the set of immediate predecessors of (n, q) by a canonical σ-play i.e. all the

vertices (n′, q′) such that:

q′ ∈ QA and (n′, q′) → (n, q) is the canonical local transition; or

q′ ∈ QE and σ(n′, q′) is the local transition (n′, q′) → (n, q); or

q′ ∈ QE is controlled by Eve and σ(n′, q′) is a split transition whose (n, q) is one of the

two targets .

If A 6= ∅ then indexσ(n)(q) = minv∈A indexσ(v) . Otherwise indexσ(n)(q) is the smallest

index not attributed yet to any vertex whose node is either the node n or its father.

We prove the third property. Assume first that the branch (ni)i∈N is a q-branch. Let

π = (n0, q0)(n1, q1) · · · be a σ-play which projects to this branch and has limsup q. For every

i ∈ N denote ki = indexσ(ni, qi). Then ki 6= ∞ because every vertex (ni, qi) is σ-reachable.

Adam performs finitely many non-canonical moves in π and after the last one of them, the

sequence (ki)i∈N is decreasing, hence converges to some limit k∞. From the moment this

limit is reached, indexσ(ni)(qi) = k∞ thus k∞ ∈ indexσ(ni)(Q) and max{r ∈ Q | (k∞, r) ∈

R∞(b)} = lim sup qi = q.

Now let (k, q) ∈ R∞(b) such that q = max{r ∈ Q | (k, r) ∈ R∞(b)}. By definition of

R∞, there exists i0 large enough such that ∀i ≥ i0, k ∈ indexσ(ni)(Q) and by definition of

indexσ, one can build by induction a σ-play π starting on node ni in which Adam plays only

canonical moves and which visits exactly the vertices {(ni, r) | r ∈ Q, indexσ(ni)(r) = k}.

Then By definition of R∞(b) this σ-play has limsup q. ◭
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F Existence of everywhere thick subtrees (Proof of Lemma 16)

Proof of Lemma 16. The uniform measure µ on {0, 1}ω is Borel with respect to the to-

pology whose cylinders are the basis. This topology is metrizable thus µ is inner-regular

(cf. [13, Theorem 17.10]). Hence P contains a closed set such that µ(P ) > 0, w.l.o.g. we

assume that P itself is closed, i.e. P contains every branch whose every node is visited by

a branch in P .

Given a node n ∈ {0, 1}∗ we denote Pn the set of branches of P visiting n, i.e. Pn =

P ∩ (n{0, 1}ω). Let T be the set of nodes n such that µ(Pn) > 0. By hypothesis T contains

ǫ. And T is prefix-closed thus it is a tree with root ǫ. And ~T ⊆ P because P is closed. We

show that T is everywhere thick. Let n ∈ T . By definition, ~T ∩ (n{0, 1}ω) = Pn \
⋃
n′ 6∈T Pn′ .

By definition of T , for every n′ 6∈ T , µ(Pn′) = 0 thus since T is countable, µ(
⋃
n′ 6∈T Pn′) = 0

hence µ(~T ∩ (n{0, 1}ω)) = µ(Pn) > 0 since n ∈ T . ◭

G Characterization of positively winning strategies (Proof of
Lemma 18)

For commodity, we recall the definition of a positive witness.

Let Z be the set of σ-reachable vertices whose state is in F>0. A positive witness for σ

is a pair (W,E) where:

W ⊆ Z are the active vertices,

E ⊆ {0, 1}∗ × {0, 1} is the set of positive edges,

and they have the following properties.

a) From every vertex z ∈ Z there is a positive and canonical finite σ-play starting in z

which reaches a vertex in W or a transient vertex.

b) Let z = (n, q) ∈ W . Then (n, 0) ∈ E or (n, 1) ∈ E, or both. If z → z′ is a local transition

then z′ ∈ W as well whenever (q ∈ QE and z → z′ is consistent with σ) or (q ∈ QA and

z → z′ is canonical). If z is controlled by Eve and σ(z) is a split transition q → (q0, q1)

then ((n, 0) ∈ E =⇒ (n0, q0) ∈ W ) and ((n, 1) ∈ E =⇒ (n1, q1) ∈ W ).

c) The set of nodes {nd ∈ {0, 1}∗ | (n, d) ∈ E} is everywhere thick.

We first show that existence of a positive witness is a sufficient condition for

σ to be positively winning. Let (W,E) be a positive witness for σ. Let τ be any strategy

for Adam and π be a play consistent with σ and τ whose last vertex z = (n, q) belongs to Z.

We show that the set X of positive continuations of π consistent with σ and τ has nonzero

probability under Pσ,τ . We prove this by induction on q for the topological order of Q in the

transition graph of the automaton. If one of the continuations in X reaches a vertex (n′, q′)

with q′ < q then we conclude by inductive hypothesis. In the remaining case, note that

(*) in all positive continuations of π consistent with σ and τ , the strategy τ only plays

canonical moves.

Let π′ be the positive play whose existence is given by property a) in the definition of positive

witnesses. Since π′ is canonical, then according to (*), ππ′ is consistent with τ thus ππ′

belongs to X . Thus according to (*) again, π′ does not reach any transient vertex, hence the

last vertex (n′, q′) of π′ belongs to W . Let NE = {nd ∈ {0, 1}∗ | (n, d) ∈ E}. Let Y be the

set of positive continuations of ππ′ consistent with σ and τ and staying in NE ×F>0. Since

Y ⊆ X then according to (*) all plays in Y are canonical . Thus according to property b)

in the definition of nonzero-witnesses, all plays in Y stay in W after ππ′. According to b),
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there exists d ∈ {0, 1} such that n′d ∈ NE and according to c) the set NE set is everywhere

thick. The projection of Y on {0, 1}ω contains all branches of the subtree of NE rooted at

n′d. Since NE is everywhere thick, the set of branches of this subtree has positive measure

hence Pσ,τ (Y ) > 0 according to Lemma 8.

Now we show the condition is necessary. Let Z ′ be the subset of vertices in Z from

which no canonical positive σ-play leads to a transient vertex.

If Z ′ is empty, then (∅, {0, 1}∗ × {0, 1}) is a positive witness which concludes the proof.

Otherwise Z ′ is infinite (because of the normalization properties (N1) and (N2)). Let

((nk, qk))k∈N be a bread-first enumeration of all nodes in Z ′. For k ∈ N, we set zk = (nk, qk).

Denote Rk the set of vertices reachable from zk by a positive and canonical σ-play and

T ′
k the set of nodes of these vertices. By definition of Z ′, once a σ-play has visited zk ∈ Z ′,

as long as Eve plays σ and Adam plays canonical moves then no transient vertex is visited

thus Adam always has a canonical choice when he has to take a decision. Thus, since σ is

positively winning, the set of canonical positive σ-play starting in zk has nonzero probability.

And this is true from every vertex visited from one of these plays. Thus T ′
k is an everywhere

thick subtree.

We are going to combine the vertices and nodes of (Rk, T
′
k)k∈N in order to define induct-

ively, for every k ∈ N an integer nk and a collection Ck = (Ti,k, Xi,k)
i∈1...nk

of sets of nodes

and vertices with the following properties.

i) For every i ∈ 1 . . . nk, the set of nodes Ti,k is an everywhere thick subtree, whose root

is denoted ri,k. And Xi,k is a set of vertices at the root i.e. Xi,k ⊆ {ri,k} ×Q

ii) All trees (Ti,k)i∈1...nk
are disjoint.

iii) For every i ∈ 1 . . . nk and vertex x ∈ Xi,k denote Wx,k the set of vertices reachable by

canonical σ-plays starting from x and visiting only nodes in Ti,k. (The notation Wx,k is

unambigous because according to ii) there is a unique possible i given x and k). Denote

X(k) =
⋃
i∈1...nk

Xi,k and W (k) =
⋃
x∈X(k) Wx,k . Then all vertices in W (k) are positive

(i.e. W (k) ⊆ {0, 1}∗ × F>0) and none of them are transient.

iv) The sets in the collection (Wx,k)x∈X(k) are disjoint i.e. this collection is a partition of

W (k).

v) For every j ∈ 0 . . . k,

W (k) is reachable from zj by a canonical positive σ-play. (3)

Initially we set n0 = 1 and T0,0 = T ′
0 and X0,0 = {z0}. Property v) holds since obviously

z0 ∈ Wz0,0, property iii) holds since the vertices in Wz0,0 are exactly those visited by positive

and canonical σ-plays starting in z0. Properties i) ii) and iv) are trivial since T ′
0 is everywhere

thick, n0 = 1 and X0,0 is a singleton.

We assume k > 0 and perform the inductive definition of Ck = (Ti,k, Xi,k)1...nk
from

Ck−1. It is split in three cases: the copy case, the expansion case and shrinking case.

Copy case. Assume first that W (k−1) is reachable from zk by a positive canonical σ-

play. Then Ck is simply the copy of Ck−1. Properties i)-iv) are maintained since they only

depend on the collection Ck−1, independently of k. And v) is maintained by inductive

hypothesis for j ∈ 0 . . . k − 1 and by hypothesis for j = k.

Expansion case. We consider T ′
k, the set of nodes visited by canonical positive plays

starting in zk, which is an everywhere thick subtree as discussed previously. The expan-

sion case occurs when for every i ≤ nk−1 the set of branches of the (possibly empty)
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subtree T ′
k ∩ Ti,k−1 has probability 0. Then T ′

k \
⋃
i≤nk−1

Ti,k−1 has the same meas-

ure than T ′
k, which is positive, thus it contains some everywhere thick subtree T ′′ (cf.

Lemma 16). By definition of T ′
k there exists a vertex z at the root of T ′′ reachable from

zk by a positive canonical σ-play. The collection Ck is obtained by adding to Ck−1 the

new entry (T ′′, {z}) at index nk = nk−1 + 1. Properties i)-v) are inherited from the

inductive hypothesis, for what concerns Ck−1 and j ∈ 0 . . . k − 1 for item v). Properties

i) and ii) are clear for the new entry (T ′′, {z}) at i = nk. Property iii) holds for i = nk
by definition of T ′

k and because zk ∈ Z ′. Property iv) holds because of ii) and {z} is a

singleton. Property v) holds for j = k by choice of z.

Shrinking case. We are left with the case where W (k−1) is not reachable from zk by

a positive canonical σ-play and there is i ∈ 0 . . . nk−1 such that the set of branches of

the subtree T ′
k ∩ Ti,k−1 has positive probability. Then nk = nk−1 and Ck is the copy of

Ck−1 except at rank i, where we replace Ti,k−1 and Xi,k−1 by Ti,k ⊆ Ti,k−1 and Xi,k

defined as follows. The tree Ti,k is set to be any everywhere thick subtree contained in

T ′
k ∩ Ti,k−1, whose existence is given by Lemma 16. For every vertex x ∈ Xi,k−1 ∪ {zk},

the node of x is either the root of Ti,k−1 (when x ∈ Xi,k−1) or the root of T ′
k (when

x = zk). Since Ti,k−1 ⊆ T ′
k ∩ Ti,k−1, the node of x is an ancestor of the root of Ti,k.

We show that there is a positive canonical σ-play πx from x to a vertex on the root of

Ti,k. In case x ∈ Xi,k−1 because Ti,k ⊆ Ti,k−1 and property iii). In case x = zk because

Ti,k ⊆ Ti,k−1 and by definition of T ′
k. Denote w(x) = last(πx). We set

Xi,k = {w(x) | x ∈ Xi,k−1 ∪ {zk}} .

Remark that

|Xi,k| = |Xi,k−1| + 1 . (4)

The reason for (4) is that, according to iv), all the vertices (w(x))x∈Xi,k−1
are distinct.

And since {w(x) | x ∈ Xi,k−1} ⊆ W (k−1) and since we are not in the copy case then

w(zk) 6∈ {w(x) | x ∈ Xi,k−1}.

The construction of Ck preserves invariants i) and ii) because (Ti,k)i∈1...nk
is the copy

of (Ti,k−1)i∈1...nk−1
except for the tree Ti,k which is everywhere thick by construction

and contained in Ti,k−1. Invariant iii) is preserved for x = w(x′), x′ ∈ Xi,k−1 since

w(x) is reachable from X(k−1) by a canonical positive σ-play thus Ww(x),k ⊆ Ww(x),k−1

Invariant iii) is true for x = w(zk) because Ti,k ⊆ T ′
k thus from zk every canonical σ-plays

is positive and since zk ∈ Z ′ then no transient vertex is reached by such a play. Invariant

iv) is true by hypothesis on zk. Invariant v) is preserved for j ∈ 0 . . . k− 1 because from

every vertex in W (k−1) there is a positive canonical σ-play to a vertex in W (k). And

invariant v) is true for j = k because zk ∈ Xi,k ⊆ X(k) ⊆ W (k).

Let I be the set of values taken by the sequence 1 = n0 ≤ n1 ≤ . . .. According to (4),

the shrinking case can occur at most |Q| times at the same index i ∈ I (in the copy and

expansion cases Xi,k is not modified). Thus, if k is the smallest rank at which nk = i, the

family (Ti,k′ , Xi,k′)k′≥k takes at most |Q| different values and is ultimately constant from

some rank ki.

We are now ready to define the positive witness (E,W ) using the family (Ti,ki
, Xi,ki

)i∈I
obtained "at the limit". Let E be the set of edges appearing in one of the trees of the family

(Ti,ki
)i∈I i.e.

E =
⋃

i∈I

{(n, b) | (n ∈ Ti,ki
) ∧ b ∈ {0, 1} ∧ (nb ∈ Ti,ki

)}
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and

W =
⋃

i∈I,x∈Xi,ki

Wx,ki
.

According to invariant iii), W is a set of positive vertices. To prove that (W,E) is a positive

witness we should establish properties a) b) and c). Property a) is clear for vertices z ∈ Z\Z ′,

because by definition of Z ′ from these vertices there is a positive canonical σ-play to a

transient vertex. And if z ∈ Z ′ then z = zk for some k and a) is a consequence of v).

We prove that property b) holds. Let z = (n, q) ∈ W then there is i ∈ I and x ∈ Xi,ki

such that z ∈ Wx,ki
. Then n ∈ Ti,ki

, by definition of the sets Wx,ki
. Since Ti,ki

is everywhere

thick then n is not a leaf of Ti,ki
thus there exists d ∈ {0, 1} such that nd ∈ Ti,ki

hence

(n, d) ∈ E. Let z → z′ a local transition like in property b). Then, by definition of Wx,ki
,

z′ ∈ Wx,ki
thus z′ ∈ W . Assume Eve controls q and σ(z) is a split transition (q0, q1) and let

d′ such that (n, nd′) ∈ E. Since x ∈ Ti,ki
then according to ii) and iv), also n ∈ Ti,ki

thus

by definition of E also n′ ∈ Ti,ki
. Then, by definition of Wx,ki

, z′ ∈ Wx,ki
thus z′ ∈ W .

Property c) holds. We show that NE = {nd ∈ {0, 1}∗ | (n, d) ∈ E} is everywhere thick.

Let n ∈ NE . By definition of E, there exists i ∈ I such that n ∈ Tki
thus ~Tki

∩ n{0, 1}ω ⊆
~NE ∩n{0, 1}ω (actually this is an equality according to ii)) and µ( ~NE ∩n{0, 1}ω) ≥ µ( ~Tki

∩

n{0, 1}ω) > 0 since Tki
is everywhere thick.

H From MC-SAT to BIN-SAT: proof of Theorem 25

Theorem 25 is a corollary of Lemma 40 at the end of the section.

Before translating formulas, we turn them in positive form, where the only negations are

in front of letters of the alphabet.

◮ Lemma 33. Given a formula ξ one can build an equivalent formula in positive form whose

size (as a DAG) is linear in the size of the first formula.

Proof. These transformations preserve the size of the DAG of the formula and its models:

¬¬φ → φ ¬P>0(φ) → P=1(¬φ) ¬⊤ → ⊥

¬P=1(φ) → P>0(¬φ) ¬Xφ → (X¬φ) ¬∃φ → ∀¬φ

¬Gφ → (⊤U¬φ) ¬∀φ → ∃¬φ ¬(φ1Uφ2) → G¬φ2 ∨ (¬φ2U¬φ1) .

◭

From Markov chains to binary trees: adding the delay symbol ◦

There is a natural transformation of a Markov chain into a binary tree, which preserves the

probability measure on Σω, up to some projection. This transformation simulates a single

transition of the original Markov chain by an unbounded number of transitions of the binary

tree. This requires to introduce in the alphabet of the binary tree, on top of the alphabet

Σ of the Markov chain, a new delay symbol ◦. In the sequel we use the notation

Σ◦ = Σ ∪ {◦} .

Every infinite path in the Markov chain labelled by a word u = a0a1a2 · · · ∈ Σω corres-

ponds to some infinite branch of the tree labelled by a word in a0{◦}∗a1{◦}∗a2 · · · ∈ (Σ{◦}∗)ω

Intuitively, the symbol ◦ delays the stochastic process, but it should not delay it forever

and is expected to appear a finite number of times between two occurences of a non-delay

symbol in Σ, thus we are interested in Σ◦-labelled Markov chains with finite delay.



Paulin Fournier and Hugo Gimbert XX:29

◮ Definition 34 (Finite delay). A Σ◦-labelled Markov chain M◦ has finite delay if from

every state s◦ there is probability 0 to see the delay symbol forever: PM◦,s◦({◦}ω) = 0.

A Σ◦-labelled chain with finite delay is almost a Σ-labelled chain, up to a projection.

◮ Lemma 35 (Projecting Markov chains with finite delay). A Σ◦-labelled Markov chain M◦ =

(S◦, t◦, p◦) has finite delay iff there exists a Σ-labelled Markov chain M = (S, t, p) and

π : {s◦ ∈ S◦ | t◦(s◦) 6= ◦} → S such that:

π is surjective; and

for every state s◦ ∈ S◦, (t◦(s◦) 6= ◦) =⇒ (t◦(s◦) = t(π(s◦))); and

for every state s, u ∈ S and s◦ ∈ S◦ such that π(s◦) = s

p(s, u) = PM◦,s◦({s◦s1 · · · sn−1u◦ ∈ S∗
◦ | t◦(s1) = · · · = t◦(sn−1) = ◦, π(u◦) = u}) .

(5)

Such a map π is called a projection of M◦ to M.

Before giving the proof, we start with a preliminary lemma: Actually projections preserve

probability measures and path labelling. Denote PathrM◦
the set of pathes of M◦ that go

through infinitely many Σ-labelled vertices. The definition of π is extended to π : PathrM◦
→

PathM , by erasing states with label ◦ and projecting Σ-labelled states to their image by

π. Then,

◮ Lemma 36. For every state s◦ ∈ t−1
◦ (Σ) and every measurable set E ⊆ Sω,

PM,π(s◦)(E) = PM◦,s◦(π−1(E)) , (6)

PathM(π(s◦)) = π
(
PathrM◦

(s◦)
)
. (7)

Proof. By definition of projections, property (6) holds when E is a cylinder of length 1

i.e. E = stSω. An easy induction show that it also holds when E is any cylinder E =

ss0 · · · snS
ω. Since property (6) is stable by complement and countable unions, it holds for

every measurable set E.

Property (7) holds because for every n ∈ N, the finite pathes of length n in M are exactly

the projection by π of pathes in M◦ that go through exactly n Σ-labelled vertices. ◭

Proof of Lemma 35. The finite delay hypothesis is necessary. Let π be a projection from

M◦ to M and s◦ a state of M◦ then

PM◦,s◦(Σ{◦}ω) = 1 − PM◦,s◦({s◦s1 · · · sn | t◦(sn) 6= ◦})

= 1 −
∑

u∈S

p(π(s◦), u)) (according to (5))

= 0 (since M is a Markov chain).

The finite delay property is sufficient. The projection M = (S, t, p) of M◦ = (S◦, t◦, p◦)

is defined by S = {s ∈ S◦ | t◦(s) 6= ◦}, t is the restriction of t◦ on S and for every states

s, u ∈ S,

p(s, u) = PM◦,s(ss1 · · · snu | t◦(s1) = . . . = t◦(sn) = ◦} .

The projection π is the identity on S. The finite delay hypothesis guarantees that ∀s ∈

S,
∑

u p(s, u) = 1 thus M is a Markov chain. ◭
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Equivalence between Markov chain and binary trees

◮ Lemma 37 (Every chain is the projection of a binary tree). Let M = (S, t, p) be a Σ-

labelled Markov chain and s0 a state of M. Then there exists a Σ◦-labelled binary tree

t◦ : {0, 1}∗ → Σ◦ and a projection π of t◦ to M such that π(ǫ) = s0.

Proof of Lemma 37. The tree t◦ and the projection mapping

π : {w ∈ {0, 1}∗ | t(w) 6= ◦} → S

are defined inductively. Initially we set π(ǫ) = s0 and t◦(ǫ) = t(s0). Assume that π and t◦
are already defined for some node w ∈ {0, 1}∗ such that π(w) ∈ S. Denote s = π(w). We

fix an enumeration (finite or infinite) of the successors of s in M.

{z1, z2, . . .} = {z ∈ S | p(s, z) > 0} .

For every zi we are going to define a subtree Ti rooted on w such that the leaves of Ti
are mapped by π to zi (and thus are labelled by t(zi)) and the inner nodes of Ti are labelled

by ◦.

The construction of Ti makes use of the usual continous mapping φ : {0, 1}∗ → [0, 1]

which associates with every finite sequence of bits δ1 · · · δn ∈ {0, 1}∗ the real number

φ(δ1 · · · δn) =
∑

1≤k≤n

δi

2i
∈ [0, 1[ .

We set p0 = 0 and for every successor zi of s:

pi = p(s, z1) + . . .+ p(s, zi)

Ti =
{
δ1 · · · δn ∈ {0, 1}+ | φ(δ1 · · · δn{0, 1}∗) ⊆]pi−1, pi[

}

Li = {δ1 · · · δn ∈ Ti | δ1 · · · δn−1 6∈ Ti} .

The definition of π is expanded to
⋃
zi
wLi, as follows.

∀δ1 · · · δn ∈ Li, π(wδ1 · · · δn) = zi . (8)

The condition (5) in the definition of a projection holds: denote µ the uniform Lebesgue

measure on [0, 1], then for every successor zi,

Pt◦,w({w,w1, · · · , wn ∈ S∗
◦ | t◦(w1) = . . . = t◦(wn−1) = ◦ and π(wn) = zi})

=
∑

δ1···δn∈Li

Pt◦,w(reach node wδ1 · · · δn) =
∑

δ1···δn∈Li

1

2n

=
∑

δ1···δn∈Li

µ(φ(δ1 · · · δn{0, 1}∗))

= µ(]pi−1, pi[) = pi − pi−1

= p(s, zi) .

The first equality is by inductive definition of π and t◦, the second is by definition of a Markov

binary tree, the third is a simple computation, as well as the two last ones. The fourth

equality holds because the collection of intervals (φ(δ1 · · · δn{0, 1}∗))δ1···δn∈Li
is a partition

of ]pi−1, pi[: by definition these intervals are contained in ]pi−1, pi[, they are disjoint because
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φ(w{0, 1}∗) ∩ φ(w′{0, 1}∗) 6= ∅ implies that w ⊑ w′ or w′ ⊑ w but Li is prefix-free and for

any x ∈]pi−1, pi[ there exists k, n such that

x ∈

[
k

2n
−

1

2n
,
k

2n
+

1

2n

[
⊆ ]pi−1, pi[ .

This terminates the inductive step of the construction of π and t◦ and the proof of the

lemma. ◭

The correspondance between Σ◦-labelled Markov chains and their projections on Σ has

a logical counterpart. For every CTL∗[∃, ∀,P>0,P=1] formula ξ on the alphabet Σ, there is a

similar CTL∗[∃, ∀,P>0,P=1] formula ξ̂ on the alphabet Σ◦, such that a Σ◦-labelled Markov

chain satisfies ξ̂ if and only if its projection on Σ satisfies ξ.

◮ Definition 38 (Lifting of a CTL∗[∃, ∀,P>0,P=1] formula on Σ◦). Let ξ be a CTL∗[∃, ∀,P>0,P=1]

formula on Σ. The lifting of ξ on Σ◦ is the CTL∗[∃, ∀,P>0,P=1] formula ξ̂ defined inductively

by

X̂φ = X(◦Uφ̂) ∃̂φ = (¬◦) ∧ ∃
(
φ̂ ∧ ¬(⊤UG◦)

)

Ĝφ = G(◦ ∨ φ̂) ∀̂φ = (¬◦) ∧ ∀
(
φ̂ ∨ (⊤UG◦)

)

φ̂1Uφ2 = (◦ ∨ φ̂1)Uφ̂2 P̂∼b(φ) = (¬◦) ∧ P∼b(φ̂)

and the transformation from ξ to ξ̂ leaves other operators invariant.

◮ Lemma 39 (Lifting are compatible with projections). Let π a projection of a Σ◦-labelled

Markov chain M◦ on a Σ-labelled Markov chain M. For every state-formula ψ, and for

every Σ-labelled state s◦ of M◦,

(M◦, s◦ |= ψ̂) ⇐⇒ (M, π(s◦) |= ψ) .

Proof of Lemma 39. The equivalence

(M◦, s◦ |= ψ̂) ⇐⇒ (M, π(s◦) |= ψ) . (9)

is proved by induction on ψ, together with the following extra property (10). Denote

PathrM◦
= PathM◦ \ ((Σ ∪ {◦})∗{◦}ω)

the set of pathes of M◦ that go through infinitely many Σ-labelled vertices. The definition

domain of π is extended to

π : PathrM◦
→ PathM .

by projecting Σ-labelled states s to π(s) and ◦-labelled states to the empty word ǫ. We show

by induction that for every path formula φ, and every path w ∈ PathrM◦

(M◦, w |= φ̂) ⇐⇒ (M, π(w) |= φ) . (10)

Every state formula ψ is also a path formula. Assume that property (9) holds for ψ

and some state s. Then property (10) holds for ψ (seen as a path formula) and every path

starting from s, by definition of w |= ψ.
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Assume that property (10) holds for some path formula {φ′, φ1, φ2}. We show that (10)

holds for φ ∈ {Xφ′, Gφ′, φ1Uφ2}. Let w ∈ PathrM◦
, Since w visits infinitely many Σ-

labelled states, there is an infinite sequence of integers n0, n1, n2, . . . ∈ N such that t◦(w) =

a0 ◦n0 a1 ◦n1 a2 · · · . Then by definition of π, t(π(w)) = a0a1a2 · · · . We set m0 = 0 ≤ m1 =

1 + n1 ≤ m2 = 1 + n1 + 1 + n2 ≤ . . . the positions where the symbols in Σ appear in w.

Then

∀i ∈ N, π(w[mi]) = π(w)[i] . (11)

The equivalence (10) holds for φ = Xφ′ because

(M◦, w |= X̂φ′) ⇐⇒ (M◦, w |= X(◦Uφ̂′)) (by definition of φ̂′)

⇐⇒ (M◦, w[m1] |= φ̂′) (by definition of m1)

⇐⇒ (M, π(w[m1]) |= φ′) (by induction hypothesis)

⇐⇒ (M, π(w)[1] |= φ′) (according to (11))

⇐⇒ (M, π(w) |= Xφ′) (by definition of |= Xφ′) .

With the same arguments, the equivalence (10) holds for φ = Gφ′ because

(M◦, w |= Ĝφ′) ⇐⇒ (M◦, w |= G(◦ ∨ φ̂′))

⇐⇒ (∀i ≥ 0,M◦, w[mi] |= φ̂′)

⇐⇒ (∀i ≥ 0,M, π(w[mi]) |= φ′)

⇐⇒ (∀i ≥ 0,M, π(w)[i]) |= φ′)

⇐⇒ (M, π(w) |= Gφ′) .

And the equivalence (10) holds for φ = φ1Uφ2 because

(M◦, w |= φ̂1Uφ2)

⇐⇒ (M◦, w |= (◦ ∨ φ̂1)Uφ̂2)

⇐⇒ ∃j ≥ 0, (M◦, w[mj ] |= φ̂2) ∧ ∀0 ≤ i < j, (M◦, w[mi] |= φ̂1)

⇐⇒ ∃j ≥ 0, (M, π(w[mj ]) |= φ2) ∧ ∀0 ≤ i < j, (M, π(w[mi]) |= φ1)

⇐⇒ ∃j ≥ 0, (M, π(w)[j]) |= φ2) ∧ ∀0 ≤ i < j, (M, π(w)[i]) |= φ1)

⇐⇒ (M, π(w) |= φ1Uφ2) .

This terminates the inductive proof of (10), under the hypothesis that (9) and (10) hold for

sub-formula.

Now we show that (9) holds ψ ∈ {∃φ′, ∀φ′,P∼bφ
′} whenever property (10) holds for φ′.

There are three cases. In case ψ = ∃φ′,

(M◦, s◦ |= ∃̂φ′)

⇐⇒ (M◦, s◦ |= (¬◦) ∧ ∃(¬(XG◦) ∧ φ̂′)) def. of ∃̂φ′

⇐⇒ (M◦, s◦ |= ∃(¬(⊤UG◦) ∧ φ̂′)) t◦(s◦) ∈ Σ

⇐⇒ ∃w◦ ∈ PathM◦(s◦), (M◦, w◦ |= ¬(⊤UG◦) ∧ φ̂′) def. of |= ∃

⇐⇒ ∃w◦ ∈ PathrM◦
(s◦), (M◦, w◦ |= φ̂′) by def.

⇐⇒ ∃w◦ ∈ PathrM◦
(s◦), (M, π(w◦) |= φ′) ind. hyp.

⇐⇒ ∃w ∈ PathM(s), (M, w |= φ′) by (7) in Lemma 36

⇐⇒ (M, s |= ∃φ′) def of |= ∃.
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The proof of (9) in case ψ = ∀φ′ is similar. In case ψ = P∼b(φ
′), we denote

L
φ̂′ = {s◦s1 · · · ∈ PathM◦(s◦) | s◦s1 · · · |= φ̂′}

Lφ′ = {ss1 · · · ∈ PathM(s) | ss1 · · · |= φ′} .

Then according to the induction hypothesis (10) for φ′,

π−1 (Lφ′) = L
φ̂′ ∩ PathrM◦

(s◦) (12)

and

(M◦, s◦ |= P̂∼b(φ′))

⇐⇒ (M◦, s◦ |= (¬◦) ∧ P∼b(φ̂′)) def. of P̂∼b(φ′)

⇐⇒ (M◦, s◦ |= P∼b(φ̂′)) because c◦(s◦) ∈ Σ

⇐⇒ PM◦,s◦

(
L
φ̂′

)
∼ b by def

⇐⇒ PM◦,s◦

(
L
φ̂′ ∩ PathrM◦

(s◦)
)

∼ b because M◦ has finite delay

⇐⇒ PM,s

(
π−1 (Lφ′)

)
∼ b by (12)

⇐⇒ PM,s (Lφ′) ∼ b by (6) in Lemma 36

⇐⇒ (M, s |= P∼b(φ
′)) by def.

This terminates the inductive step, thus property (10) holds for all path formula and

property (9) holds for all state formula. ◭

Finally, Theorem 25 is a corollary of:

◮ Lemma 40 (Equivalence). Let ξ a CTL∗[∃, ∀,P>0,P=1] formula ξ with alphabet Σ. Let ◦

a symbol not in Σ and ξ̂ the lifting of ξ on Σ◦. Then the following statements are equivalent:

i) ξ is satisfiable.

ii) ξ̂ is satisfiable by a binary tree with finite delay.

iii) ξ̂ ∧ P=0(⊤UG◦) is satisfiable by a binary tree.

iv) ξ̂ ∧ P=0(⊤UG◦) is satisfiable.

Proof. We do a circular proof. Assume that i) holds and prove ii). Then according to i) ξ

is satisfiable by some Markov chain M = (S, tM, p) and state s0 ∈ S such that M, s0 |= ξ.

According to Lemma 37, there exists a projection π from a (S ∪ {◦})-labelled binary tree t◦
to M, such that π(ǫ) = s0. According to Lemma 39 t◦, ǫ |= ξ̂, thus ii) holds. If ii) holds then

iii) holds by definition of binary trees with finite delay. Clearly iii) implies iv). Assume that

iv) holds and prove i). According to iv), ξ̂ is satisfiable by some (Σ ∪ {◦})-labelled Markov

chain M◦ with finite delay. According to Lemma 35, there exists a projection π of M◦ to

a Σ-labelled Markov chain M. According to Lemma 39 M, π(ǫ) |= ξ, thus i) holds. ◭

I From CTL∗[∃, ∀,P>0,P=1] to alternating automata: proof of
Lemma 26

Proof of Lemma 26. Given a state formula ψ in positive form we denote ψ the positive

form of its negation and call it the dual of ψ.



XX:34 Alternating Nonzero Automata

We assume that the input formula ξ is positive, which is w.l.o.g according to Lemma 33.

Let SF be the set of every state subformula of the input formula ξ, and their dual, including

⊤ and ⊥. Let PF be the set of path subformula of the state formula in SF .

With every path formula φ ∈ PF is associated a deterministic parity automaton on

infinite words, denoted Aφ. The alphabet of Aφ depends on φ. Denote SF(φ) the collection

of state formulas appearing in φ i.e. SF(φ) is the set of leaves of the syntactic tree of φ. Then

the alphabet of Aφ is the collection of subsets of SF(φ). The automaton Aφ recognizes the

sequences of valuations of the formula of SF(φ) for which the path formula φ is true. The

construction of such an automaton of size O
(

22|φ|
)

is standard (see e.g. [14]). Note that in

the case of ECTL formulas, the construction is only of size O
(
2|φ|

)
since path formulas are

directly given as deterministic Büchi automata.

States and transitions.

Every state formula ψ ∈ SF is also a state of the alternating automaton.

For every letter a ∈ Σ, the transitions from ψ = a or ψ = ¬a are local and deterministic:

a →a ⊤ ∀b 6= a, a →b ⊥

¬a →a ⊥ ∀b 6= a,¬a →b ⊤

Other transitions of the automaton do not depend on the label of the current node and

are specified without mentioning the letter.

From states ψ = ψ1 ∨ψ2 and ψ = ψ1 ∧ψ2 there are local transitions ψ → ψ1 and ψ → ψ2.

In the ∨ case the choice is made by Eve and in the ∧ case by Adam.

For every formula in ψ ∈ {∃φ, ∀φ,P>0(φ),P=1(φ)}, there are states (ψ, q)q∈Rφ
, controlled

by Eve, where Rφ is the set of states of the automaton Aφ. The state ψ is the source

of a unique local transition to (ψ, iφ), where iφ is the initial state of the automaton Aφ.

From (ψ, q) with q ∈ Rφ, Eve can choose any subset b ⊆ SF(φ) and perform a local

transition (ψ, q) → (ψ, q,b). Intuitively, for every state formula ψ0 appearing in φ, Eve

has to claim whether or not this formula holds in the current node by including or not

ψ0 in b. Adam controls (ψ, q,b) and faces a choice.

Adam can ask for a proof of the valuation b by selecting a state formula ψ0 ∈ SF(φ)

and playing the local transition (ψ, q,b) → ψ0 if ψ0 ∈ b and (ψ, q,b) → ψ0 if ψ0 6∈ b.

Adam can accept the valuation b and plays a local transition (ψ, q,b) → (ψ, q′, E)

where q →b q′ is the deterministic transition of Aψ on letter b. From there Eve has

to choose a split transition, her options depend on the exact type of ψ:

∗ If ψ = ∀φ or ψ = P=1(φ) the only option for Eve is the split transition to

((ψ, q′), (ψ, q′)).

∗ If ψ = ∃φ then Eve can choose between two split transitions leading to

either ( ⊤ , (ψ, q′) ) or ( (ψ, q′) , ⊤ ) .

∗ If ψ = P>0(φ) then Eve can choose between three split transitions leading to

either ( (ψ, q′) , (ψ, q′) ) or ( ♯ , (ψ, q′) ) or ( (ψ, q′) , ♯ ) , where ♯ is the special

absorbing pruning state. Also states ⊤ and ⊥ are absorbing.

Remark that his automaton has finite choice for Adam, the canonical choice for Adam is

to accept the valuation proposed by Eve, otherwise the automaton moves to a subformula.
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Acceptance conditions.

Every play of the acceptance game either ends up in one of the three absorbing states ⊤, ♯,⊥

or eventually stays trapped in a ≡-component whose all states contain the same state formula

ψ ∈ {∃φ, ∀φ,P>0(φ),P=1(φ)}, denoted Qψ. The acceptance conditions are defined by:

A1) (⊤ ∈ F∀ ∩ F1 ∩ F>0) and (♯ ∈ F∀ ∩ F1 \ F>0) and (⊥ ∈ Q \ (F∀ ∪ F1 ∪ F>0)).

A2) The order within Qψ extends the order between states of Aφ: if q′ < q in Aφ then

(ψ, q′) < (ψ, q) and all other states of Qψ are smaller. A play eventually trapped in Qψ
is Aφ-accepting if its projection on Rφ is an accepting computation of Aφ.

A3) Every play eventually trapped in Qψ with ψ ∈ {∃φ, ∀φ} is Aφ-accepting.

A4) Almost-every play eventually trapped in Qψ with ψ ∈ {P>0(φ),P=1(φ)} is Aφ-accepting.

A5) When the play enters a component Qψ with ψ = P>0(φ) then with positive probability

its continuation never enters neither ♯ nor ⊥.

By design, these conditions can be expressed by F∀, F1 and F>0 sets thanks to:

◮ Lemma 41. Assume a play π is eventually trapped in Qψ with ψ ∈ {∃φ, ∀φ,P>0(φ),P=1(φ)}.

Then π is Aφ-accepting if and only if the second component of its limsup is an accepting

state of Aφ.

If moreover Eve plays truthfully then (π is Aφ-accepting) ⇐⇒ (π |= φ) .

This automaton has limited choice for Adam because each time Adam asks for a proof,

the alternating automaton exits the current ≡-class. It has size O(22|ξ|

) as the union of a

polynomial number of automata (the Aφ) of size O(22|ξ|

).

We show that this automaton recognizes exactly the set of models of the CTL∗[∃, ∀,P>0,P=1]

formula, for that we describe a winning strategy for Eve if the input binary tree is a model

of the formula, and a winning strategy for Adam if not.

If the input tree t : {0, 1}∗ → Σ is a model of the formula, then Eve has a winning

strategy which maintains the following invariant:

IE: for every finite play π whose last state is of the form (s, ψ) with s a node of the tree

and ψ a state formula then t, s |= ψ .

First, Eve is always truthful about the valuations b of the inner state formulas. Second,

on vertices (s, ψ1 ∨ψ2) Eve chooses a successor (s, ψi) such that M, s |= ψi, which is possible

according to the invariant.

This guarantees the invariant IE to be maintained, since on vertices (s, ψ1∧ψ2) controlled

by Adam, the invariant guarantees M, s |= ψ1 and M, s |= ψ2 and when Adam asks for a

proof the invariant is maintained because Eve is truthful. Moreover ⊥ cannot be reached

because Eve is truthful.

To terminate the description of Eve strategy, we specify the choice of Eve in a state

(ψ, q, E) when ψ ∈ {∃φ,P>0(φ)}. When the play enters Qψ, Eve chooses a witness of

M, s |= ψ (which holds according to IE). In case ψ = ∃φ the witness is a branch of the tree

visiting the current node and satisfying φ. In case ψ = P>0(φ) the witness is a thick subtree

whose root is the current node and whose every branch satisfies φ which exists according

to Lemma 16. If ψ = ∃φ then Eve chooses the state (ψ, q′) in the direction of the witness

path and ♯ in the other direction. If ψ = P>0(φ) then Eve chooses the state (ψ, q′) in either

direction staying in the witness subtree and ♯ in the other direction.

Now that Eve strategy is defined, we show that it is winning.
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According to the invariant, no play consistent with Eve strategy reaches ψ = ⊥ thus

according to Lemma 41 all plays have limsup in F∀ and almost-all plays have limsup in F1.

When the finite play π enters for the first time a component Qψ with ψ = P>0(φ) in a

vertex (s, ψ), we show by induction on the topological structure of the automaton that there

is > 0 probability that continuations of π stay in F>0, i.e. they do not enter the ♯ state. Let

T ⊆ {0, 1}∗ be the thick subtree chosen by Eve to witness s |= P>0(φ). Every branch of T is

the projection of a continuation of π, and if this continuation stays in Qψ then by definition

of Eve strategy, it never enters ♯. Thus if all branches of T are such projections, we are done

since T is thick. Otherwise, there is at least one continuation of π which leaves Qψ in a state

6= ♯ and it will stay in non-♯ states as long as it does not enter another P>0-component, thus

we conclude with the inductive hypothesis.

Conversely assume that the input binary tree t : {0, 1}∗ → Σ is not a model of the

formula. Then we describe a winning strategy for Adam which maintains the invariant:

IA: whenever the play reaches a vertex (s, ψ) with ψ 6= ⊤ then t, s 6|= ψ .

If Eve is not truthful when proposing a valuation of the inner state formula, Adam asks

for a proof of one of the wrong entries, which obviously maintains the invariant IA. And

from every state (s, ψ1 ∧ ψ2), Adam moves to either successor (s, ψi) which maintains the

invariant IA.

Fix some strategy σ for Eve. If any play reaches ⊥ then this falsifies the F∀-condition

and Adam wins.

We show that there exists at least one play eventually trapped in some component Qψ
with ψ ∈ {∃φ, ∀φ,P>0(φ),P=1(φ)}. By design of the transitions, if a play enters ♯ then a

play of the same length does not. And according to the invariant IA, the only way to enter

⊤ is from a state of the form (s, (∃φ, q, E)) and in this case there is a play of the same length

which does not enter ⊤.

Let π be the finite play corresponding to the moment the play enters Qψ, in some vertex

(s, ψ). We can choose ψ minimal which implies that Eve is truthful in every continuation of

π whose last state is in Qψ. According to Lemma 41, for every continuation π′ of π which

stays in Qψ, (π′ is Aφ-accepting) ⇐⇒ (π′ |= φ) . According to the invariant IA t, s 6|= ψ

thus in all cases Adam wins:

if ψ = ∀φ or ψ = ∃φ one of the continuations of π stays in Qψ but is not Aφ-accepting.

If ψ = P=1(φ) there is > 0-probability that a continuation of π stays in Qψ and is not

Aφ-accepting.

If ψ = P>0(φ) then there is probability 0 that the play stays in Qψ and is Aφ-accepting.

Thus either almost-every continuation of π enters ♯ 6∈ F>0 or there is > 0-probability

that a continuation of π stays in Qψ and is not Aφ-accepting.

Thus Lemma 26 is proved when the input formula ξ is in CTL∗[∃, ∀,P>0,P=1].

Optimizing the construction for variants and fragments.

If ξ is an ECTL[∃, ∀,P>0,P=1] formula, as already noticed the deterministic parity auto-

maton Aφ is already included in ξ, thus its size is linear in | ξ |. As a consequence, the size

of the alternating automaton is "only" exponential in the size of ξ.

If ξ belongs to the fragment CTL[∃, ∀,P>0,P=1], every state subformula φ of ξ has a

single subformula which is a path formula of type Xφ′ | φ1Uφ2 | Gφ′. Thus the subformula

valuations proposed by Eve to Adam consist in one or two bits, thus they have constant
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size instead of exponential size. Moreover, the deterministic parity automaton Aφ has at

most two states: for Xφ′ and Gφ′ this is a one-state Büchi automaton, for φ1Uφ2 this is

a two-state co-Büchi automaton. Finally the state space of the alternating automaton is

linear in the size of the input formula.

When the formula has no deterministic quantifier, i.e. when it belongs to the fragment

CTL∗[P>0,P=1] then condition A3 becomes trivial. Since the F∀ condition is not used in

any of the other conditions A1-A5, the alternating automaton is F∀-trivial. ◭
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