
HAL Id: hal-01698382
https://hal.science/hal-01698382v1

Submitted on 15 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed Agent-Based Traffic Simulations
Matthieu Mastio, Mahdi Zargayouna, Gérard Scemama, Omer Rana

To cite this version:
Matthieu Mastio, Mahdi Zargayouna, Gérard Scemama, Omer Rana. Distributed Agent-Based Traf-
fic Simulations. IEEE Intelligent Transportation Systems Magazine, 2018, 10 (1), pp. 145-156.
�10.1109/MITS.2017.2776162�. �hal-01698382�

https://hal.science/hal-01698382v1
https://hal.archives-ouvertes.fr


Distributed agent-based traffic simulations

Matthieu Mastioa Mahdi Zargayounaa Gérard Scemamaa Omer Ranab
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Abstract—Modeling and simulation play an impor-
tant role in transportation networks analysis. With
the widespread of personalized real-time information
sources, it is relevant for the simulation model to be
individual-centered. The agent-based simulation is the
most promising paradigm in this context. However, rep-
resenting the movements of realistic numbers of travel-
ers within reasonable execution times requires signifi-
cant computational resources. It also requires relevant
methods, architectures and algorithms that respect
the characteristics of transportation networks. In this
paper, we tackle the problem of using high-performance
computing for agent-based traffic simulations. To do so,
we define two generic agent-based simulation models,
representing the existing sequential agent-based traffic
simulations. The first model is macroscopic, in which
travelers do not interact directly and use a fundamental
diagram of traffic flow to continuously compute their
speeds. The second model is microscopic, in which trav-
elers interact with their neighbors to adapt their speeds
to their surrounding environment. We define patterns
to distribute these simulations in a high-performance
environment. The first distributes agents equally be-
tween available computation units. The second pattern
splits the environment over the different units. We fi-
nally propose a diffusive method to dynamically balance
the load between units during execution. The results
show that agent-based distribution is more efficient
with macroscopic simulations, with a speedup of 6
compared to the sequential version, while environment-
based distribution is more efficient with microscopic
simulations, with a speedup of 14. Our diffusive load-
balancing algorithm improves further the performance
of the environment based approach by 150%.

I. Introduction

Mobility policies makers need decision support systems
to decide which transportation policies they should imple-
ment. In this context, simulation is one of the important
tools to test strategies and multiple scenarios without
impacting the real traffic [1], [18]. However, transport sys-
tems are becoming progressively more complex since they
are increasingly composed of connected entities (mobile
devices, connected vehicles, etc). It becomes critical that

simulation tools take into account this fact. Indeed, with
the generalization of real-time traveler information, the
behavior of modern transport networks becomes harder to
analyze and to predict.

For these reasons, agent-based simulation, which adopts
an individual-centered approach, is one of the most rele-
vant paradigms to design and implement such applications.
The development of agent-based traffic simulations is rel-
evant in several contexts and in pursuit of various objec-
tives. The simulation can be used to validate the impact
of the use of cooperative systems [16], [19], to test changes
in behavior after the introduction of new mobility services,
such as carpooling, etc. An agent-based traffic simulation
platform simulates the behavior of travelers interacting in
a complex, dynamic and open environment, on which they
have a partial perception [3]. Each agent tries to find the
most efficient route to reach his destination in a network
evolving dynamically. In some applications (e.g. [33]), an
agent can potentially be informed of the status of the
network and use this information to modify his route.
In this kind of simulations, it is important to model and
simulate a realistic number of travelers to correctly observe
the effects of individual decisions. In the European project
Instant Mobility1 for instance, the objective was to supply
a multimodal platform with individual and multimodal
travel queries and dynamic positions of travelers and vehi-
cles. To allow the platform to demonstrate its efficiency in
an operational context, we implemented a simulator (called
SM4T [34]), which had to be executed with an actual
volume of travelers. Other examples where simulations
must be scalable concern testing of new mobility services
such as carpooling, car sharing, dial a ride, evacuation
modeling, the exchange of information between connected
vehicles, etc.

However, the simulation of an actual number of passen-
gers in a big city (several millions of travelers) requires
both considerable computing power and an architecture
allowing the distribution of computations on many hosts.
The majority of current agent-based traffic simulators do
not allow such distribution. This induces limitations on

1http://www.instant-mobility.com/



the number of simulated travelers, means of transport and
the size of the considered networks. provide reproducible
generic distribution patterns that could be used by existing
and future implementations of agent-based traffic simula-
tions.

In this paper, we propose to study distribution meth-
ods for agent-based traffic simulations. We define two
generic agent-based simulation models, representing the
main types of agent-based simulations of the literature.
The first model is called macroscopic, in the sense that
travelers do not interact directly but use a fundamental
diagram of traffic flow to continuously compute their
speeds. This is the choice performed for instance in these
works [34], [22], [8]. The second model is called micro-
scopic, in which travelers interact with their neighbors to
adapt their speeds to their surrounding environment. This
is the most common choice performed in the literature for
agent-based simulations (e.g. [5], [24]). This paper studies
two distribution patterns (agent-based and environment-
based) applied to these two simulation models. The results
show that agent-based distribution is more efficient with
macroscopic simulations while environment-based distri-
bution is more efficient with microscopic simulations. We
propose a load-balancing mechanism for the environment-
based distribution and show that, with the right parame-
ters definition, it has a positive impact on the distribution
platform.

The remainder of this paper is structured as follows.
In section II, we present the previous studies for agent-
based traffic simulation and the existing distributed agent-
based platforms. Section III presents a generic simulator
for the execution of both macroscopic and microscopic
agent-based traffic simulations. Section IV presents the
two distribution patterns (agent-based and environment-
based) and their application to the two simulation models.
Section V presents the load-balancing mechanism. Sec-
tion VI explains our experimental setup and the results
of our simulations. Section VII concludes this paper.

II. Related work

In this section, we position our work with the previous
works in the literature. In the next paragraph, we present
the existent agent-based traffic simulators. Then we will
focus on the existing proposals for distributing these
platforms. We will finally describe the generic parallel
multiagent platforms.

There exists several agent-based traffic simulations in
the literature. Most of them are microscopic, in the sense
that they rely on local interactions between traveler agents
to define agents speeds. For instance, Transims [26], MAT-
Sim [24], Sumo [5] and Vissim [14] are widely used micro-
scopic simulators of this type. Archisim [13] are also agent-
based traffic simulation platforms describing precisely the
behaviors of each traveler at a microscopic scale. Some
existing agent-based simulations are “macroscopic”, in the
sense that they compute the agents speeds based on a
function mapping the number of agents traveling on an

edge with their speeds. This model is generally used when
an individual representation of travelers is needed but
there are no reliable data about their local behavior. The
authors in [34], [22], [8] have made this choice.

The problem of distributing agent-based traffic simu-
lations have attracted a lot of researches recently. Some
previous works have addressed the specific problem of
distributing agent-based traffic simulations. In [6], the
authors propose dSumo, a distribution platform applied
to the Sumo microscopic simulation platform. In [21], the
authors propose a parallel version of Paramics [9]. How-
ever, they do not implement a load-balancing mechanism
and present small clusters and networks (grid-like). The
authors in [27] present a parallelization of the Transims
platform, with a load-balancing mechanism. They use a
master-slave model for synchronizing the different hosts.
In the present work, our objective is to propose completely
distributed mechanisms, independent from specific traffic
platforms. In addition, to the best of our knowledge,
our work is the only one dealing with the distribution
of simulations using the two different interaction models
(viz. microscopic and macroscopic). More theoretical works
studied general methods to address the traffic simulation
distribution problem. In [23] and [30], the authors propose
to relax some synchronization constraints to achieve a
better scalability by reducing the time the hosts wait for
each other. This relaxation of constraint implies a loss
a precision which is not viable in the case of a traffic
simulator. Indeed, we could reach a state where the vehicles
overlap and occupy the same position in the network.
Our objective is to have a perfect accuracy of distributed
traffic simulation, where the result in terms of traffic is
exactly the same between a sequential and a distributed
simulation.

Some general-purpose multiagent platforms have been
specifically developed for large scale simulation in the last
years. RepastHPC [12], a distributed version of Repast
Symphony, uses the Repast’s concepts of projections and
contexts and adapts them for distributed environments.
Pandora [2] is close to RepastHPC and automatically gen-
erates the code required for inter-server communications.
GridABM [17] is based on Repast Symphony but takes
another approach and proposes to the programmer general
templates to be adapted to the communication topology
of his simulation. Flame [11] allows the programmer to
generate HPC simulations from finite state machines. It
has also been sugested to use graphical units (GPGPU)
to scale up the multiagents simulations. As we have seen
in other articles, the TurtleKit 3 platform has been used
in GPGPU [25]. However, these distributed platforms do
not offer fine controls on how the communications between
hosts are performed. Indeed, the communication layer is
transparent for the programmer, which makes it easier for
him to implement distributed simulations, but prevents
him from optimizing the distribution. The best way to
manage the communications depends on the application
and using such general platforms for a traffic simulator
would not produce optimal results. In [28] the authors



discuss the issues related to multiagent simulation in
a distributed virtual environment. The authors describe
methods to split the virtual environment in several zones to
parallelize the simulation execution. This work proposes an
efficient splitting of a continuous space in two dimensions.
In the present paper, we use an adaptation of this work for
a graph structure to distribute traffic-based simulations.

III. Generic agent-based traffic simulations

In the following, we present two generic agent-based
traffic simulations. They are designed with the objective
of representing the existing agent-based traffic simulations.
They contain the main features of these types of simula-
tion, namely the network representation and the agents
movements on this network. The next section presents the
common components of these simulations. The next sec-
tions present the differences between the two simulations,
mainly concerning the travelers speed computation.

A. The multiagent system

In our proposals, we consider agents that are virtual
autonomous entity, evolving in an environment, and taking
actions to realize their objectives [7]. Agents are able to
act on their environment, and to interact with the others
agents.

A common base is shared by both simulations, which is
composed of a dynamic set of agents representing travelers,
interacting with a transportation network environment.
We model the transportation network in which the travel-
ers evolve with a graph G(V,E), where E = {e1, ..., en} is
a set of edges representing the roads and V = {v1, ..., vn} is
a set of vertices representing the intersections. The agents,
representing the travelers, move on this network from their
origins to their destinations, trying to minimize their travel
costs. Fig. 1 describes the steps followed by a traffic simu-
lation. First, the simulation platform loads the parameters
(simulation duration, number of generated agents, etc.)
and the description of the network. Then, it creates the
logical graph from the network representation, to enable
shortest paths calculation and agents movements. The
scheduler, which is responsible of agents execution, ranges
over the agents and asks them to execute one step of
simulation (either to compute a shortest path or to move
from one position to another). When an agent reaches his
destination, he comes back to his origin point (to keep
a constant number of agent in the simulation). When all
agents have executed their step instructions for one tick of
simulation time, the scheduler increments the simulation
tick counter (step++), and the process starts again. When
the simulation duration is reached, the simulation stops
and the results are collected.

The agents execute a step method each time they are
activated by the scheduler. When created, an agent has
an origin node o and a destination node d. The first
action that he executes when created and activated by
the scheduler is to compute an A? shortest path algorithm
between o and d. The shortest path is performed on the

Fig. 1: Steps of a simulation

graph G, which edges costs are dynamic, depending on
the current traffic. When he has a current path, the agent
moves according to it. At each tick, he moves the allowed
distance following his current speed. The speed of the agent
is computed following the simulation model (microscopic
or macroscopic), described in the following sections. Each
time he reaches a node, the agent recomputes a shortest
path, to check if the current traffic conditions have evolved
and if a new shortest path has become available2.

These are the main components of the model that are
common to both types of simulations. In the following
sections, we present the specific methods for the two
simulations, namely macroscopic and microscopic.

B. Macroscopic simulation model

In the macroscopic simulation model, the speed of an
agent on an edge is computed following the number of
other agents traveling on the same edge. To this end, a
fundamental diagram of traffic flow is used. The diagram
defines a relation between the flow (vehicles/hour) and the
density (vehicles/km) (cf. Fig. 2, left) on an edge or a part
of an edge to calculate the speed of the agents at each
time. The fundamental diagram suggests that if we exceed
a critical density of vehicles kc, the more vehicles are on a
road, the slower they will move.

With the distribution objective that we have, the loca-
tions of the agents and their interaction patterns are the
most important. In the macroscopic model, the agents do
not interact directly. The speed of the agent is computed
with an interaction between the agent and the edge. The
latter knows the number of agents currently using it, and

2The graph being directed, turnarounds are only possible at nodes
and there is no need for the agent to execute a shortest path while
traveling on an edge.



Fig. 2: Fundamental diagram (left) Speed in function of
density (right)

based on the speed function providing the right speed to
be used by the agent, based on the fundamental diagram
(cf. Fig. 2, right).

C. Microscopic simulation

In the microscopic simulation model, the speed of an
agent on an edge is computed following the position and
speed of the vehicles surrounding him. In this model, the
information available to each agent is only local. The
agents perceive a part of their environment, delimited by
their aoi3 and then calculate their next move given the
perceived information. This implies many local communi-
cations between the agents, because their actions will be
conditioned by the actions of the other agents present in
their aoi. This model is generally based on:

• a car-following model
• a lane-changing model
• and/or a gap acceptance model

All three models focus on local interactions. In the
following, we describe an example of car-following model.

At each time tick of the simulation, each agent computes
his speed based on the speed and position of the agent
before him. The variables needed to describe our model
are the following:

1) xn(t) the position of n at time t
2) x′n(t) the speed of n at time t
3) x′′n(t) the speedup of n at time t
4) sn(t) = xn−1(t)− xn(t) the inter-agent distance
5) s′n(t) = x′n−1(t)− x′n(t) the relative speed
6) T the reaction time

Thus, at any time step, the speed of an agent is given
by the relation:
x′′n(t+ T ) = αs′n(t) + βsn(t) + γx′n(t)
If there is no vehicle preceding the agent, he will accel-

erate until he reaches the speed limit of his edge.
In this model, each agent registers his experienced travel

time when he reaches the end of the edge (as proposed by
the authors in [31]). The shortest path calculation is based
on the graph where the travel times costs are fed by the
agents following this procedure.

In contrast with the macroscopic model, the agents in
the microscopic model do interact directly. The speed of
the agent is computed with a direct interaction between

3Area of interest

Fig. 3: The car-following model

the considered agent and the agents before him. This
difference between the two models conditions the choice
of the relevant distribution pattern for the considered
simulation type. The distribution patterns are described
in the following section.

IV. Distribution

We define two patterns to distribute traffic simulations.
The patterns are the same than those identified by the
authors in [29] for general-purpose situated multiagent
simulations, and we believe that they present two repre-
sentative distribution patterns for this kind of simulations.
The first pattern (called agent-based distribution) is the
distribution model used by [4]. It consists in the duplica-
tion of the transport environment on all processing units,
and the equal dispatching of the agents on each one. As a
consequence, agents stay on the same unit during all the
simulation. The second pattern (called environment-based
distribution) is the mostly used pattern in the literature.
It consists in partitioning the transportation environment
and the dispatching of each subpart of the environment
- and all the agents in it - on each processing unit. In
this pattern, agents might have to move from one unit to
another if their itinerary crosses several subparts of the
transport environment.

A. Agent-based distribution

The first distribution pattern is agent-based, since it
clusters the set of agents in k equal parts (with k the
number of available processing units), and distributes each
subset on a unit and executes the simulation (cf. Fig. 4).
The transportation network is duplicated on each unit.
This method ensures that each unit has the same amount
of work at any time of the simulation. In the following, we
describe the use of this pattern for both simulation models
that we have defined.

1) Macroscopic simulation with agent-based distribution:
In a macroscopic simulation, when it is distributed fol-
lowing the agent-based distribution pattern, every units
continuously (at each simulation tick) informs the other
units of its network state. This is due to the fact that they
do not have a complete view of the network state, since



only a part of the agents evolves in the unit. Thus, they
send the list of edges together with the number of agents
currently on them. Each unit is then able to compute the
shortest paths and the relevant speed of the agents (using
the fundamental diagram of traffic).

2) Microscopic simulation with agent-based distribution:
When distributed following the agent-based distribution
pattern, the agents in a microscopic simulation do not
use a fundamental diagram of traffic to compute their
speeds. Instead, they need to know the state of the agents
preceding them. To do so, they interrogate the edges in
the other units to know if there are agents preceding them,
and if it is the case, to know their states. Moreover, the
units exchange the current travel times (provided by the
agents as explained in the microscopic model), in order to
compute the shortest paths of the agents.

Fig. 4: Agents distribution

B. Environment-based distribution

The second approach to distribute traffic simulations
is environment-based. It tries to keep on the same unit
the agents who are geographically close in the transport
network (cf. Fig. 5). To this end, the network is splitted
in k parts (with k the number of available processing
units), and distributed on the different units. Each unit is
only aware of what is happening on the part of the graph
that it is managing, and the agents that are in the same
area are now likely to be on the same unit. If an agent
reaches a part of the network that is not managed by his
current unit, he moves to the proper unit. In order for the
environment distribution method to be effective, each unit
has to manage approximately the same number of agents
and the number of edges connecting the partitions has also
to be minimized (to reduce the number of agents being
transferred between units).

The problem of graph partitioning has been widely
studied in the scientific literature. We propose a method

Fig. 5: Environment distribution

derived from the Differential Greedy algorithm [15] that
allows us to use the algorithm with weighted vertices while
producing more connected partitions (Algorithm 1). For
edges partitioning, we make the same choice as [10] by not
cutting edges in the middle. We associate each edge with
the partition of its origin node.

Algorithm 1 Differential Greedy algorithm

Require:Graph G = (V,E), number k of partition
Ensure:Partition P
(1) P ← P0, ..., Pk−1
(2) V ′ ← V
for p ∈ [0, k − 1] do

(3) v ← random vertex of V ′

(4) Pp ← {v}
(5) V ′ ← V ′ \ {v}

end for
while |V ′| > 0 do

(6) p← index of the lightest partition
(7) m = minv∈V ′(1 + ε)(number of v’s neighbors ∈
Pp)− (number of v’s neighbors /∈ Pp)
(8) mv = random vertex of v ∈ V ′|(1 + ε)(number v’s
neighbors ∈ Pp)− (number of v’s neighbors/∈ Pp) = m
(9) Pp ← Pp ∪ {mv}
(10) V ′ ← V ′ \ {mv}

end while
(11) Return P

The algorithm starts by creating a minimal partition
with only one node each (instructions (1) to (5)). Then,
while there are nodes to be associated to partitions, the



algorithm:

• chooses the lightest partition Pp, in terms of agents
present in it (instruction (6))

• finds the nodes that are the most connected with the
nodes already in Pp and that are the least connected
with the nodes that are not in Pp. The parameter ε
gives more or less importance to the nodes that are
close to the partition (instruction 7).

• chooses one of these nodes, adds it to the partition
and removes it from the nodes to process (instruc-
tions 8 to 10).

This algorithm is fast and intuitive. Our modification
of the original differential greedy algorithm concerns the
choice of the current partition to treat. The “lightest”
partition in the original algorithm concerns the number of
nodes in the partition, while in our algorithm, it concerns
the number of agents in the partition.

1) Macroscopic simulation with environment-based dis-
tribution: When used with an environment-based distribu-
tion, the computation units in the macroscopic simulation
exchange the current travel times on the transport edges,
to be able to compute the shortest paths for the agents.
However, since all the agents on an edge are present on
the same unit, they do not need to exchange the number
of agents per edge. The fundamental diagram of traffic and
the speeds of the agents can indeed be defined locally.

2) Microscopic simulation with environment-based dis-
tribution: When distributed following the environment-
based distribution pattern, the agents in a microscopic
simulation need to know the state of the agents preceding
them. In contrast with the agent-based distribution model,
the agents preceding them are by definition present on the
same computation unit. The interrogation of the edges is
then local to the concerned computation unit. The units
keep on exchanging the current travel times (provided by
the agents) to compute the shortest paths for the agents.

V. Diffusive load balancing

With the environment-based distribution, the graph
partitioning is executed once, based on the initial positions
of the agents and the network structure. However, if the
network structure is stable, agents positions are of course
changing over the simulation, which could lead to load
imbalance during the simulation. Typically, travelers drive
from their residential areas to work areas in the morning
and drive back home in the evening. Certain parts of the
network, and consequently their corresponding computa-
tion units, would have many more agents to handle than
the others, and the whole simulation would slow down.
Indeed, at the end of each time step of the simulation,
all the units have to wait for each others to synchronize.
The overall execution time of a simulation step is then
equal to the execution time of the slowest unit. As the
execution time of a given unit is directly linked to the
number of agents executing on this unit, it is important
in these conditions to keep the load balanced.

A. The algorithm

A straightforward way to balance the load dynamically
would be to part the graph from scratch when one unit is
overloaded. But in the traffic simulations we are targeting,
we have to deal with big graphs and many agents: the time
needed to part the graph and to move all the agents from
one unit to another would be counterproductive and would
slow down the simulation.

Algorithm 2 Diffusive Load Balancing algorithm

Require:P partition of a graph G = (V,E)
Require:Pi current partition
Require:n total number of agents
Require:k number of processing units
threshold← α(n/k)
if number of agents in Pi > threshold then
Pmin ← partition connected to Pi with the minimum
load
vmax ← the heaviest vertex ∈ Pi connected to Pmin

with |v| < 0.5(n/k)
move vmax to Pmin

end if

That is why we have developed a dynamic load balanc-
ing algorithm, able to diffuse incrementally the excessive
workload of a unit on the units around. At the beginning
of the simulation, we use the modified differential greedy
algorithm to part the graph. Then, during the simulation,
each unit maintains a list of boundary vertices of the
traffic network. These vertices are the ones who have a
common edge with a vertex managed by another unit.
When the load of a processing unit (in terms of number of
agents) exceeds a threshold, we trigger the load balancing
mechanism. The unit will request the load of the processing
units around, and will transfer its most heavy vertex
(in terms of number of agents on it) to his least loaded
neighbor (cf. algorithm 2). However, when there is a huge
number of agents on a vertex, the latter will continually be
sent between the units. To avoid this perpetual oscillation,
we define a limit on the number of agents from which the
vertex will not be moved. This algorithm avoids to part
the graph from scratch, and allows a good load-balancing
with a linear complexity: O(n) +O(k).

For instance, in Fig. 6, the W values represent the num-
ber of agents in each partition. The partition 1 is initially
overloaded (a), compared to the others. The partition 2,
which is the neighboring partition with the smallest load
is selected for the transfer. At this point, both vertices
7 and 9 are candidates to be transferred, as they are in
the boundary between the partition 1 and 2. The heaviest
vertex (9) is selected, and sent to partition 2. This gives
us a new graph partition, by load diffusion.

The choice of the coefficient α is crucial here, because it
will determine how often the mechanism will be triggered.
Indeed, the closer α is of 1, the most often the procedure
of load balancing will be triggered. Triggering it too often
would leads to unstable partitions.



Fig. 6: Diffusive load balancing

VI. Experiments and Results

A. Implementation

A way to execute a distributed simulation is to define a
distributed program where each computation unit, while
executing the same program, owns only a part of the pro-
gram data in its private memory, and all the processors are
connected by a network. The advantage of this approach
is its high scalability. Indeed, it can be implemented on
most parallel architectures and we can deploy the same
simulation on larger systems if we need more computing
power and memory. We use Python to develop our sim-
ulator, for its efficiency in quick prototyping. Python is a
mature portable language with a lot of well tested scientific
libraries and is along with C and Fortran one of the most
used languages for high performance computing [20]. Here,
we do not seek absolute performance, but we aim to study
the relative efficiency of different distribution methods.
Thus we believe that Python is a relevant choice. The inter-
process communications are managed by MPI, which is
the standard language for parallel computing with a huge
community of users. MPI offers a simple communication
model between the different processes in a program and
has many efficient implementations that run on a variety
of machines4.

We have executed the distributed simulations on an
experimental cluster that we have set up. For our tests, we
used two hosts under Linux Mint 17.2 Rafaela (kernel ver-
sion 3.16.0-38-generic) each with an Intel Xeon processor
CPU E7-4820 (32 cores at 2Ghz) with 250GB of memory.
We ran the simulations on two configurations: the first is
a sequential version of the program on a single core, the
second is a distributed version on the whole 64 cores.

The considered network is a real network concerning
the Paris-Saclay region, France, with 1895 nodes and
3831 edges. The number of travelers using this network
is around 110,000. We consider from 10,000 travelers to

4MPI4PY is an efficient interface that allows to use MPI with
Python.

500,000 travelers in our simulations. That means that we
represent from around 10% to around 500% of the real
number of travelers in our simulations.

B. Results

1) Macroscopic Vs. Microscopic model: We com-
pare the two methods of distribution (agent-based
and environment-based distributions) with the different
paradigms (micro and macro) increasing the number of
agents (from 10,000 to 500,000).

Fig. 7: Speedup for the agent-based distribution

Fig. 8: Speedup for the environment-based distribution

The speedups for the two distributions methods applied
on the different paradigms are plotted in Fig. 8 and Fig. 7.
The speedup measures how many times the distributed
simulation is faster compared to the corresponding sequen-
tial execution.

As we can see, the agent distribution is efficient for a
macroscopic model (more than 5 times faster with 500,000
agents). There is no local interactions in this type of
simulations. This method allows to get a perfectly balanced



load all along the simulation, while keeping the amount of
inter-servers communications at the minimum.

However, this method is particularly ineffective in the
case of a microscopic simulation. Indeed, the agents will
now interact a lot with other agents that are not situated in
the same unit. This will generate a lot of communications
between the servers, and the gain of the parallelization is
annihilated by the time required by these communications.
This method is even less efficient than the sequential
execution for the microscopic model (speedup < 1).

For a macroscopic simulation, the environment distri-
bution is less efficient than agent distribution. It is well
adapted for a microscopic simulation though. This method
is up to 15 times faster than a sequential execution applied
in a microscopic simulation.

2) Impact of load-balancing: For the assessment of the
load-balancing mechanism, we have to define the optimal
value of α for the experiments. To do so, we execute
three different types of simulations, each applied to the
microscopic simulation type: the first, called “static” is
the environment-based distribution approach presented
earlier. The second is the load-balancing approach with
α = 1.2 (called “dynamic 1 2”) and the third is the load-
balancing approach with α = 1.3 (called “dynamic 1 3”)5.
Fig. 9 shows the results. Each point in the curves represents
the difference between the optimal load (equal agents
distribution between units) and the load on the most
loaded process, for each time step. As we can see, with
the “static” approach, the difference (the imbalance) is big.
With the dynamic approach and α = 1.2, the balance
is better than with the static approach, but the load is
unstable. Finally, with α = 1.3 the oscillations ceases and
the load of the simulation is successfully balanced between
the processes. Based on a series of experiments that we
have executed, choosing a bigger α would lead to more
imbalanced partitions, so we choose to keep α = 1.3 for
the rest of our experiments.

Fig. 9: Load imbalance

5We do not display the curve for α = 1.1 because it was extremely
unstable

Fig. 10: Speedup for the different methods

Fig. 11: Execution time in function of the number of
processes

Table I indicates the execution times for a simulation
of 1,000 time steps with the sequential method and the
two distribution methods (static and dynamic with α =
1.3). Fig. 10 shows the speedups of the two methods in
comparison to the sequential execution.

Finally, Fig. 11 exhibits the efficiency of the dynamic
load balancing in function of the number of used processes.
The simulation we ran here was for 100,000 agents and
1000 time steps, with 64 processes. We can see that with
our load balancing, the simulation scale very well with the
number of process we have at our disposal. For 100000
(which is approximately the load we can expect on the
Paris-Saclay network) we reach a speedup of 54 with 64
processes.

VII. Conclusions and perspectives

In this paper, we applied two distribution methods on
two types of agent-based traffic simulators. We have seen
that agent-based distribution is well suited for macro-
scopic simulators while environment-based distribution is
well suited for microscopic simulations. These findings



number of agents 10,000 50,000 100,000 250,000 500,000
Sequential (1 proc) 12814 62672 142350 315876 631243
Static (64 cores) 463 2136 3902 9636 18929

Dynamic 1.3 (64 cores) 327 1382 2665 6468 13480

TABLE I: Load balancing: computational times (in seconds)

are useful for the distribution of the existing agent-based
traffic simulations. Microscopic simulations can be more
optimally distributed using dynamic load-balancing mech-
anisms, such as the diffusive load-balancing method pre-
sented in this paper.

The proposed diffusive load balancing algorithm that we
have proposed is able to dynamically balance the loads of
a traffic simulation, and is efficient with our experimental
setup. In a future work, we will test this method on
a cloud-like environment (single core units, linked by a
network). We will also investigate a hybrid approach: when
a process has to manage a very loaded vertex, being able
to distribute the agents on this vertex between two or
more units would allow us to improve furthermore the
performance of the simulation.

We also plan to consider multimodal agent-based traffic
simulators. The presence of different transport modes and
networks could encourage to mix the patterns presented in
this paper with a distribution per transport mode. We are
also working on the integration of information networks
(such as social networks or intervehicular interaction [32])
and their impact on the distribution performance. Indeed,
if travelers interact often, they should be preferably ex-
ecuted on the same units, or else they will generate too
many communication and deteriorate the performance of
the system.
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