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Abstract

The foundation of a railway track may be non-uniform due to a number of reasons and this area is currently the subject of significant
research. In this article, a new method has been developed for computing the responses of railway tracks based on a non-uniform
foundation subjected to moving forces. This method is a coupling of an analytical model for the rail together with the sleepers
and a finite element method for the foundation. In steady-state, it is supposed that the responses are unchanged when the moving
forces come and go away from a larger interval of the railway track which contains a non-uniform zone. The dynamical stiffness
matrix (DSM) of the foundation is computed by the finite element method and it is transformed to meet the steady state boundary
condition. On the other hand, the rail together with the sleepers and rail pads are modelled by a periodically supported beam
subjected to moving forces. This analytical model leads to a relation between the reactions forces and the displacements of the
sleepers. This relation describes also the degrees of freedom (DOFs) of the nodes of the foundation at the contact surfaces with the
sleepers. Then, a transformation technique has been developed in order to substitute the analytical relation into the DSM. Finally,
the responses have been computed by using the transformed DSM. This method is a coupling of the analytical and numerical
methods. Therefore, it has reduced all DOFs of the track components (sleepers, rail, and rail pads) which gives a significant
advantage in computational time.
c© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the organizing committee of EURODYN 2017.
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1. Introduction

The influence of a non-uniform foundation on the response of a railway track has been studied by different methods
including [1–6]. The most pressing difficulty of the numerical methods is that the rail with its supports (sleepers) and
the foundation are not of the same scale (the dimensions of foundation is much larger than ones of sleepers and rails)
which increases the degrees of freedom (DOF) and costs computing time. Recently, some authors have developed
different techniques to reduce the number of DOF.
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Fig. 1. Coupling of analytical and numerical models

This article presents a new model which is a coupling of analytical and numerical methods. When the rail together
with its supports is considered as a periodically supported beam, Hoang et al. [1,7] proved a relation between the
support displacements and reaction forces in the steady state and this relation holds for all types of foundation. By
using this analytical model, we can write this relation for all DOF at the contact surfaces between the sleepers and
the foundation. Then, this relation is substituted in the finite element model of the foundation in order to get the
dynamical response.

2. Formulations

Let us consider a railway track based on a visco-elastic foundation which contains a defect zone as shown in Figure
1. In this model, we consider the rail as an infinite beam subjected to moving forces and the sleepers are concentrated
supports which are distributed periodically along the beam (the rail together with its supports is called a periodically
supported beam subjected to moving forces). Otherwise, the foundation is a 2D visco-elastic mater which is modelled
by the finite element method.

Nomenclature

u vector of nodal displacements
f vector of nodal forces
D dynamical stiffness matrix of the foundation
S denotes the foundation DOF at the contact surfaces with the sleepers
L denotes the foundation DOF at the left boundary
R denotes the foundation DOF at the right boundary
I denotes the other foundation DOF
ω angular frequency
Qe equivalent force of the periodically supported beam
Ke equivalent stiffness of the periodically supported beam

By using the finite element method we can obtain the following results from the dynamic equation of the foundation

Mü(t) + Cu̇(t) + Ku(t) = F(t) (1)

where M,C and K are the mass, damping and stiffness matrices of the foundation, and u(t),F(t) are the nodal dis-
placements and forces. We can write the aforementioned equation in the frequency domain(

−ω2M + iωC + K
)

u(ω) = F(ω) (2)

or

D(ω)u(ω) = F(ω) (3)

where D(ω) = −ω2M + iωC + K is the dynamic stiffness matrix of the foundation.
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Fig. 2. Nodal forces and displacement at sleeper contact surfaces

If we separate the inner and boundary DOF of the foundation, we can write

u =


uS

uL

uR

uI

 , F =


fS

fL

fR

0

 (4)

where S , L, R and I denote for the nodes in the different parts of the foundation as shown in Figure 1 (see Table of
nomenclature). Then, equation 3 can be rewritten as follows

DS S DS L DS R DS I

DLS DLL DLR DLI

DRS DRL DRR DRI

DIS DIL DIR DII




uS

uL

uR

uI

 =


fS

fL

fR

0

 (5)

In the steady state, we suppose that the defect zone is included in a sufficiently large interval of track so that the
dynamical responses are unchanged when the moving forces come and leave this interval but with a delay which is
equal to the time for the force to cover the length of the track interval (so-called the steady state condition)

uR = uLei ωL
v , fR = −fLei ωL

v (6)

where L, v are the length of the interval and the moving force speed respectively.
By substituting equation 6 into equation 5 and transforming the rows and columns of the matrix D corresponding

to uL and uR, we can obtain the following resultDS S D̃S L DS I

D̃LS D̃LL D̃LI

DIS D̃IL DII


uS

uL

uI

 =

 fS

0
0

 (7)

where

D̃LL = DLL + DRR + ei ωL
v DLR + e−i ωL

v DRL

D̃S L = DS L + ei ωL
v DS R, D̃IL = DIL + ei ωL

v DIR

D̃LS = DLS + e−i ωL
v DRS , D̃LI = DLI + e−i ωL

v DRI

Equation 7 is a reduced form of the dynamic equation under the steady state condition. We need to calculate the
nodal forces fS at the contact surface between the sleepers and the foundation. We suppose that the sleeper is rigid
with one degree of freedom corresponding to its vertical displacement. Therefore, all DOF of foundation at the contact
surface with a sleeper have the same vertical displacement which is equal to the sleeper displacement. For example,
we denote w1,R1 the displacement and reaction force of the sleeper S 1 as shown in Figure 2, we have

∀i ∈ ∂S 1 : ui = w1, and
∑

i

fi = −R1 (8)

where ∂S 1 is the contact surface between the sleeper S 1 and the foundation. Therefore, if we denote dik the rows of
DSM corresponding to nodal force fi and dki the column of DSM corresponding to DOF ui, we have

fi =
∑

k

dikuk ∀i ∈ ∂S 1 (9)
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By combining equations 8 and 9, we have

−R1 =
∑

i∈∂S 1

∑
k

dikuk =
∑

k

∑
i∈∂S 1

dik

 uk =
∑

k

d̃S 1kuk (10)

where d̃S 1k =
∑

i∈∂S 1
dik. Thus, equation 10 defines a new row of DSM which is the sum of all rows corresponding to

the nodal force fi with i ∈ ∂S 1.
In a similar way, we have

fk =
∑

i<∂S 1

dkiui +
∑

i∈∂S 1

dkiui ∀k (11)

By substituting equation 8 into the aforementioned equation, we obtain

fk =
∑

i<∂S 1

dkiui +

∑
i∈∂S 1

dki

 w1 =
∑

i<∂S 1

dkiui + d̃kS 1 w1 (12)

where d̃kS 1 =
∑

i∈∂S 1
dki. Hence, equation 12 defines a new column in DSM which is the sum of all column corre-

sponding to DOF ui with i ∈ ∂S 1.
Therefore, we can replace rows and columns of DSM which correspond to DOF and nodal force at the contact

surface with each sleeper by theirs sums to obtain a new row and a new column which justify equation 7 with DOF and
nodal forces replaced by the sleeper displacement and contact force. In the other way, if we denote wS = (w1 · · ·wN)T

and Rs = (R1 · · ·RN)T the vectors of the displacements and reaction forces of all sleepers, we can obtain the following
result from equation 7D∗S S D̃∗S L D∗S I

D̃∗LS D̃LL D̃LI

D∗IS D̃IL DII


wS

uL

uI

 =

−RS

0
0

 (13)

By substituting the second and third rows of the aforementioned equation into the first one, we can deduce

RS = −D̃S wS (14)

where

D̃S = D̃S S −
(
D̃∗S L D∗S I

) ( D̃LL D̃LI

D̃IL DII

)−1 (
D̃∗LS
D∗IS

)
(15)

On the other side, the beam and its supports is modelled as a periodically supported beam. This analytical model
permits to obtain a relation between the supports displacements and reaction forces by using the beam dynamical
equation and the steady state condition as follows (see [1])

CeR̃S = w̃S + we (16)

where R̃S and w̃S are the sleeper responses in the reference of the moving forces. That means R̃S = T RS , w̃S = T wS ,
with T is transformation matrix of the two references which is given by

T = diag
(
eiω a1

v eiω a2
v · · · eiω aN

v

)
(17)

where ap is the coordinate of the sleeper p. The functions Ce,we are calculated by [1]

Ce =


η0 η1 · · · ηm−1
ηm−1 η0 · · · ηm−2
...
η1 η2 · · · η0

 , we =
1

vEI

K∑
j=1

Q je−i ωv D j(
ω
v

)4
− λ4


1
1
...
1

 (18)
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Table 1. Parameters of a railway track

Parameters Unit Value

Rail mass (ρS ) kg/m 60
Rail stiffness (EI) MNm2 6.3
Train speed (v) km/h 160
Charge per wheel (Q) kN 100
Distance between sleepers (l) m 0.6
Sleeper width m 0.3
Mass density of foundation kg/m3 2 710
Young’s modulus of foundation GPa 50
Young’s modulus of defect zone GPa 1.0
Poisson’s coefficient of foundation 0.25

where λ =
4
√

ρSω2

EI with ρ, S , E and I are the mass density, beam section, Young’s modulus and the inertia of the rail,
Q j,D j are the loads and their relative distances as shown in Figure 1. The functions ηp (0 ≤ p ≤ m − 1) depend only
on the parameter of the beam and the moving forces as follows

ηp =
1

LEI

∑
n∈Z

ei2πn p
m(

ω
v + 2πn

L

)4
− λ4

(19)

By substituting equation 16 into equation 14, we obtain

RS =
(
CeT + T D̃−1

S

)−1
we (20)

Equation 20 permits to compute the sleeper response. Then, the foundation response can be obtained by using this
result and equation 13. We note that this model has the same number of DOF as the foundation. Therefore, we can
calculate the dynamic response of the railway track without involving DOF of the rail and its supports in this model.

3. Example

Let us consider a railway track based on a 2D elastic foundation of depth h = 1.2m. This foundation contain a
defect zone of width a = 1.8m where the Young’s modulus is lower. We compute the response of the track interval
of length L = 10.2m which contains 17 sleeper spacing and the defect zone is at the center subjected a moving load
Q = 100kN as shown in Figure 1 and the railway track parameters are given in Table 1.
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Fig. 3. Response of sleepers

In this example, we suppose that the nodes at the bottom boundary of the foundation are fixed. The mesh is created
with size of 0.2m with a bilinear plane strain quadrilateral element (type ’CPE4’ in ABAQUS) with thickness equal
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to a half of the sleeper length. Each sleeper of width 0.3m covers 2 nodes of the contact surface among 4 nodes
corresponding to the sleeper spacing l = 0.6m. Figures 3 shows the response of the sleepers in the frequency domain.
The calculation is performed for the frequency [0 80Hz]. The sleeper response in the time domain is calculated by the
inverse Fourier transform and the results are shown in Figure 4. We see that while the sleeper displacements increase
in the defect zone, the reaction force decreases. Moreover, the reaction force of the sleeper next to the defect zone
increases.
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Fig. 4. Response of sleepers

4. Conclusion

A new method to calculate the response of a railway track has been developed by coupling analytical and numerical
methods. From the finite element model of the foundation, the dynamical stiffness matrix is transformed to obtain a
reduced DSM but this is a global matrix of the foundation together with the track. Therefore, this method reduces the
number of DOF in a significant way. In perspective, we can include the finite elements of sleepers in the numerical
model in order to analyse the dynamics of the sleepers together with the foundation.
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