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FULLY NON-LINEAR PARABOLIC EQUATIONS
ON COMPACT HERMITIAN MANIFOLDS 1

Duong H. Phong and Dat T. Tô

Abstract

A notion of parabolic C-subsolutions is introduced for parabolic equations, ex-
tending the theory of C-subsolutions recently developed by B. Guan and more specif-
ically G. Székelyhidi for elliptic equations. The resulting parabolic theory provides
a convenient unified approach for the study of many geometric flows.

1 Introduction

Subsolutions play an important role in the theory of partial differential equations. Their

existence can be viewed as an indication of the absence of any global obstruction. Perhaps
more importantly, it can imply crucial a priori estimates, as for example in the Dirichlet

problem for the complex Monge-Ampère equation [43, 18]. However, for compact manifolds

without boundary, it is necessary to extend the notion of subsolution, since the standard
notion may be excluded by either the maximum principle or cohomological constraints.

Very recently, more flexible and compelling notions of subsolutions have been proposed
by Guan [19] and Székelyhidi [50]. In particular, they show that their notions, called

C-subsolution in [50], do imply the existence of solutions and estimates for a wide variety
of fully non-linear elliptic equations on Hermitian manifolds. It is natural to consider also

the parabolic case. This was done by Guan, Shi, and Sui in [21] for the usual notion of
subsolution and for the Dirichlet problem. We now carry this out for the more general

notion of C-subsolution on compact Hermitian manifolds, adapting the methods of [19] and
especially [50]. As we shall see, the resulting parabolic theory provides a convenient unified

approach to the many parabolic equations which have been studied in the literature.

Let (X,α) be a compact Hermitian manifold of dimension n, α = i αk̄jdz
j ∧ dz̄k > 0,

and χ(z) be a real (1, 1)- form,

χ = i χk̄j(z)dz
j ∧ dz̄k.

If u ∈ C2(X), let A[u] be the matrix with entries A[u]kj = αkm̄(χm̄j+∂j∂m̄u). We consider
the fully nonlinear parabolic equation,

∂tu = F (A[u])− ψ(z), (1.1)

1The first author was supported in part by the National Science Foundation under NSF Grant DMS-
12-66033. The second author was supported by the CFM foundation and ATUPS travel grant.
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where F (A) is a smooth symmetric function F (A) = f(λ[u]) of the eigenvalues λj[u],
1 ≤ j ≤ n of A[u], defined on a open symmetric, convex cone Γ ⊂ Rn with vertex at the

origin and containing the positive orthant Γn. We shall assume throughout the paper that
f satisfies the following conditions:

(1) fi > 0 for all i, and f is concave.

(2) f(λ) → −∞ as λ→ ∂Γ

(3) For any σ < supΓ f and λ ∈ Γ, we have limt→∞ f(tλ) > σ.

We shall say that a C2 function u on X is admissible if the vector of eigenvalues of
the corresponding matrix A is in Γ for any z ∈ X . Fix T ∈ (0,∞]. To alleviate the

terminology, we shall also designate by the same adjective functions in C2,1(X × [0, T ))
which are admissible for each fixed t ∈ [0, T ). The following notion of subsolution is an

adaptation to the parabolic case of Székelyhidi’s [50] notion in the elliptic case:

Definition 1 An admissible function u ∈ C2,1(X × [0, T )) is said to be a (parabolic) C-

subsolution of (1.1), if there exist constants δ,K > 0, so that for any (z, t) ∈ X × [0, T ),
the condition

f(λ[u(z, t)] + µ)− ∂tu+ τ = ψ(z), µ+ δI ∈ Γn, τ > −δ (1.2)

implies that |µ| + |τ | < K. Here I denotes the vector (1, · · · , 1) of eigenvalues of the

identity matrix.

We shall see below (§4.1) that this notion is more general than the classical notion

defined by f(λ([u]))−∂tu(z, t) > ψ(z, t) and studied by Guan-Shi-Sui [21]. A C-subsolution
in the sense of Székelyhidi of the equation F (A[u])− ψ = 0 can be viewed as a parabolic

C-subsolution of the equation (1.1) which is time-independent. But more generally, to
solve the equation F (A[u]) − ψ = 0 by say the method of continuity, we must choose a

time-dependent deformation of this equation, and we would need then a C-subsolution for
each time. The heat equation (1.1) and the above notion of parabolic subsolution can be

viewed as a canonical choice of deformation.

To discuss our results, we need a finer classification of non-linear partial differential

operators due to Trudinger [61]. Let Γ∞ be the projection of Γn onto Rn−1,

Γ∞ = {λ′ = (λ1, · · · , λn−1); λ = (λ1, · · · , λn) ∈ Γ for some λn} (1.3)

and define the function f∞ on Γ∞ by

f∞(λ′) = limλn→∞f(λ
′, λn). (1.4)

It is shown in [61] that, as a consequence of the concavity of f , the limit is either finite for
all λ′ ∈ Γ∞ or infinite for all λ′ ∈ Γ∞. We shall refer to the first case as the bounded case,
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and to the second case as the unbounded case. For example, Monge-Ampère flows belong
to the unbounded case, while the J-flow and Hessian quotient flows belong to the bounded

case. In the unbounded case, any admissible function, and in particular 0 if λ[χ] ∈ Γ, is a
C-subsolution in both the elliptic and parabolic cases. We have then:

Theorem 1 Consider the flow (1.1), and assume that f is in the unbounded case. Then

for any admissible initial data u0, the flow admits a smooth solution u(z, t) on [0,∞), and
its normalization ũ defined by

ũ := u− 1

V

∫

X
uαn, V =

∫

X
αn, (1.5)

converges in C∞ to a function ũ∞ satisfying the following equation for some constant c,

F (A[ũ∞]) = ψ(z) + c. (1.6)

The situation is more complicated when f belongs to the bounded case:

Theorem 2 Consider the flow (1.1), and assume that it admits a subsolution u on X ×
[0,∞), but that f is in the bounded case. Then for any admissible data u0, the equation

admits a smooth solution u(z, t) on (0,∞). Let ũ be the normalization of the solution u,
defined as before by (1.5). Assume that either one of the following two conditions holds.

(a) The initial data and the subsolution satisfy

∂tu ≥ supX(F (A[u0])− ψ); (1.7)

(b) or there exists a function h(t) with h′(t) ≤ 0 so that

supX(u(t)− h(t)− u(t)) ≥ 0 (1.8)

and the Harnack inequality

supX(u(t)− h(t)) ≤ −C1infX(u(t)− h(t)) + C2 (1.9)

holds for some constants C1, C2 > 0 independent of time.

Then ũ converges in C∞ to a function ũ∞ satisfying (1.6) for some constant c.

The essence of the above theorems resides in the a priori estimates which are established
in §2. The C1 and C2 estimates can be adapted from the corresponding estimates for C-

subsolutions in the elliptic case, but the C0 estimate turns out to be more subtle. Following
Blocki [1] and Székelyhidi [50], we obtain C0 estimates from the Alexandrov-Bakelman-

Pucci (ABP) inequality, using this time a parabolic version of ABP due to K. Tso [62].
However, it turns out that the existence of a C-subsolution gives only partial information
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on the oscillation of u, and what can actually be estimated has to be formulated with some
care, leading to the distinction between the cases of f bounded and unbounded, as well as

Theorem 2.

The conditions (a) and especially (b) in Theorem 2 may seem impractical at first

sight since they involve the initial data as well as the long-time behavior of the solution.
Nevertheless, as we shall discuss in greater detail in section §4, Theorems 1 and 2 can be

successfully applied to a wide range of parabolic flows on Hermitian manifolds previously
studied in the literature, including the Kähler-Ricci flow, the Chern-Ricci flow, the J-flow,

the Hessian flows, the quotient Hessian flows, and mixed Hessian flows. We illustrate this
by deriving in §4 as a corollary of Theorem 2 a convergence theorem for a mixed Hessian

flow, which seems new to the best of our knowledge. It answers a question raised for
general 1 ≤ ℓ < k ≤ n by Fang-Lai-Ma [12] (see also Sun [44, 45, 46, 48]), and extends

the solution obtained for k = n by Collins-Székelyhidi [7] and subsequently also by Sun
[48, 49]:

Theorem 3 Assume that (X,α) is a compact Kähler n-manifold, and fix 1 ≤ ℓ < k ≤ n.
Fix a closed (1, 1)-form χ which is k-positive and non-negative constants cj, and assume

that there exists a form χ′ = χ + i∂∂̄u which is a closed k-positive form and satisfies

kc(χ′)k−1 ∧ αn−k −
ℓ
∑

j=1

jcj(χ
′)j−1 ∧ αn−j > 0, (1.10)

in the sense of positivity of (n− 1, n− 1)-forms. Here the constant c is given by

c[χk][αn−k] =
ℓ
∑

j=1

cj[χ
j ][αn−j]. (1.11)

Then the flow

∂tu = −
∑ℓ
j=1 cjσj(λ(A[u]))

σk(λ(A[u]))
+ c, u(·, 0) = 0, (1.12)

admits a solution for all time which converges smoothly to a function u∞ as t→ ∞. The
form ω = χ+ i∂∂̄u∞ is k-positive and satisfies the equation

c ωk ∧ αn−k =
ℓ
∑

j=1

cj ω
j ∧ αn−j. (1.13)

Regarding the condition (a) in Theorem 2, we note that natural geometric flows whose

long-time behavior may be very sensitive to the initial data are appearing increasingly
frequently in non-Kähler geometry. A prime example is the Anomaly flow, studied in

[33, 36, 37, 38, 13]. Finally, Theorem 2 will also be seen to imply as a corollary a theorem
of Székelyhidi ([50], Proposition 26), and the condition for solvability there will be seen to

correspond to condition (a) in Theorem 2. This suggests in particular that some additional
conditions for the convergence of the flow cannot be dispensed with altogether.
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2 A Priori Estimates

2.1 C0 Estimates

We begin with the C0 estimates implied by the existence of a C-subsolution for the
parabolic flow (1.1). One of the key results of [50] was that the existence of a subso-

lution in the elliptic case implies a uniform bound for the oscillation of the unknown
function u. In the parabolic case, we have only the following weaker estimate:

Lemma 1 Assume that the equation (1.1) admits a parabolic C-solution on X × [0, T ) in

the sense of Definition 1, and that there exists a C1 function h(t) with h′(t) ≤ 0 and

supX(u(·, t)− u(·, t)− h(t)) ≥ 0. (2.1)

Then there exists a constant C depending only on χ, α, δ, ‖u0‖C0, and ‖i∂∂̄u‖L∞ so that

u(·, t)− u(·, t)− h(t) ≥ −C for all (z, t) ∈ X × [0, T ). (2.2)

Proof. First, note that by Lemma 6 proven later in §3, the function ∂tu is uniformly

bounded for all time by a constant depending only on ψ and the initial data u0. Integrating
this estimate on [0, δ] gives a bound for |u| on X × [0, δ] depending only on ψ, u0 and δ.

Thus we need only consider the range t ≥ δ. Next, the fact that u is a parabolic subsolution

and the condition that h′(t) ≤ 0 imply that u+ h(t) is a parabolic subsolution as well. So
it suffices to prove the desired inequality with h(t) = 0, as long as the constants involved

do not depend on ∂tu. Fix now any T ′ < T , and set for each t, v = u− u, and

L = minX×[0,T ′]v = v(z0, t0) (2.3)

for some (z0, t0) ∈ X × [0, T ′]. We shall show that L can be bounded from below by a
constant depending only on the initial data u0 and independent of T ′. We can assume that

t0 > 0, otherwise we are already done. Let (z1, · · · , zn) be local holomorphic coordinates
for X centered at z0, U = {z; |z| < 1}, and define the following function on the set

U = U × {t;−δ ≤ 2(t− t0) < δ},

w = v +
δ2

4
|z|2 + |t− t0|2, (2.4)

where δ > 0 is the constant appearing in the definition of subsolutions. Clearly w attains

its minimum on U at (z0, t0), and w ≥ minUw+
1
4
δ2 on the parabolic boundary of U . We can

thus apply the following parabolic version of the Alexandrov-Bakelman-Pucci inequality,

due to K. Tso ([62], Proposition 2.1, with the function u there set to u = −w+minUw+
δ2

4
):

Let U be the subset of R2n+1 defined above, and let w : U → R be a smooth function
which attains its minimum at (0, t0), and w ≥ minUw + 1

4
δ2 on the parabolic boundary of

U . Define the set

S :=

{

(x, t) ∈ U :
w(x, t) ≤ w(z0, t0) +

1
4
δ2, |Dxw(x, t)| < δ2

8
, and

w(y, s) ≥ w(x, t) +Dxw(x, t).(y − x), ∀y ∈ U, s ≤ t

}

. (2.5)
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Then there is a constant C = C(n) > 0 so that

Cδ4n+2 ≤
∫

S
(−wt) det(wij)dxdt.

Returning to the proof of Lemma 1, we claim that, on the set S, we have

|wt|+ det (D2
jkw) ≤ C (2.6)

for some constant depending only on δ, and ‖i∂∂̄u‖L∞ . Indeed, let

µ = λ[u]− λ[u], τ = −∂tu+ ∂tu. (2.7)

Along S, we have D2
ijw ≥ 0 and ∂tw ≤ 0. In terms of µ and τ , this means that µ+ δI ∈ Γn

and 0 ≤ −∂tw = τ − 2(t− t0) ≤ τ + δ. The fact that u is a solution of the equation (1.1)

can be expressed as

f(λ[u] + µ)− ∂tu+ τ = ψ(z). (2.8)

Thus the condition that u is a parabolic subsolution implies that |µ| and |τ | are bounded

uniformly in (z, t). Since along S, we have det(D2
ijw) ≤ 2n(det(D2

k̄jw))
2, it follows that

both |wt| and det(D2
ijw) are bounded uniformly, as was to be shown.

Next, by the definition of the points (x, t) on S, we have w(x, t) ≤ L + δ2

4
. Since we

can assume that |L| > δ2, it follows that w < 0 and |w| ≥ |L|
2

on S. Thus we can write, in

view of (2.6), for any p > 0,

Cnδ
4n+2 ≤ C

∫

S
dxdt ≤

(

|L|
2

)−p
∫

S
|w(x, t)|pdxdt ≤

(

|L|
2

)−p
∫

U
|w(x, t)|pdxdt. (2.9)

Next write

|w| = −w = −v − δ2

4
|z|2 − (t− t0)

2 ≤ −v
≤ −v + supXv (2.10)

since supXv ≥ 0 by the assumption (2.1). Since λ[u] ∈ Γ and the cone Γ is convex, it

follows that ∆u ≥ −C and hence

∆(v − supX v) = ∆u−∆u ≥ −A (2.11)

for some constant A depending only on χ, α, and ‖i∂∂̄u‖L∞ . The Harnack inequality
applied to the function v− supXv, in the version provided by Proposition 10, [50], implies

that

‖v − supXv‖Lp(X) ≤ C (2.12)

for C depending only on (X,α), A, and p. Substituting these bounds into (2.9) gives

Cδ4n+2 ≤
(

|L|
2

)−p
∫

|t|< 1
2
δ
‖supXv − v‖pLp(X)dt ≤ C ′δ

(

|L|
2

)−p

(2.13)

from which the desired bound for L follows. Q.E.D.
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2.2 C2 Estimates

In this section we prove an estimate for the complex Hessian of u in terms of the gradient.

The original strategy goes back to the work of Chou-Wang [6], with adaptation to complex
Hessian equations by Hou-Ma-Wu [25], and to fully non-linear elliptic equations admitting

a C-subsolution by Guan [19] and Székelyhidi [50]. Other adaptations to C2 estimates can
be found in [51], [32], [34], [67]. We follow closely [50].

Lemma 2 Assume that the flow (1.1) admits a C-subsolution on X × [0, T ). Then we
have the following estimate

|i∂∂̄u| ≤ C̃(1 + sup
X×[0,T )

|∇u|2α) (2.14)

where C̃ depends only on ‖α‖C2, ‖ψ‖C2, ‖χ‖C2, ‖ũ − ũ‖L∞ , ‖∇u‖L∞ , ‖i∂∂̄u‖L∞ , ‖∂tu‖L∞,

‖∂t(u− u)‖L∞, and the dimension n.

Proof. Let L = −∂t + F kk̄∇k∇k̄. Denote g = χ + i∂∂̄u, then A[u]kj = αkp̄gp̄j . We would
like to apply the maximum principle to the function

G = log λ1 + φ(|∇u|2) + ϕ(ṽ) (2.15)

where v = u − u, ṽ is the normalization of v, λ1 : X → R is the largest eigenvalue of the
matrix A[u] at each point, and the functions φ and ϕ will be specified below. Since the

eigenvalues of A[u] may not be distinct, we perturb A[u] following the technique of [50],

Proposition 13. Thus assume that G attains its maximum on X × [0, T ′] at some (z0, t0),
with t0 > 0. We choose local complex coordinates, so that z0 corresponds to 0, and A[u]

is diagonal at 0 with eigenvalues λ1 ≥ · · · ≥ λn. Let B = (Bi
j) be a diagonal matrix with

0 = B1
1 < B2

2 < · · · < Bn
n and small constant entries, and set Ã = A− B. Then at the

origin Ã has eigenvalues λ̃1 = λ1, λ̃i = λi −Bi
i < λ̃1 for all i > 1.

Since all the eigenvalues of Ã are distinct, we can define near 0 the following smooth
function G̃,

G̃ = log λ̃1 + φ(|∇u|2) + ϕ(ṽ) (2.16)

where

φ(t) = −1

2
log (1− t

2P
), P = supX×[0,T ′](|∇u|2 + 1) (2.17)

and, following [51]

ϕ(t) = D1e
−D2t (2.18)
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for some large constants D1, D2 to be chosen later. Note that

1

4P
≤ φ′ ≤ 1

2P
, φ′′ = 2(φ′)2 > 0. (2.19)

The norm |∇u|2 is taken with respect to the fixed Hermitian metric α on X , and we

shall compute using covariant derivatives ∇ with respect to α. Since the matrix Bj
m is

constant in a neighborhood of 0 and since we are using the Chern unitary connection, we

have ∇k̄B
j
m = 0. Our conventions for the curvature and torsion tensors of a Hermitian

metric α are as follows,

[∇β,∇α]V
γ = Rαβ

γ
δV

δ + T δαβ∇δV
γ. (2.20)

We also set

F =
∑

i

fi(λ[u]). (2.21)

An important observation is that there exists a constant C1, depending only on ‖ψ‖L∞(X)

and ‖∂tu‖L∞(X×[0,T )) so that

F ≥ C1. (2.22)

Indeed it follows from the properties of the cone Γ that
∑

i fi(λ) ≥ C(σ) for each fixed σ

and λ ∈ Γσ. When λ = λ[u], σ must lie in the range of ∂tu + ψ, which is a compact set
bounded by ‖∂tu‖L∞(X×[0,T )) + ‖ψ‖L∞(X), hence our claim.

2.2.1 Estimate of L( log λ̃1)
Clearly

L log λ̃1 =
1

λ1
(F kk̄λ̃1,k̄k − ∂tλ̃1)− F kk̄ |λ̃1,k̄|2

λ21
. (2.23)

We work out the term F kk̄λ̃1,k̄k−∂tλ̃1 using the flow. The usual differentiation rules ([43])
readily give

λ̃1,k̄ = ∇k̄g1̄1 (2.24)

and

λ̃1,k̄k = ∇k∇k̄g1̄1 +
∑

p>1

|∇k̄gp̄1|2 + |∇k̄g1̄p|2
λ1 − λ̃p

−
∑

p>1

∇kB
1
p∇k̄gp̄1 +∇kB

p
1∇k̄g1̄p

λ1 − λ̃p
. (2.25)

while it follows from the flow that

∂tλ̃1 = ∂tu1̄1 = F lk̄,sr̄∇1̄gk̄l∇1gr̄s + F kk̄∇1∇1̄gk̄k − ψ1̄1. (2.26)
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Thus

F kk̄λ̃1,k̄k − ∂tλ̃1 = F kk̄(∇k∇k̄g1̄1 −∇1∇1̄gk̄k) + F lk̄,sr̄∇1̄gk̄l∇1gr̄s − ψ1̄1

+F kk̄
∑

p>1

{|∇k̄gp̄1|2 + |∇k̄g1̄p|2
λ1 − λ̃p

− ∇kB
1
p∇k̄gp̄1 +∇kB

p
1∇k̄g1̄p

λ1 − λ̃p
}

A simple computation gives

∇k∇k̄g1̄1 −∇1∇1̄gk̄k = −2Re(T pk1∇k̄gp̄1) + T ⋆∇χ+R ⋆∇∇̄u+ T ⋆ T ⋆∇∇̄u
≥ −2Re(T pk1∇k̄gp̄1)− C2(λ1 + 1), (2.27)

where C2 depending only on ‖α‖C2 and ‖χ‖C2 . We also have

∑

p>1

{|∇k̄gp̄1|2 + |∇k̄g1̄p|2
λ1 − λ̃p

− ∇kB
1
p∇k̄gp̄1 +∇kB

p
1∇k̄g1̄p

λ1 − λ̃p
} (2.28)

≥ 1

2

∑

p>1

|∇k̄gp̄1|2 + |∇k̄g1̄p|2
λ1 − λ̃p

− C3 ≥
1

2(nλ1 + 1)

∑

p>1

|∇k̄gp̄1|2 + |∇k̄g1̄p|2 − C3,

where C3 only depends on the dimension n, and the second inequality is due to the fact

that (λ1 − λ̃p)
−1 ≥ (nλ1 + 1)−1, which follows itself from the fact that

∑

i λi ≥ 0 and B
was chosen to be small. Thus

∇k∇k̄g1̄1 −∇1∇1̄gk̄k +
∑

p>1

{|∇k̄gp̄1|2 + |∇k̄g1̄p|2
λ1 − λ̃p

− ∇kB
1
p∇k̄gp̄1 +∇kB

p
1∇k̄g1̄p

λ1 − λ̃p
}

≥ −2Re(T pk1∇k̄gp̄1) +
1

2(nλ1 + 1)

∑

p>1

|∇k̄gp̄1|2 + |∇k̄g1̄p|2 − C2(λ1 + 1)− C3

≥ −C4|∇k̄g1̄1| − C5λ1 − C6 (2.29)

where we have used the positive terms to absorb all the terms T pk1∇k̄gp̄1, except for T
1
k1∇k̄g1̄1

and C4, C5, C6 only depend on ‖α‖C2, ‖χ‖C2, n. Altogether,

F kk̄λ̃1,k̄k − ∂tλ̃1 ≥ −C4F
kk̄|∇k̄g1̄1|+ F lk̄,sr̄∇1̄gk̄l∇1gr̄s − ψ1̄1 − C5Fλ1 − C6F (2.30)

and we find

L log λ̃1 ≥ −F kk̄ |λ̃1,k̄|2
λ21

− 1

λ1
F lk̄,sr̄∇1̄gk̄l∇1gr̄s − C4

1

λ1
F kk̄|∇k̄g1̄1| − C7F , (2.31)

where we have bounded ψ1̄1 by a constant that can be absorbed in C6F/λ1 ≤ C6F , since

λ1 ≥ 1 by assumption, and F is bounded below by a constant depending on ‖ψ‖L∞ and
‖∂tu‖L∞. The constant C7 thus only depends on ‖α‖C2, ‖χ‖C2, n, ‖∂tu‖L∞ and ‖ψ‖C2. In

view of (2.24), this can also be rewritten as

L log λ̃1 ≥ −F kk̄ |λ̃1,k̄|2
λ21

− 1

λ1
F lk̄,sr̄∇1̄gk̄l∇1gr̄s − C4

1

λ1
F kk̄|λ̃1,k̄| − C7F . (2.32)
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2.2.2 Estimate for Lφ(|∇u|2)
Next, a direct calculation gives

Lφ(|∇u|2) = φ′(F qq̄∇q∇q̄ − ∂t)|∇u|2 + φ′′F qq̄∇q|∇u|2∇q̄|∇u|2
= φ′{∇ju(F qq̄∇q∇q̄ − ∂t)∇ju+∇j̄u(F qq̄∇q∇q̄ − ∂t)∇j̄u}

+φ′F qq̄(|∇q∇u|2 + |∇q∇̄u|2) + φ′′F qq̄∇q|∇u|2∇q̄|∇u|2. (2.33)

In view of the flow, we have

∇j∂tu = F kk̄∇jgk̄k − ψj , ∇j̄∂tu = F kk̄∇j̄gk̄k − ψj̄. (2.34)

It follows that

(F kk̄∇k∇k̄ − ∂t)∇j̄u = F kk̄(∇k∇k̄uj̄ −∇j̄gk̄k) + ψj̄

= F kk̄(−∇j̄χk̄k + T pkj∇j̄∇ku+Rj̄k
m̄
k̄∇m̄u) + ψj̄ (2.35)

and hence, for small ε, there is a constant C8 > 0 depending only on ε, ‖χ‖C2, ‖α‖C2 and

||ψ‖C2 such that

φ′∇j̄u(F qq̄∇q∇q̄ − ∂t)∇j̄u ≥ −C8F − ε

P
F qq̄(|∇q∇u|2 + |∇q∇̄u|2) (2.36)

since we can assume that λ1 >> P = supX×[0,T ′](|∇u|2+1) (otherwise the desired estimate

λ1 < CP already holds), and (4P )−1 < φ′ < (2P )−1. Similarly we obtain the same estimate
for φ′∇ju(F qq̄∇q∇q̄ − ∂t)∇ju. Thus by choosing ε = 1/24, we have

Lφ(|∇u|2) ≥ −C8F +
1

8P
F qq̄(|∇q∇u|2 + |∇q∇̄u|2) + φ′′F qq̄∇q|∇u|2∇q̄|∇u|2. (2.37)

2.2.3 Estimate for LG̃
The evaluation of the remaining term Lϕ(ṽ) is straightforward,

Lϕ(ṽ) = ϕ′(ṽ)(F kk̄∇k∇k̄ṽ − ∂tṽ) + ϕ′′(ṽ)F kk̄∇kṽ∇k̄ṽ. (2.38)

Altogether, we have established the following lower bound for LG̃,

LG̃ ≥ −F kk̄ |λ̃1,k̄|2
λ21

− 1

λ1
F lk̄,sr̄∇1̄gk̄l∇1gr̄s − C4

1

λ1
F kk̄|λ1,k̄| − C9F

+
1

8P
F qq̄(|∇q∇u|2 + |∇q∇̄u|2) + φ′′F qq̄∇q|∇u|2∇q̄|∇u|2

+ϕ′(ṽ)(F kk̄∇k∇k̄ṽ − ∂tṽ) + ϕ′′(ṽ)F kk̄∇kṽ∇k̄ṽ, (2.39)

where C4 and C9 only depend on ‖χ‖C2 , ‖α‖C2, ‖ψ‖C2 , ‖∂tu‖L∞ and the dimension n.

For a small θ > 0 to be chosen hereafter, we deal with two following cases.
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2.2.4 Case 1: θλ1 ≤ −λn
In this case, we have θ2λ21 ≤ λ2n. Thus we can write

1

8P
F qq̄(|∇q∇u|2 + |∇q∇̄u|2) ≥ F nn̄

8P
|un̄n|2 =

F nn̄

8P
|λn − χn̄n|2 ≥

Fλ2n
10nP

− C10F
P

≥ θ2

10nP
Fλ21 − C10F , (2.40)

where C10 only depends on ‖χ‖C2 . Next, it is convenient to combine the first and third

terms in the expression for LG̃,

−F kk̄ |λ̃1,k̄|2
λ21

− C4
1

λ1
F kk̄|λ̃1,k̄| ≥ −3

2
F kk̄ |λ̃1,k̄|2

λ21
− C11F . (2.41)

where C11 only depends on C4.

At a maximum point for G̃, we have 0 ≥ LG̃. Combining the lower bound (2.39) for

LG̃ with the preceding inequalities and dropping the second and last terms, which are
non-negative, we obtain

0 ≥ θ2

10nP
Fλ21 − C12F − 3

2
F kk̄ |λ̃1,k̄|2

λ21
+ φ′′F qq̄|∇q̄|∇u|2|2 + ϕ′(ṽ)(F kk̄∇k∇k̄ṽ − ∂tṽ),

(2.42)

where C12 = C9 +C10 +C11, depending on ‖χ‖C2, ‖α‖C2, ‖ψ‖C2, ‖∂tu‖L∞ and n. Since we
are at a critical point of G̃, we also have ∇G̃ = 0, and hence

λ̃1,k̄
λ1

+ φ′∇k̄|∇u|2 + ϕ′∂k̄ ṽ = 0 (2.43)

which implies

3

2
F kk̄| λ̃1,k̄

λ1
|2 =

3

2
F kk̄|φ′∇k̄|∇u|2 + ϕ′∂k̄ ṽ|2 ≤ 2F kk̄(φ′)2|∇k̄|∇u|2|2 + 4F kk̄(ϕ′)2|∇k̄ṽ|2

≤ F kk̄φ′′|∇k̄|∇u|2|2 + C13FP, (2.44)

where C13 depending on ‖ṽ‖L∞ and ‖∇u‖L∞ . Since ϕ′(ṽ) is bounded in terms of ‖ṽ‖L∞

and ‖∇u‖L∞ , and |F kk̄∇k∇k̄ṽ − ∂tṽ| ≤ C14Fλ1 + C13, where C14 depending on ‖∂tv‖L∞

and ‖∂∂̄u‖L∞ , we arrive at

0 ≥ θ2

10nP
Fλ21 − C15PF , (2.45)

where C15 depends on ‖χ‖C2 , ‖α‖C2, n, ‖ψ‖C2, ‖∂∂̄u‖L∞ , ‖∇u‖L∞ , ‖ṽ‖L∞ , ‖∂tv‖L∞ and ‖∂tu‖L∞ .
This implies the desired estimate λ1 ≤ C̃ P .
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2.2.5 The key estimate provided by subsolutions

In the second case when θλ1 > −λn, we need to use the following key property of subso-

lutions.

Lemma 3 Let u be a subsolution of the equation (1.1) in the sense of Definition 1 with
the pair (δ,K). Then there exists a constant C = C(δ,K), so that, if |λ[u] − λ[u]| > K

with K in Definition 1, then either

F pq(A[u])(Apq[u]− Apq[u])− (∂tu− ∂tu) > C F (2.46)

or we have for any 1 ≤ i ≤ n,

F ii(A[u]) > C F . (2.47)

Proof. The proof is an adaptation of the one for the elliptic version [50, Proposition 6](see
also [19] for a similar argument). However, because of the time parameter t which may

tend to ∞, we need to produce explicit bounds which are independent of t. As in [50], it

suffices to prove that

n
∑

i=1

fi(λ[u])(λi[u]− λi[u])− (∂tu− ∂tu) > CF . (2.48)

For any (z0, t0) ∈ X × [0, T ′], since u is a C-subsolution as in Definition 1, the set

Az0,t0 = {(w, s)|w +
δ

2
I ∈ Γn, s ≥ −δ, f(λ[u(z0, t0)] + w)− ∂tu(z0, t0) + s ≤ ψ(z0)}

is compact, and Az0,t0 ⊂ Bn+1(0, K). For any (w, s) ∈ Az0,t0 , then the set

Cw,s = {v ∈ Rn|∃r > 0, w+rv ∈ −δI+Γn, f(λ[u(z0, t0)]+w+rv)−∂tu(z0, t0)+s = ψ(z0)}

is a cone with vertex at the origin.

We claim that Cw,s is stricly larger than Γn. Indeed, for any v ∈ Γn, we can choose
r > 0 large enough so that |w+rv| > K, then by the definition of C-subsolution, at (z0, t0)

f(λ[u] + w + rv)− ∂tu+ s > ψ(z0).

Therefore there exist r′ > 0 such that f(λ[u])+w+ r′v)−∂tu+ s = ψ(z0), hence v ∈ Cw,s.
This implies that Γn ⊂ Cw,s. Now, for any pair (i, j) with i 6= j and i, j = 1, . . . , n, we

choose v(i,j) := (v1, . . . , vn) with vi = K + δ and vj = −δ/3 and vk = 0 for k 6= i, j, then
we have w+ v(i,j) ∈ −δ1+Γn. By the definition of C-subsolution, we also have, at (z0, t0)

f(λ[u]) + w + v(i,j))− ∂tu+ s > ψ(z0),
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hence v(i,j) ∈ Cw,s for any pair (i, j).

Denote by C∗
w,s the dual cone of Cw,s,

C∗
w,s = {x ∈ Rn : 〈x, y〉 > 0, ∀y ∈ Cw,s}.

We now prove that that there is an ε > 0 such that if x = (x1, . . . , xn) ∈ C∗
w,s is a unit

vector, then xi > ε, ∀i = 1, . . . n. First we remark that xi > 0, ∀i = 1, n since Γn ⊂ Cw,s
Suppose that x1 is the smallest element between xi, then 〈x, v(1,j)〉 > 0, implies that

(K + δ)x1 ≥ δ
3
xj , hence (K + δ)2x21 ≥ (δ2/9)x2j , ∀j = 2, . . . , n, so n(K + δ)2x21 ≥ δ2/9.

Therefore we can choose ε = δ2

9n(K+δ)2
.

Fix (z1, t1) ∈ X × [0, T ′] such that at this point |λ[u]− λ[u]| > K. Let T be the tangent

plane to {(λ, τ)| f(λ) + τ = σ} at (λ[u(z1, t1)],−∂tu(z1, t1)). There are two cases:

1) There is some point (w, s) ∈ Az1,t1 such that at (z1, t1)

(λ[u] + w,−∂tu+ s) ∈ T ,
i.e

∇f(λ[u]).(λ[u] + w − λ[u]) + (−∂tu+ s+ ∂tu) = 0. (2.49)

Now for any v ∈ Cw,s, there exist r > 0 such that f(λ[u] + w + rv)− ∂tu+ s = ψ(z), this

implies that
∇f(λ[u]).(λ[u] + w + rv − λ[u]) + (−∂tu+ s + ∂tu) > 0,

so combing with (2.50) we get

∇f(λ[u]).v > 0.

It follows that at (z1, t1) we have ∇f(λ[u])(z, t) ∈ C∗
w,s, so fi(λ[u]) ≥ ε∇f(λ[u]), ∀i =

1, . . . , n, hence

fi(λ[u]) >
ε√
n

∑

p

fp(λ[u]), ∀i = 1, . . . , n,

where

ε =
δ2

9n(K + δ)2
.

2) Otherwise, we observe that if Az1,t1 6= ∅, then (w0, s0) = (−δ/2, . . . ,−δ/2,−δ) ∈ Az1,t1
and at (z1, t1), (λ[u]− w0,−ut + s0) must lie above T in the sense that

(∇f(λ[u]), 1).(λ[u] + w0 − λ[u],−∂tu+ s0 + ∂tu) > 0, at (z1, t1). (2.50)

Indeed, if it is not the case, using the monotonicity of f we can find v ∈ Γn such that
(λ[u]+w0+v,−∂tu+s0) ∈ T , so the concavity of (λ, τ) 7→ f(λ)+τ implies that (w0+v, s0)

is in Az1,t1 and then satisfies the first case, this gives a contradiction. Now it follows from
(2.50) that at (z1, t1)

(∇f(λ[u]), 1).(λ[u]− λ[u],−∂tu+ ∂tu) ≥ −∇f(λ[u]).w0 − s0

= (δ/2)F + δ ≥ (δ/2)F ,
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where F =
∑

i fi(λ[u]) > 0. This means

n
∑

i=1

fi(λ[u])(λ[u]− λ[u])− (∂tu− ut) > (δ/2)F (2.51)

as required.

Now if Az1,t1 = ∅, then at (z1, t1)

f(λ[u] + w0)− ∂tu+ s0 > ψ(z1),

hence we also have that (λ[u]+w0,−∂tu+ s0) lies above T using the concavity of (λ, τ) 7→
f(λ) + τ . By the same argument above, we also obtain the inequality (2.51).

So we get the desired inequalities. Q.E.D.

2.2.6 Case 2: θλ1 > −λn
Set

I = {i; F īi ≥ θ−1F 11̄}. (2.52)

At the maximum point ∂k̄G̃ = 0, and we can write

−
∑

k 6∈I

F kk̄ |λ̃1,k̄|2
λ21

= −
∑

k/∈I

F kk̄|φ′∇k̄|∇u|2 + ϕ′∂k̄ṽ|2

≥ −2(φ′)2
∑

k/∈I

F kk̄|∇k̄|∇u|2|2 − 2(ϕ′)2
∑

k/∈I

F kk̄|∇k̄ṽ|2

≥ −φ′′
∑

k/∈I

F kk̄|∇k̄|∇u|2|2 − 2(ϕ′)2θ−1F 11̄P − C16F , (2.53)

where C16 depends on ‖∇u‖L∞ and ‖ṽ‖L∞ . On the other hand,

−2θ
∑

k∈I

F kk̄ |λ̃1,k̄|2
λ21

≥ −2θφ′′
∑

k∈I

F kk̄|∇k̄|∇u|2|2 − 4θ(ϕ′)2
∑

k∈I

F kk̄|∇k̄ṽ|2. (2.54)

Choose 0 < θ << 1 such that 4θ(ϕ′)2 ≤ 1
2
ϕ′′. Then (2.39) implies that

0 ≥ − 1

λ1
F lk̄,sr̄∇1̄gk̄l∇1gr̄s − (1− 2θ)

∑

k∈I

F kk̄ |λ̃1,k̄|2
λ21

−C 1

λ1
F kk̄|λ̃1,k̄|+

1

8P
F qq̄(|∇q∇u|2 + |∇q∇̄u|2)

+
1

2
ϕ′′F kk̄|∇k̄ṽ|2 + ϕ′(F kk̄∇k∇k̄ṽ − ∂tṽ)− 2(ϕ′)2θ−1F 11̄P − C17F , (2.55)
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where C17 depend on ‖χ‖C2, ‖α‖C2, n, ‖ψ‖C2, ‖∂tu‖L∞ , ‖ṽ‖L∞ and ‖∇u‖L∞ . The concavity
of F implies that

F lk̄,sr̄∇1̄gk̄l∇1gr̄s ≤
∑

k∈I

F 11̄ − F kk̄

λ1 − λk
|∇1g1̄k|2 (2.56)

since F 11̄−F kk̄

λ1−λk
≤ 0. Moreover, for k ∈ I, we have F 11̄ ≤ θF kk̄, and the assumption

θλ1 ≥ −λn yields

1− θ

λ1 − λk
≥ 1− 2θ

λ1
. (2.57)

It follows that

∑

k∈I

F 11̄ − F kk̄

λ1 − λk
|∇1g1̄k|2 ≤ −

∑

k∈I

(1− θ)F kk̄

λ1 − λk
|∇1g1̄k|2 ≤ −1 − 2θ

λ1

∑

k∈I

F kk̄|∇1g1̄k|2. (2.58)

Combining with the previous inequalities, we obtain

0 ≥ −(1− 2θ)
∑

k∈I

F kk̄ |λ̃1,k̄|2 − |∇1g1̄k|2
λ21

− C17F

−C4

λ1
F kk̄|λ̃1,k̄|+

1

8P
F qq̄(|∇q∇u|2 + |∇q∇̄u|2)

+
1

2
ϕ′′F kk̄|∇k̄ṽ|2 + ϕ′(F kk̄∇k∇k̄ṽ − ∂tṽ)− 2(ϕ′)2θ−1F 11̄P. (2.59)

Since ∇1g1̄k = λ̃1,λ +O(λ1), we have

−(1− 2θ)
∑

k∈I

F kk̄ |λ̃1,k̄|2 − |∇1g1̄k|2
λ21

≥ −C18F (2.60)

where C18 depends on ‖χ‖C2 and ‖α‖C2. Next, using again the equations for critical points,

we can write

C4

λ1
F kk̄|λ̃1,k̄| =

C4

λ1
F kk̄|φ′∇k̄|∇u|2 + ϕ′∇k̄ṽ| (2.61)

≤ 1

2K
1
2

∑

F kk̄(|∇k̄∇pu|+ |∇k̄∇p̄u|) + Cε|ϕ′|F kk̄|∇k̄ṽ|2 + εC19|ϕ′|F + C20F ,

where C19 and C20 depend on C4. Accordingly, the previous inequality implies

0 ≥ 1

10K
F qq̄(|∇q∇u|2 + |∇q∇̄u|2) +

1

2
ϕ′′F kk̄|∇k̄ṽ|2 + ϕ′(F kk̄∇k∇k̄ṽ − ∂tṽ)

−2(ϕ′)2θ−1F 11̄P − Cε|ϕ′|F kk̄|∇k̄ṽ|2 − εC19|ϕ′|F − C21F , (2.62)
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where C21 depending only on ‖χ‖C2, ‖α‖C2, n, ‖ψ‖C2, ‖∂tv‖C0, ‖ṽ‖L∞ , ‖∂tu‖L∞ and ‖∇u‖L∞ .
Finally we get

0 ≥ F 11̄(
λ21
20P

− 2(ϕ′)2θ−1P ) + (
1

2
ϕ′′ − Cε|ϕ′|)F kk̄|∇k̄ṽ|2

−εC19|ϕ′|F + ϕ′(F kk̄∇k∇k̄ṽ − ∂tṽ)− C21F . (2.63)

We now apply Lemma 3. Fix δ and K as in Definition 1, if λ1 > K, then there are two

possibilities:

• Either F kk̄(uk̄k − uk̄k) + (∂tu − ∂tu) ≥ κF , for some κ depending only on δ and K,

equivalently,

F kk̄∇k∇k̄ṽ − ∂tṽ −
∫

X
∂tvα

n ≤ −κF + C22F , (2.64)

where C22 depends on ‖∂tv‖L∞ . Since ϕ′ < 0, we find

0 ≥ F 11̄(
λ21
20P

− 2(ϕ′)2θ−1P ) + (
1

2
ϕ′′ − Cε|ϕ′|)F kk̄|∇k̄ṽ|2

−C23F − εC19|ϕ′|F − ϕ′κF (2.65)

with C23 depending only on n, ‖χ‖C2 , ‖α‖C2, ‖ψ‖C2, ‖∂tv‖L∞ , ‖ṽ‖L∞ , ‖∂tu‖L∞ and ‖∇u‖L∞ .
We first choose ε small enough so that εC19 < κ/2, then D2 large enough so that

ϕ′′ > 2Cε|ϕ′|. We obtain

0 ≥ F 11̄(
λ21
20P

− 2(ϕ′)2θ−1P )− C23F − 1

2
ϕ′κF . (2.66)

We now choose D1 large enough (depending on ‖ṽ‖L∞) so that −C23 − 1
2
ϕ′κ > 0. Then

λ21
20P

≤ 2(ϕ′)2θ−1P (2.67)

and the desired upper bound for λ1/P follows.

• Or F 11̄ ≥ κF . With D1, D2, and θ as above, the inequality (2.63) implies

0 ≥ κF(
λ21
20P

− 2(ϕ′)2θ−1P )− C24F − ϕ′F kk̄gk̄k, (2.68)

with C24 depending only on ‖χ‖C2 , ‖α‖C2, n, ‖ψ‖C2, ‖∂tv‖L∞ , ‖ṽ‖L∞ , ‖∂tu‖L∞, ‖∇u‖L∞ ,
and ‖i∂∂̄u‖L∞ . Since F kk̄gk̄k ≤ Fλ1, we can divide by FP to get

0 ≥ κ
λ21

20P 2
− C25(1 +

1

P
+
λ1
P
) (2.69)

with a constant C25 depending only on ‖χ‖C2, ‖α‖C2, n, ‖ψ‖C2, ‖ṽ‖L∞ , ‖∂tv‖L∞ , ‖∂tu‖L∞ ,
‖∇u‖L∞ , and ‖i∂∂̄u‖L∞ . Thus we obtain the desired bound for λ1/P .

It was pointed out in [50] that, under an extra concavity condition on f , C2 esti-

mates can be derived directly from C0 estimates in the elliptic case, using a test function
introduced in [39]. The same holds in the parabolic case, but we omit a fuller discussion.
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2.3 C1 Estimates

The C1 estimates are also adapted from [50], which reduce the estimates by a blow-up

argument to a key Liouville theorem for Hessian equations due to Székelyhidi [50] and
Dinew and Kolodziej [10].

Lemma 4 There exist a constant C > 0, depending on u, ‖∂tu‖L∞(X×[0,T )), ‖ũ‖L∞(X×[0,T ))

‖α‖C2, χ, ψ and the constant C̃ in Lemma 2 such that

sup
X×[0,T )

|∇u|2α ≤ C. (2.70)

Proof. Assume by contradiction that (2.70) does not hold. Then there exists a sequence

(xk, tk) ∈ X × [0, T ) with tk → T such that

lim
k→∞

|∇u(tk, xk)|α = +∞.

We can assume further that

Rk = |∇u(xk, tk)|α = sup
X×[0,tk ]

|∇u(x, t)|α, as k → +∞,

and limk→∞ xk = x.

Using localization, we choose a coordinate chart {U, (z1, . . . , zn)} centered at x, identifying

with the ball B2(0) ⊂ Cn of radius 2 centered at the origin such that α(0) = β, where
β =

∑

j idz
j ∧ dz̄j . We also assume that k is sufficiently large so that zk := z(xk) ∈ B1(0).

Define the following maps

Φk : C
n → Cn, Φk(z) := R−1

k z + zk,

ũk : BRk
(0) → R, ũk(z) := ũ(Φk(z), tk) = ũ(R−1

k z + zk, tk),

where ũ = u− ∫

X uα
n. Then the equation

ut = F (A)− ψ(z),

implies that

f
(

R2
kλ[β

ip̄
k (χk,p̄j + ũk,p̄j)]

)

= ψ(R−1
k z + zk) + ut(Φk(z), tk), (2.71)

where βk := R2
kΦ

∗
kα, χk := Φ∗

kχ. Since βk → β, and χk(z, t) → 0, in C∞
loc as k → ∞, we get

λ[βip̄k (χk,p̄j + ũk,p̄j)] = λ(ũk,j̄i) +O

(

|z|
R2
k

)

. (2.72)
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By the construction, we have

sup
BRk

(0)
ũk ≤ C, sup

BRk
(0)

|∇ũk| ≤ C (2.73)

where C depending on ‖ũ‖L∞ , and

|∇ũk|(0) = R−1
k |∇uk|α(xk) = 1.

Thanks to Lemma 2, we also have that

sup
BRk

(0)
|∂∂̄ũk|β ≤ CR−2

k sup
X

|∂∂̄u(., tk)|α ≤ C ′. (2.74)

As the argument in [50, 57], it follows from (2.73), (2.74), the elliptic estimates for ∆ and
the Sobolev embedding that for each given K ⊂ Cn compact, 0 < γ < 1 and p > 1, there

is a constant C such that

‖ũk‖C1,γ(K) + ‖ũk‖W 2,p(K) ≤ C.

Therefore there is a subsequence of ũk converges strongly in C1,γ
loc (C

n), and weakly in

W 2,p
loc (C

n) to a function v with supCn(|v| + |∇v|) ≤ C and ∇v(0) 6= 0, in particular v is
not constant.

The proof can now be completed exactly as in [50]. The function v is shown to be a

Γ-solution in the sense of Székelyhidi [50, Definition 15], and the fact that v is not constant
contradicts Szekelyhidi’s Liouville theorem for Γ-solutions [50, Theorem 20], which is itself

based on the Liouville theorem of Dinew and Kolodziej [10]. Q.E.D.

2.4 Higher Order Estimates

Under the conditions on f(λ), the uniform parabolicity of the equation (1.1) will follow
once we have established an a priori estimate on ‖i∂∂̄u‖L∞ and hence an upper bound

for the eigenvalues λ[u]. However, we shall often not have uniform control of ‖u(·, t)‖L∞.
Thus we shall require the following version of the Evans-Krylov theorem for uniformly

parabolic and concave equations, with the precise dependence of constants spelled out,
and which can be proved using the arguments of Trudinger [60], and more particularly

Tosatti-Weinkove [53] and Gill [17].

Lemma 5 Assume that u is a solution of the equation (1.1) on X × [0, T ) and that there
exists a constant C0 with ‖i∂∂̄u‖L∞ ≤ C0. Then there exist positive constants C and

γ ∈ (0, 1) depending only on α, χ, C0 and ‖ψ‖C2 such that

‖i∂∂̄u‖Cγ(X×[0,T )) ≤ C. (2.75)

Once the Cγ estimate for i∂∂̄u has been established, it is well known that a priori

estimates of arbitrary order follow by bootstrap, as shown in detail for the Monge-Ampère
equation in Yau [65]. We omit reproducing the proofs.
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3 Proof of Theorems 1 and 2

We begin with the following simple lemma, which follows immediately by differentiating

the equation (1.1) with respect to t, and applying the maximum principle, which shows
that the solution of a linear heat equation at any time can be controlled by its initial value:

Lemma 6 Let u(z, t) be a smooth solution of the flow (1.1) on any time interval [0, T ).
Then ∂tu satisfies the following linear heat equation

∂t(∂tu) = F j
kα

km̄∂j∂m̄(∂tu) (3.1)

and we have the following estimate for any t ∈ [0, T ),

minX(F (A[u0])− ψ) ≤ ∂tu(t, ·) ≤ maxXF (A[u0]− ψ) (3.2)

We can now prove a lemma which provides general sufficient conditions for the convergence
of the flow:

Lemma 7 Consider the flow (1.1). Assume that the equation admits a parabolic C-
subsolution u ∈ C2,1(X × [0,∞)), and that there exists a constant C independent of time

so that

oscXu(t, ·) ≤ C. (3.3)

Then a smooth solution u(z, t) exists for all time, and its normalization ũ converges in

C∞ to a solution u∞ of the equation (1.6) for some constant c.

In particular, if we assume further that ‖u‖L∞(X×[0,∞)) ≤ C and for each t > 0, there

exists y = y(t) ∈ X such that ∂tu(y, t) = 0, then u converges in C∞ to a solution u∞ of
the equation (1.6) for the constant c = 0.

Proof of Lemma 7. We begin by establishing the existence of the solution for all time.
For any fixed T > 0, Lemma 6 shows that |∂tu| is uniformly bounded by a constant C.

Integrating between 0 and T , we deduce that |u| is uniformly bounded by C T . We can
now apply Lemma 4, 2, 5, to conclude that the function u is uniformly bounded in Ck

norm (by constants depending on k and T ) for arbitrary k. This implies that the solution

can be extended beyond T , and since T is arbitrary, that it exists for all time.

Next, we establish the convergence. For this, we adapt the arguments of Cao [2] and

especially Gill [17] based on the Harnack inequality.

Since oscXu(t, ·) is uniformly bounded by assumption, and since ∂tu is uniformly

bounded in view of Lemma 6, we can apply Lemma 2 and deduce that the eigenval-
ues of the matrix [χ + i∂∂̄u] are uniformly bounded over the time interval [0,∞). The
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uniform ellipticity of the equation (3.5) follows in turn from the properties (1) and (2) of
the function f(λ). Next set

v = ∂tu+ A (3.4)

for some large constant A so that v > 0. The function v satisfies the same heat equation

∂tv = F ij̄∂i∂j̄v. (3.5)

Since the equation (3.5) is uniformly elliptic, by the differential Harnack inequality proved
originally in the Riemannian case by Li and Yau in [29], and extended to the Hermitian case

by Gill [17], section 6, it follows that there exist positive constants C1, C2, C3, depending
only on ellipticity bounds, so that for all 0 < t1 < t2, we have

supXv(·, t1) ≤ infXv(·, t2)
(

t2
t1

)C2

exp
(

C3

t2 − t1
+ C1(t2 − t1)

)

. (3.6)

The same argument as in Cao [2], section 2, and Gill [17], section 7, shows that this

estimate implies the existence of constants C4 and η > 0 so that

oscXv(·, t) ≤ C4e
−ηt (3.7)

If we set

ṽ(z, t) = v(z, t)− 1

V

∫

X
v αn = ∂tu(z, t)−

1

V

∫

X
∂tuα

n = ∂tũ, (3.8)

it follows that

|ṽ(z, t)| ≤ C4e
−ηt (3.9)

for all z ∈ X . In particular,

∂t(ũ+
C4

η
e−ηt) = ṽ − C4e

−ηt ≤ 0, (3.10)

and the function ũ(z, t)+ C4

η
e−ηt is decreasing in t. By the assumption (3.3), this function is

uniformly bounded. Thus it converges to a function u∞(z). By the higher order estimates
in section §2, the derivatives to any order of ũ are uniformly bounded, so the convergence

of ũ+ C4

η
e−ηt is actually in C∞ The function ũ(z, t) will also converge in C∞, to the same

limit u∞(z). Now the function ũ(z, t) satisfies the following flow,

∂tũ = F (A[ũ])− ψ(z)− 1

V

∫

X
∂tuα

n. (3.11)

Taking limits, we obtain

0 = F (A[ũ∞])− ψ(z)− limt→∞

∫

X
∂tuα

n (3.12)
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where the existence of the limit of the integral on the right hand side follows from the
equation. Define the constant c as the value of this limit. This implies the first statement

in Lemma 7.

Now we assume that ‖u‖L∞(X×[0,∞)) ≤ C and for each t ≥ 0, there exists y = y(t) ∈ X

such that ∂tu(y, t) = 0. By the same argument above, we have

oscX∂tu(·, t) ≤ C4e
−ηt, (3.13)

for some C4, η > 0. Since for each t ≥ 0, there exists y = y(t) ∈ X such that ∂tu(y, t) = 0,
we imply that for any z ∈ X ,

|∂tu(z, t)| = |∂tu(z, t)− ∂tu(y, t)| ≤ oscX∂tu(·, t) ≤ C4e
−ηt. (3.14)

Therefore by the same argument above, the function u(z, t)+ C4

η
e−ηt converges in C∞ and

∂tu converges to 0 as t → +∞. We thus infer that u converges in C∞, to u∞ satisfying
the equation

F (A[ũ∞]) = ψ(z). (3.15)

Lemma 7 is proved.

Proof of Theorem 1. Since f is unbounded, the function u = u0 is a C-subsolution of the

flow. In view of Lemma 7, it suffices to establish a uniform bound for oscXu(t, ·). But the
flow can be re-expressed as the elliptic equation

F (A) = ψ + ∂tu (3.16)

where the right hand side ψ + ∂tu is bounded uniformly in t, since we have seen that ∂tu

is uniformly bounded in t. Furthermore, because f is unbounded, the function u = u0 is
a C-subsolution of (3.16). By the C0 estimate of [50], the oscillation oscXu(t, ·) can be

bounded for each t by the C0 norm of the right hand side, and is hence uniformly bounded.
Q.E.D.

Proof of Theorem 2. Again, it suffices to establish a uniform bound in t for oscXu(t, ·).
Consider first the case (a). In view of Lemma 6 and the hypothesis, we have

∂tu ≥ ∂tu (3.17)

on all of X × [0,∞). But if we rewrite the flow (1.1) as

F (A) = ψ + ∂tu (3.18)

we see that the condition that u be a parabolic C-subsolution for the equation (1.1)
together with (3.17) implies that u is a C-subsolution for the equation (3.18) in the elliptic
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sense.. We can then apply Székelyhidi’s C0 estimate for the elliptic equation to obtain a
uniform bound for oscXu(t, ·).

Next, we consider the case (b). In this case, the existence of a function h(t) with the
indicated properties allows us to apply Lemma 1, and obtain immediately a lower bound,

u− u− h(t) ≥ −C (3.19)

for some constant C independent of time. The inequality (1.9) implies than a uniform
bound for oscXu.

4 Applications to Geometric Flows

Theorems 1 and 2 can be applied to many geometric flows. We should stress that they

don’t provide a completely independent approach, as they themselves are built on many
techniques that had been developed to study these flows. Nevertheless, they may provide

an attractive uniform approach.

4.1 A criterion for subsolutions

In practice, it is easier to verify that a given function u on X × [0,∞) is a C-subsolution

of the equation (1.1) using the following lemma rather than the original Definition 1:

Lemma 8 Let u be a C2,1 admissible function on X × [0,∞), with ‖u‖C2,1(X×[0,∞)) <∞.
Then u is a parabolic C-subsolution in the sense of Definition 1 if and only if there exists

a constant δ̃ > 0 independent from (z, t) so that

limµ→+∞f(λ[u(z, t)] + µei)− ∂tu(z, t) > δ̃ + ψ(z) (4.1)

for each 1 ≤ i ≤ n. In particular, if u is independent of t, then u is a parabolic C-

subsolution if and only if

limµ→+∞f(λ[u(z, t)] + µei) > ψ(z). (4.2)

Note that there is a similar lemma in the case of subsolutions for elliptic equations

(see [50], Remark 8). Here the argument has to be more careful, not just because of the

additional time parameter t, but also because the time interval [0,∞) is not bounded,
invalidating certain compactness arguments.

Proof of Lemma 8. We show first that the condition (4.1) implies that u is a C-subsolution.

We begin by showing that the condition (4.1) implies that there exists ǫ0 > 0 and

M > 0, so that for all ǫ ≤ ǫ0, all ν > M , all (z, t), and all 1 ≤ i ≤ n, we have

f(λ[u(z, t)]− ǫI + νei)− ∂tu(z, t) >
δ̃

4
+ ψ(z). (4.3)
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This is because the condition (4.1) is equivalent to

f∞(λ′[u(z, t)])− ∂tu(z, t) > δ̃ + ψ(z). (4.4)

Now the concavity of f(λ) implies the concavity of its limit f∞(λ′) and hence the continuity

of f∞(λ′). Furthermore, the set

Λ = {λ[u(z, t)], ∀(z, t) ∈ X × [0,∞)}, (4.5)

as well as any of its translates by −ǫI for a fixed ǫ small enough, is compact in Γ. So are
their projections on Rn−1. By the uniform continuity of continuous functions on compact

sets, it follows that there exists ǫ0 > 0 so that

f∞(λ′[u(z, t)]− ǫI)− ∂tu(z, t) >
δ̃

2
+ ψ(z) (4.6)

for all (z, t) and all ǫ ≤ ǫ0. But f∞ is the continuous limit of a sequence of monotone

increasing continuous functions

f∞(λ′ − ǫI) = limν→∞f(λ− ǫI + νei). (4.7)

By Dini’s theorem, the convergence is uniform over any compact subset. Thus there exists
M > 0 large enough so that ν > M implies that

f(λ[u(z, t)]− ǫI + νei) > f∞(λ′[u(z, t)]− ǫI)− δ̃

4
(4.8)

for all (z, t) and all ǫ ≤ ǫ0. The desired inequality (4.3) follows from (4.6) and (4.8).

Assume now that u is not a C-subsolution. Then there exists ǫm, νm, τm, with ǫm → 0,

νm ∈ −ǫmI + Γn, τm > −ǫm, and |τm|+ |νm| → ∞, so that

f(λ[u(zm, tm)] + νm)− ∂tu(zm, tm) + τm = ψ(zm, tm). (4.9)

Set νm = −ǫm + µm, with µm ∈ Γn. Then we can write

τm = −f(λ[u(zm, tm)]− ǫmI + µm) + ∂tu(zm, tm) + ψ(zm, tm)

≤ −f(λ[u(zm, tm)]− ǫmI) + ∂tu(zm, tm) + ψ(zm, tm) (4.10)

which is bounded by a constant. Thus we must have |νm| tending to +∞, or equivalently,

|µm| tending to +∞.

By going to a subsequence, we may assume that there is an index i for which the i-th
components µim of the vector µm tend to ∞ as m→ ∞. By the monotonicity of f in each

component, we have

f(λ[u(zm, tm)]− ǫmI + µimei)− ∂tu(zm, tm) ≤ f(λ[u(zm, tm)]− ǫmI + µm)− ∂tu(zm, tm)

= f(λ[u(zm, tm)] + νm)− ∂tu(zm, tm).
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In view of (4.3), the left hand side is ≥ δ̃
4
+ψ(zm, tm) for µ

i
m large and ǫm small enough. On

the other hand, the equation (4.9) implies that the right hand side is equal to ψ(zm, tm)−τm.
Thus we obtain

δ̃

4
+ ψ(zm, tm) ≤ ψ(zm, tm)− τm ≤ ψ(zm, tm) + ǫm. (4.11)

Hence δ̃
4
≤ ǫm, which is a contradiction, since ǫm → 0.

Finally, we show that if u is a subsolution, it must satisfy the condition (4.1). Assume

otherwise. Then there exists an index i and a sequence δm → 0 and points (zm, tm) so that

limν→∞f(λ[u(zm, tm)] + νei)− ∂tu(zm, tm) ≤ δm + ψ(zm). (4.12)

Since f is increasing in ν, this implies that for any ν ∈ R+, we have

f(λ[u(zm, tm)] + νei)− ∂tu(zm, tm) ≤ δm + ψ(zm). (4.13)

For each ν ∈ R+, define τm by the equation

f(λ[u(zm, tm)] + νei)− ∂tu(zm, tm) + τm = ψm. (4.14)

The previous inequality means that τm ≥ −δm, and thus the pair (τm, µ = νei) satisfy

the equation (1.2). Since we can take ν → +∞, this contradicts the defining property of
C-subsolutions. The proof of Lemma 8 is complete.

4.2 Székelyhidi’s theorem

Theorem 2 can be applied to provide a proof by parabolic methods of the following theorem

originally proved by Székelyhidi [50]:

Corollary 1 Let (X,α) be a compact Hermitian manifold, and f(λ) be a function satis-

fying the conditions (1-3) spelled out in §1 and in the bounded case. Let ψ be a smooth
function on X. If there exists an admissible function u0 with F (A[u0]) ≤ ψ, and if the

equation F (A[u]) = ψ admits a C-subsolution in the sense of [50], then the equation
F (A[u]) = ψ + c admits a smooth solution for some constant c.

Proof of Corollary 1. It follows from Lemma 8 that a C-subsolution in the sense of [50]
of the elliptic equation F (A[u]) = ψ can be viewed as a time-independent parabolic C-

subsolution u of the equation (1.1). Consider this flow with initial value u0. Then

∂tu = 0 ≥ F (A[u0])− ψ. (4.15)

Thus condition (a) of Theorem 2 is satisfied, and the corollary follows.
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4.3 The Kähler-Ricci flow and the Chern-Ricci flow

On Kähler manifolds (X,α) with c1(X) = 0, the Kähler-Ricci flow is the flow ġk̄j = −Rk̄j .
For initial data in the Kähler class [α], the evolving metric can be expressed as gk̄j =

αk̄j + ∂j∂k̄ϕ, and the flow is equivalent to the following Monge-Ampère flow,

∂tϕ = log
(α + i∂∂̄ϕ)n

αn
− ψ(z) (4.16)

for a suitable function ψ(z) satisfying the compatibility condition
∫

X e
ψαn =

∫

X α
n. The

convergence of this flow was proved by Cao[2], thus giving a parabolic proof of Yau’s
solution of the Calabi conjecture [65]. We can readily derive Cao’s result from Theorem 1:

Corollary 2 For any initial data, the normalization ϕ̃ of the flow (4.16) converges in C∞

to a solution of the equation (α + i∂∂̄ϕ)n = eψαn.

Proof of Corollary 2. The Monge-Ampère flow (4.16) corresponds to the equation (1.1)
with χ = α, f(λ) = log

∏n
j=1 λj, and Γ being the full octant Γn. It is straightforward that

f satisfies the condition (1-3) in §1. In particular f is in the unbounded case, and Theorem
1 applies, giving the convergence of the normalizations ũ(·, t) to a smooth solution of the

equation (α+i∂∂̄ϕ)n = eψ+cαn for some constant c. Integrating both sides of this equation
and using the compatibility condition on ψ, we find that c = 0. The corollary is proved.

The generalization of the flow (4.16) to the more general set-up of a compact Hermitian

manifold (X,α) was introduced by Gill [17]. It is known as the Chern-Ricci flow, with
the Chern-Ricci tensor RicC(ω) = −i∂∂̄ log ωn playing the role of the Ricci tensor in the

Kähler-Ricci flow (we refer to [54, 55, 56, 59] and references therein). Gill proved the
convergence of this flow, thus providing an alternative proof of the generalization of Yau’s

theorem proved earlier by Tosatti and Weinkove [52]. Generalizations of Yau’s theorem had
attracted a lot of attention, and many partial results had been obtained before, including

those of Cherrier [3], Guan-Li [20], and others. Theorem 1 gives immediately another proof

of Gill’s theorem:

Corollary 3 For any initial data, the normalizations ϕ̃ of the Chern-Ricci flow converge

in C∞ to a solution of the equation (α + i∂∂̄ϕ)n = eψ+cαn, for some constant c.

We note that there is a rich literature on Monge-Ampère equations, including consid-

erable progress using pluripotential theory. We refer to [26, 11, 8, 23, 24, 41, 58, 59, 30, 31]
and references therein.

4.4 Hessian flows

Hessian equations, where the Laplacian or the Monge-Ampère determinant of the unknown
function u are replaced by the k-th symmetric polynomial of the eigenvalues of the Hessian
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of u, were introduced by Caffarelli, Nirenberg, and Spruck [5]. More general right hand
sides and Kähler versions were considered respectively by Chou and Wang [6] and Hou-

Ma-Wu [25], who introduced in the process some of the key techniques for C2 estimates
that we discussed in §2. A general existence result on compact Hermitian manifolds was

recently obtained by Dinew and Kolodziej [10], Sun [47], and Székelyhidi [50]. See also
Zhang [66]. Again, we can derive this theorem as a corollary of Theorem 1:

Corollary 4 Let (X,α) be a compact Hermitian n-dimensional manifold, and let χ be

a positive real (1, 1)-form which is k-positive for a given k, 1 ≤ k ≤ n. Consider the

following parabolic flow for the unknown function u,

∂tu = log
(χ+ i∂∂̄u)k ∧ αn−k

αn
− ψ(z). (4.17)

Then for any admissible initial data u0, the flow admits a solution u(z, t) for all time, and

its normalization ũ(z, t) converge in C∞ to a function u∞ ∈ C∞(X) so that ω = χ+i∂∂̄u∞
satisfies the following k-Hessian equation,

ωk ∧ αn−k = eψ+cαn. (4.18)

Proof of Corollary 4. This is an equation of the form (1.1), with F = f(λ) = log σk(λ),

defined on the cone

Γk = {λ; σj(λ) > 0, j = 1, · · · , k}, (4.19)

where
(

n
k

)

σk is the k-th symmetric polynomial in the components λj, 1 ≤ j ≤ n. In our

setting,

σk(λ[u]) =
(χ+ i∂∂̄u)k ∧ αn−k

αn
. (4.20)

It follows from [43, Corollary 2.4] that g = σ
1/k
k is concave and gi =

∂g
∂λi

> 0 on Γk, hence
f = log g satisfies the conditions (1-3) mentioned in §1.

The function u = 0 is a subsolution of (4.17) and f is in the unbounded case since for
any µ = (µ1, · · · , µn) ∈ Γk, and any 1 ≤ i ≤ n,

lims→∞ log σk(µ1, · · · , µi + s, · · · , µn) = ∞. (4.21)

The desired statement follows then from Theorem 1.

4.5 The J flow and quotient Hessian flows

The J-flow on Kähler manifolds was introduced independently by Donaldson [9] and Chen
[4]. The case n = 2 was solved by Weinkove [63, 64], and the case of general dimension by
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Song and Weinkove [42], who identified a necessary and sufficient condition for the long-
time existence and convergence of the flow as the existence of a Kähler form χ satisfying

ncχn−1 − (n− 1)χn−2 ∧ ω > 0 (4.22)

in the sense of positivity of (n − 1, n − 1)-forms. The constant c is actually determined

by cohomology. Their work was subsequently extended to inverse Hessian flows on Kähler
manifolds by Fang, Lai, and Ma [12], and to inverse Hessian flows on Hermitian manifolds

by Sun [44]. These flows are all special cases of quotient Hessian flows on Hermitian man-
ifolds. Their stationary points are given by the corresponding quotient Hessian equations.

Our results can be applied to prove the following generalization to quotient Hessian flows

of the results of [63, 64, 12], as well as an alternative proof of a result of Székelyhidi [50,
Proposition 22] on the Hessian quotient equations. The flow (4.24) below has also been

studied recently by Sun [46] where he obtained a uniform C0 estimate using Moser itera-
tion. Our proof should be viewed as different from all of these, since its C0 estimate uses

neither Moser iteration nor strict C2 estimates Trαχu ≤ C eu−infXu.

Corollary 5 Assume that (X,α) is a compact Kähler n-manifold, and fix 1 ≤ ℓ < k ≤ n.

Fix a closed (1, 1)-form χ which is k-positive, and assume that there exists a function u so
that the form χ′ = χ+ i∂∂̄u is closed k-positive and satisfies

kc (χ′)k−1 ∧ αn−k − ℓ(χ′)ℓ−1 ∧ αn−ℓ > 0 (4.23)

in the sense of the positivity of (n − 1, n − 1)-forms. Here c = [χℓ]∪[αn−ℓ]
[χk]∪[χn−k]

. Then for any

admissible initial data u0 ∈ C∞(X), the flow

∂tu = c− χℓu ∧ αn−ℓ
χku ∧ αn−k

(4.24)

admits a solution u for all time, and it converges to a smooth function u∞. The form
ω = χ+ i∂∂̄u∞ is k-positive and satisfies the equation

ωℓ ∧ αn−ℓ = c ωk ∧ αn−k. (4.25)

Proof of Corollary 5. The flow (4.24) is of the form (1.1), with

f(λ) = −σℓ(λ)

σk(λ)
,

defined on the cone

Γk = {λ; σj(λ) > 0, j = 1, · · · , k}. (4.26)

By the Maclaurin’s inequality (cf. [43]), we have σ
1/k
k ≤ σ

1/ℓ
ℓ on Γk, hence f(λ) → −∞ as

λ → ∂Γk. It follows from [43, Theorem 2.16] that the function g = (σk/σℓ)
1

(k−ℓ) satisfies
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gi =
∂g
∂λi

> 0, ∀i = 1, . . . , n and g is concave on Γk. Therefore f = −g−(k−ℓ) satisfies the
condition (1-3) spelled out in §1. Moreover, f is in the bounded case with

f∞(λ′) = −ℓσℓ−1(λ
′)

kσk−1(λ′
where λ′ ∈ Γ∞ = Γk−1.

We can assume that u0 = 0 by replacing χ (resp. u and u) by χ + i∂∂̄u0 (resp. u − u0
and u − u0). The inequality (4.23) infers that u is a subsolution of the equation (4.24).
Indeed, for any (z, t) ∈ X × [0,∞), set µ = λ(B), Bi

j = αjk̄(χk̄j + uk̄j)(z, t). Since u is

independent of t, it follows from Lemma 8 and the symmetry of f that we just need to
show that for any z ∈ X if µ′ = (µ1, · · · , µn−1) then

lims→∞f(µ
′, µn + s) > −c. (4.27)

This means

f∞(µ′) = − ℓσℓ−1(µ
′)

kσk−1(µ′)
> −c. (4.28)

As in [50], we restrict to the tangent space of X spanned by by the eigenvalues correspond-

ing to µ′. Then on this subspace

σj(µ
′) =

χj−1 ∧ αn−j
αn−1

(4.29)

for all j. Thus the preceding inequality is equivalent to

kc(χ′)k ∧ αn−k − ℓ(χ′)ℓ−1 ∧ αn−ℓ > 0. (4.30)

By a priori estimates in Section 2, the solution exists for all times. We now use the second
statement in Lemma 7 to prove the convergence. It suffices to check that u is uniformly

bounded in X × [0,+∞) and for all t > 0, there exists y such that ∂tu(y, t) = 0. The
second condition is straightforward since

∫

X
∂tuχ

k
u ∧ αn−k = 0.

For the uniform bound we make use of the following lemma

Lemma 9 Let φ ∈ C∞(X) function and {ϕs}s∈[0,1] be a path with ϕ(0) = 0 and ϕ(1) = φ.
Then we have

∫ 1

0

∫

X

∂ϕ

∂s
χkϕ ∧ αn−kds =

1

k + 1

k
∑

j=0

∫

X
φχjφ ∧ χk−j ∧ αn−k, (4.31)

so the left hand side is independent of ϕ. Therefore we can define the following functional

Ik(φ) =
∫ 1

0

∫

X

∂ϕ

∂s
χkϕ ∧ αn−kds. (4.32)
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We remark that when k = n and χ is Kähler, this functional is well-known (see for instance
[64]). We discuss here the general case.

Proof of Lemma 9. Observe that

∫ 1

0

∫

X

∂ϕ

∂s
χkϕ ∧ αn−kds =

k
∑

j=1

(

k

j

)

∫ 1

0

∫

X

∂ϕ

∂s
(i∂∂̄ϕ)j ∧ χk−j ∧ αn−kds. (4.33)

For any j = 0, . . . , k we have

∫ 1

0

∫

X

∂ϕ

∂s
(i∂∂̄ϕ)j ∧ χk−j ∧ αn−kds =

∫ 1

0

d

ds

(∫

X
ϕ(i∂∂̄ϕ)j ∧ χk−j ∧ αn−k

)

ds

−
∫ 1

0

∫

X
ϕ
∂

∂s

(

(i∂∂̄ϕ)j ∧ χk−j ∧ αn−k
)

ds

=
∫

X
φ(i∂∂̄φ)j ∧ χk−j ∧ αn−k (4.34)

−
∫ 1

0

∫

X
ϕ
∂

∂s

(

(i∂∂̄ϕ)j ∧ χk−j ∧ αn−k
)

ds

We also have

∫ 1

0

∫

X
ϕ
∂

∂s

(

(i∂∂̄ϕ)j ∧ χk−j ∧ αn−k
)

ds =
∫ 1

0

∫

X
jϕ

(

i∂∂̄
∂ϕ

∂s

)

∧ (i∂∂̄ϕ)j−1 ∧ χk−j ∧ αn−kds

=
∫ 1

0

∫

X
j
∂ϕ

∂s
(i∂∂̄ϕ)j ∧ χk−j ∧ αn−kds, (4.35)

here we used in the second identity the integration by parts and the fact that χ and α are
closed. Combining (4.34) and (4.35) yields

∫ 1

0

∫

X

∂ϕ

∂s
(i∂∂̄ϕ)j ∧ χk−j ∧ αn−kds = 1

j + 1

∫

X
φ(i∂∂̄φ)j ∧ χk−j ∧ αn−k. (4.36)

Therefore (4.33) implies that

∫ 1

0

∫

X

∂ϕ

∂s
χkϕ ∧ αn−kds =

k
∑

j=1

(

k

j

)

1

j + 1

∫

X
φ(i∂∂̄φ)j ∧ χk−j ∧ αn−k

=
k
∑

j=1

(

k

j

)

1

j + 1

∫

X
φ(χφ − χ)j ∧ χk−j ∧ αn−k

=
k
∑

j=1

(

k

j

)

1

j + 1

∫

X

j
∑

p=0

(

j

p

)

(−1)j−pφχpφ ∧ χk−p ∧ αn−k (4.37)

=
k
∑

p=0





k
∑

j=p

(

k

j

)

1

j + 1

(

j

p

)

(−1)j−p





∫

X
φχpφ ∧ χk−p ∧ αn−k.
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By changing m = j − p, we get

k
∑

j=p

(

k

j

)

1

j + 1

(

j

p

)

(−1)j−p =

(

k

p

) k−p
∑

m=0

(−1)m

m+ p+ 1

(

k − p

m

)

. (4.38)

The right hand side can be computed by
(

k

p

) k−p
∑

m=0

(−1)m

m+ p+ 1

(

k − p

m

)

=

(

k

p

)

∫ 1

0
(1− x)k−pxpdx

=

(

k

p

)

p!
∫ 1

0

1

(k − p+ 1) . . . k
(1− x)kdx =

1

k + 1
,

where we used the integration by parts p times in the second identity. Combining this

with (4.37) and (4.38) we get the desired identity (4.31). Q.E.D.

We now have for any t∗ > 0, along the flow

Ik(u(t
∗)) =

∫ t∗

0

∫

X

∂u

∂t
χku ∧ αn−k =

∫ t∗

0

(

c− χℓu ∧ αn−ℓ
χku ∧ αn−k

)

χku ∧ αn−k = 0.

As in Weinkove [63, 64], there exist C1, C2 > 0 such that for all t ∈ [0,∞),

0 ≤ sup
X
u(., t) ≤ −C1 inf

X
u(., t) + C2. (4.39)

Indeed, in view of (4.31), Ik(u) = 0 along the flow implies that

k
∑

j=0

∫

X
uχju ∧ χk−j ∧ αn−k = 0, (4.40)

hence supX u ≥ 0 and infX u ≤ 0. For the right inequality in (4.39), we remark that there

exists a positive constant B such that

αn ≤ Bχk ∧ αn−k.

Therefore combining with (4.40) gives
∫

X
uαn =

∫

X
(u− inf

X
u)αn +

∫

X
inf
X
uαn

≤ B
∫

X
(u− inf

X
u)χk ∧ αn−k + inf

X
u
∫

X
αn

= −B
k
∑

j=1

∫

X
uχju ∧ χk−j ∧ αn−k + inf

X
u
(∫

X
αn − B

∫

X
χk ∧ αn−k

)

= −B
k
∑

j=1

∫

X

(

u− inf
X
u
)

χju ∧ χk−j ∧ αn−k + inf
X
u
(∫

X
αn − B(k + 1)

∫

X
χk ∧ αn−k

)

≤ inf
X
u
(
∫

X
αn −B(k + 1)

∫

X
χk ∧ αn−k

)

= −C1 inf
X
u.
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Since ∆αu ≥ −trαχ ≥ −A, using the fact that the Green’s function G(., .) of α is bounded
from below we infer that

u(x, t) =
∫

X
uαn −

∫

X
∆αu(y, t)G(x, y)α

n(y)

≤ −C1 inf
X
u+ C2.

Hence we obtain the Harnack inequality, supX u ≤ −C1 infX u+ C2.

Since we can normalize u by supX u = 0, the left inequality in (4.40) implies

sup
X

(u(·, t)− u(·, t)) ≥ 0.

It follows from Lemma 1 that

u ≥ u− C3

for some constant C3. This give a lower bound for u since u is bounded. The Harnack

inequality in (4.39) implies then a uniform bound for u. Now the second statement in
Lemma 7 implies the convergence of u. Q.E.D.

A natural generalization of the Hessian quotient flows on Hermitian manifolds is the

following flow

∂tu = log
χku ∧ αn−k
χℓu ∧ αn−ℓ

− ψ (4.41)

where ψ ∈ C∞(X), the admissible cone is Γk, 1 ≤ ℓ < k ≤ n, and χu = χ + i∂∂̄u. This

flow was introduced by Sun [44] when k = n. We can apply Theorem 2 to obtain the
following result, which is analogous to one of the main results in Sun [44], and analogous

to the results of Song-Weinkove [42] and Fang-Lai-Ma [12] for k = n:

Corollary 6 Let (X,α) be a compact Hermitian manifold and χ be a (1, 1)-form which is
k-positive. Assume that there exists a form χ′ = χ+ i∂∂̄u which is k-positive, and satisfies

k (χ′)k−1 ∧ αn−k − eψ ℓ(χ′)ℓ−1 ∧ αn−ℓ > 0 (4.42)

in the sense of the positivity of (n − 1, n− 1)-forms. Assume further that there exists an

admissible u0 ∈ C∞(X) satisfying

eψ ≥ χku0 ∧ αn−k
χℓu0 ∧ αn−ℓ

(4.43)

Then the flow (4.41) admits a smooth solution for all time with initial data u0. Further-

more, there exists a unique constant c so that the normalization

ũ = u− 1

[αn]

∫

X
uαn (4.44)

converges in C∞ to a function u∞ with ω∞ = χ+ i∂∂̄u∞ satisfying

ωk∞ ∧ αn−k = eψ+cωℓ∞ ∧ αn−ℓ. (4.45)
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Proof of Corollary 6. This equation is of the form (1.1), with

F (A) = f(λ) = log
σk(λ)

σℓ(λ)
, with λ = λ(A), (4.46)

defined on Γk. As in the proof of Corollary 5 we also have that f satisfies the conditions

(1-3) mentioned in §1. Moreover, f is in the bounded case with

f∞(λ′) = log
kσk−1(λ

′)

ℓσℓ−1(λ′)
where λ′ ∈ Γ∞ = Γk−1.

It suffices to verify that u = 0 is a subsolution of the equation (4.41). For any (z, t) ∈
X× [0,∞), set µ = λ(B), Bi

j = αjk̄χk̄j(z, t). Since u is independent of t, Lemma 8 implies
that we just need to show that for any z ∈ X if µ′ = (µ1, · · · , µn−1),

lims→∞f(µ
′, s) > ψ(z). (4.47)

This means

f∞(µ′) = log
kσk−1(µ

′)

ℓσℓ−1(µ′)
> ψ(z), (4.48)

where we restrict to the tangent space of X spanned by by the eigenvalues corresponding

to µ′. As the argument in the proof of Corollary 5, this inequality is equivalent to

kχk ∧ αn−k − ℓeψχℓ−1 ∧ αn−ℓ > 0. (4.49)

Moreover, the condition (4.43) is equivalent to

0 = u ≥ F (A[u0])− ψ. (4.50)

We can now apply Theorem 2 to complete the proof. Q.E.D

In the case of (X,α) compact Kähler, the condition on ψ can be simplified, and we
obtain an alternative proof to the main result of Sun in [45]. We recently learnt that Sun

[49] also provided independently another proof of [45] using the same flow as below:

Corollary 7 Let (X,α) be Kähler and χ be a k-positive closed (1, 1)-form. Assume that

there exists a closed form χ′ = χ+ i∂∂̄u which is k-positive, and satisfies

k (χ′)k−1 ∧ αn−k − eψ ℓ(χ′)ℓ−1 ∧ αn−ℓ > 0 (4.51)

in the sense of the positivity of (n− 1, n− 1)-forms. Assume further that

eψ ≥ ck,ℓ =
[χk] ∪ [χn−k]

[χℓ] ∪ [αn−ℓ]
. (4.52)
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Then for any admissible initial data u0 ∈ C∞(X), the flow (4.41) admits a smooth solution
for all time. Furthermore, there exists a unique constant c so that the normalization

ũ = u− 1

[αn]

∫

X
uαn (4.53)

converges in C∞ to a function u∞ with ω∞ = χ+ i∂∂̄u∞ satisfying

ωk∞ ∧ αn−k = eψ+cωℓ∞ ∧ αn−ℓ. (4.54)

Proof of Corollary 6. By the same argument above, the admissible function u ∈ C∞(X)
with supX u = 0 satisfying (4.51) is a C-subsolution. As explained in the proof of Corollary

5, we can assume that u0 = 0.

We first observe that along the flow, the functional Iℓ defined in Lemma 9 is decreasing.
Indeed, using Jensen’s inequality and then (4.52) we have

d

dt
Iℓ(u) =

∫

X

∂u

∂t
χℓu ∧ αn−ℓ =

∫

X

(

log
χku ∧ αn−k
χℓu ∧ αn−ℓ

− ψ

)

χℓu ∧ αn−ℓ

≤ log ck,ℓ

∫

X
χℓu ∧ αn−ℓ −

∫

X
ψχℓu ∧ αn−ℓ ≤ 0. (4.55)

Set

û := u− h(t), h(t) =
Iℓ(u)

∫

X χ
ℓ ∧ αn−ℓ . (4.56)

For any t∗ ∈ [0,∞) we have

Iℓ(û(t
∗)) =

∫ t∗

0

∫

X

∂û

∂t
χℓu ∧ αn−ℓ =

∫ t∗

0

∫

X

(

∂u

∂t
− 1
∫

X χ
ℓ ∧ αn−ℓ

d

dt
Iℓ(u)

)

χℓu ∧ αn−ℓ = 0.

By the same argument in Corollary 5, we deduce that there exist C1, C2 > 0 such that

0 ≤ sup
X
û(., t) ≤ −C1 inf

X
û(., t) + C2, (4.57)

for all t ∈ [0,∞). By our choice, supX u = 0, and (4.57) implies that

sup
X

(u− h(t)− u) = sup
X

(û− u) ≥ 0, ∀t ≥ 0.

Since Iℓ(u) is decreasing along the flow, we also have h′(t) ≤ 0. Theorem 2 now gives us

the required result. Q.E.D.

Similarly, we can consider the flow (1.1) with

∂tu = −
(

χℓu ∧ αn−ℓ
χku ∧ αn−k

)
1

k−ℓ

+ ψ(z), u(z, 0) = 0, (4.58)

where 1 ≤ ℓ < k ≤ n. When (X,α) is Kähler, ψ is constant and k = n, this is the inverse

Hessian flow studied by Fang-Lai-Ma [12]. We can apply Theorem 2 to obtain another
corollary which is analogous to the main result of Fang-Lai-Ma [12].
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Corollary 8 Let (X,α), and χ as in Corollary 6. Assume further that ψ ∈ C∞(X,R+)
and there exists a smooth function u with χ′ = χ + i∂∂̄u a k-positive (1, 1)-form which

satisfies

kψk−ℓ(χ′)k−1 ∧ αn−k − ℓ(χ′)n−ℓ−1 ∧ αn−ℓ > 0 (4.59)

in the sense of positivity of (n− 1, n− 1) forms, and

ψk−ℓ ≤ χℓ ∧ αn−ℓ
χk ∧ αn−k . (4.60)

Then the flow (4.58) exists for all time, and there is a unique constant c so that the

normalized function ũ converges to a function u∞ with ω = χ + i∂∂̄u∞ a k-positive form
satisfying the equation

ωn−ℓ ∧ αn−ℓ = (ψ + c)k−ℓωk ∧ αn−k. (4.61)

In particular, if (X,α) is Kähler, we assume further that χ is closed, then the condition

(4.60) can be simplified as

ψk−ℓ ≤ cℓ,k =
[χℓ] ∪ [αn−ℓ]

[χk] ∪ [αn−k]
. (4.62)

Proof of Corollary 8. This equation is of the form (1.1), with

F (A) = f(λ) = −
(

σℓ(λ)

σk(λ)

) 1
k−ℓ

, with λ = λ(A), (4.63)

defined on Γk. As in Corollary 5, it follows from the Maclaurin’s inequality, the mono-
tonicity and concavity of g = (σk/σℓ)

1
k−ℓ (cf. [43]) that f satisfies the conditions (1-3)

spelled out in §1. Moreover, f is in the bounded case with

f∞(λ′) = −
(

ℓσℓ−1(λ
′)

kσk−1(λ′)

) 1
k−ℓ

where λ′ ∈ Γ∞ = Γk−1.

In addition, as the same argument in previous corollaries, the condition (4.59) is equivalent

to that u = 0 is a C-subsolution for (4.58). Moreover, the condition (4.60) implies that

0 = u ≥ F (A[0]) + ψ. (4.64)

We can now apply Theorem 2 to get the first result.

Next, assume that (X,α) is Kähler and χ is closed. As in Corollary 7 and [12], the

functional Iℓ (see Lemma 9) is decreasing along the flow. Indeed, using (4.62),

d

dt
Iℓ(u) =

∫

X

∂u

∂t
χℓu ∧ αn−ℓ =

∫

X



−
(

σℓ(λ)

σk(λ)

) 1
k−ℓ

+ ψ



χℓu ∧ αn−ℓ

≤ −
∫

X

(

σℓ(λ)

σk(λ)

)
1

k−ℓ

χℓu ∧ αn−ℓ + c
1

k−ℓ

ℓ,k

∫

X
χℓu ∧ αn−ℓ. (4.65)
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Using the Hölder inequality, we get

∫

X
χℓu ∧ αn−ℓ =

∫

X
σℓ α

n =
∫

X

(

σℓ

σ
1/(k−ℓ+1)
k

)

σ
1

k−ℓ+1

k αn

≤




∫

X

(

σℓ

σ
1/(k−ℓ+1)
k

)
k−ℓ+1
k−ℓ

αn





k−ℓ
k−ℓ+1

(∫

X
σk α

n
)

1
k−ℓ+1

=





∫

X

(

σℓ(λ)

σk(λ)

)
1

k−ℓ

χℓu ∧ αn−ℓ




k−ℓ
k−ℓ+1

(
∫

X
χku ∧ αn−k

) 1
k−ℓ+1

=





∫

X

(

σℓ(λ)

σk(λ)

)
1

k−ℓ

χℓu ∧ αn−ℓ




k−ℓ
k−ℓ+1

c
−1

k−ℓ+1

ℓ,k

(
∫

X
χℓu ∧ αn−ℓ

) 1
k−ℓ+1

.

This implies that

c
1

k−ℓ

ℓ,k

∫

X
χℓu ∧ αn−ℓ ≤

∫

X

(

σℓ(λ)

σk(λ)

) 1
k−ℓ

χℓu ∧ αn−ℓ,

hence dIℓ(u)/dt ≤ 0.

For the rest of the proof, we follow the argument in Corollary 7, starting from the fact

that Iℓ(û) = 0 where

û = u− Iℓ(u)
∫

X χ
ℓ ∧ αn−ℓ .

Then we obtain the Harnack inequality

0 ≤ sup
X
û(., t) ≤ −C1 inf

X
û(., t) + C2, (4.66)

for some constants C1, C2 > 0. Finally, Theorem 2 gives us the last claim. Q.E.D.

4.6 Flows with mixed Hessians σk

Our method can be applied to solve other equations containing many terms of σk. We
illustrate this with the equation

ℓ
∑

j=1

cjχ
j
u ∧ αn−j = cχku ∧ αn−k (4.67)

on a Kähler manifold (X,α), where 1 ≤ ℓ < k ≤ n, cj ≥ 0 are given non-negative
constants, and c ≥ 0 is determined by cj by integrating the equation over X .
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When k = n, It was conjectured by Fang-Lai-Ma [12] that this equation is solvable
assuming that

ncχ′n−1 −
n−1
∑

k=1

kckχ
′k−1 ∧ αn−k > 0,

for some closed k-positive form χ′ = χ + i∂∂̄v. This conjecture was solved recently by
Collins-Székelyhidi [7] using the continuity method. An alternative proof by flow methods

is in Sun [48]. Theorem 3 stated earlier in the Introduction is an existence result for more
general equations (4.67) using the flow (1.12) In particular, it gives a parabolic proof of a

generalization of the conjecture due to Fang-Lai-Ma [12, Conjecture 5.1]. We also remark
that the flow (1.12) was mentioned in Sun [44], but no result given there, to the best of

our understanding.

Proof of Theorem 3. This equation is of the form (1.1), with

F (A) = f(λ) = −
∑ℓ
j=1 cjσj(λ)

σk(λ)
+ c,

defined on the cone Γk. As in the proof of Corollary 5, for any j = 1, . . . , ℓ, the function

−σj/σk on Γk satisfies the conditions (1-3) in §1, so does f . We also have that f is in the
bounded case with

f∞(λ′) = −
∑ℓ
j=1 jcjσj−1(λ)

kσk−1(λ)
where λ′ ∈ Γ∞ = Γk.

Suppose χ′ = χ+ i∂∂̄u with supX u = 0 satisfies

kc(χ′)k−1 ∧ αn−k −
ℓ
∑

j=1

jcj(χ
′)j−1 ∧ αn−j > 0.

By the same argument in Corollary 5, this is equivalent to that u is a C-subsolution of

(1.12). Observe that for all t∗ > 0,

Ik(u(t
∗)) =

∫ t∗

0

∫

X

∂u

∂t
χku ∧ αn−k =

∫ t∗

0

∫

X

(

c−
∑ℓ
j=1 cjσj(λ)

σk(λ)

)

χku ∧ αn−k

=
∫ t∗

0



c
∫

X
χku ∧ αn−k −

ℓ
∑

j=1

cj

∫

X
χju ∧ αn−j



 = 0. (4.68)

Therefore Lemma 9 implies that

k
∑

j=0

∫

X
uχju ∧ χk−j ∧ αn−k = 0.
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Therefore we can obtain the Harnack inequality as in Corollary 5:

0 ≤ sup
X
u(., t) ≤ −C1 inf u(., t) + C2, (4.69)

and infX u < 0, for some positive constants C1, C2. Lemma 1 then gives a uniform bound

for u. Since
∫

X
∂tuχ

k
u ∧ αn−k = 0,

for any t > 0, there exists y = y(t) such that ∂tu(y, t) = 0. The rest of the proof is the

same to the proof of Corollary 5 where we used Lemma 7 to imply the convergence of the
flow. Q.E.D.

We observe that equations mixing several Hessians seem to appear increasingly fre-

quently in complex geometry. A recent example of particular interest is the Fu-Yau equa-

tion [14, 15, 32, 35] and its corresponding geometric flows [36].

4.7 Concluding Remarks

We conclude with a few open questions.

It has been conjectured by Lejmi and Székelyhidi [28] that conditions of the form
(4.22) and their generalizations can be interpreted as geometric stability conditions. This

conjecture has been proved in the case of the J-flow on toric varieties by Collins and
Székelyhidi [7]. Presumably there should be similar interpretations in terms of stability of

the conditions formulated in the previous section. A discussion of stability conditions for
constant scalar curvature Kähler metrics can be found in [40].

It would also be very helpful to have a suitable geometric interpretation of conditions

such as the one on the initial data u0. Geometric flows whose behavior may behave very
differently depending on the initial data include the anomaly flows studied in [33], [38],

[13].

For many geometric applications, it would be desirable to extend the theory of subso-
lutions to allow the forms χ and ψ to depend on time as well as on u and ∇u.
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