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In this study, the definition of a RCPSPR (Resource-Constrained Project Scheduling Problem 

with Routing) solution from a flow solution of the RCPSP is investigated. This new problem 

consists in defining a solution of RCPSPR that considers both routing and scheduling and that 

complies with a RCPSP flow, i.e., a solution where the loaded vehicle moves are achieved 

between activity 𝑖 and 𝑗 with a non-null flow. A shortest path algorithm is proposed to solve 

this problem with a labeling dynamic approach where a label provides all of the information 

about a solution, including the objective function, the system state and the remaining resources 

that allow the use of a dominance rule. The system state, described by the label, encompasses 

both the activities and the vehicle fleet information, including vehicle position and availability 

dates. Numerical experiments are limited to a comparative study with a proposed linear 

formulation since no previous publications exist on this problem. A time performance analysis 

of the proposed algorithm is carried out, proving the efficiency of the algorithm and clearing 

the way for integration into global iterative optimization schemes that will solve the RCPSPR 

to optimality. 

 

1. Introduction 

Although supply chain decision problems are interrelated, they 

are often solved sequentially. However, to achieve a highly 

effective overall system that complies with customers’ 

expectations, coordination among the different stages in the 

supply chain is necessary. Consequently, the integration of 

scheduling and routing problems has received increasing 

attention in the last decade (Moons et al., 2017). Several papers 

focusing on integrated problems were recently published, 

including but not limited to Zhang et al. (2016) who deal with 

the real-world production warehousing case, or Saglam and 

Banerjee (2017) who focus on batching decisions and different 

shipping scenarios. In supply chain management, in addition to 

the integration of production planning and distribution 

decisions, an effective management of the resources is essential 

to preserve the competitiveness of companies. This paper 

focuses on a new integrated problem based on the resource-

constrained project scheduling problem with routing constraints. 

1.1. Resource-constrained project scheduling problem 

The Resource-Constrained Project Scheduling Problem 

(RCPSP) consists of a set of activities, 𝑉 = {0, . . . , 𝑛 + 1 }, with 

durations, 𝑝 = (𝑝0, . . . , 𝑝𝑛+1), where 𝑛 is the number of non-

dummy activities plus two dummy activities denoted 0 and 𝑛 +
1, which define the “project start” and the “project end”, 

respectively. The set of non-dummy activities is identified 
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by 𝐴 = {1, … , 𝑛} and some activities are related by precedence 

constraints. The precedence constraints can be induced by the 

definition of predecessors in the problem definition (one activity 

𝑗 cannot start before all its predecessors have been achieved) and 

by definition of constraints due to the resource exchanges. A 

solution of the RCPSP is fully defined by the activity start 

times 𝑆𝑖  and by a resource supply that complies with the activity 

requirements. The number of project resources is denoted as 𝑞 

and the set of resource capacities is 𝑅 = {𝑅1, . . . , 𝑅𝑞}, 

where 𝑅𝑘 ∈ ℕ . The activity resource requirement 𝑏𝑖𝑘 ∈ ℕ 

means that activity 𝑖 requires 𝑏𝑖𝑘 ≤ 𝐵𝑘 resource units of resource 

𝑘 during its execution. 

1.2. RCPSPR definition 

The RCPSPR (Resource-Constrained Project Scheduling 

Problem with Routing) is an extension of the RCPSP where 

resources are transported from one activity to another using a 

vehicle. The problem consists of solving both the activity 

scheduling problem and the vehicle routing problem. This paper 

focuses on the case of one resource, 𝑞 = |𝑅| = 1, and assumes, 

without loss of generality, that 𝑏𝑖𝑘 = 𝑏𝑖. The schedule length 

𝐶𝑚𝑎𝑥 (i. e., the project makespan) is defined by the end of the last 

transport operation from one activity to the dummy activity 𝑛 +
1. 

The routing part consists of scheduling trips with a set of 

vehicles 𝑇 = {1, . . . , 𝑣 } sorted in descending order of capacity 
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𝑐𝑢 , 𝑢 ∈ {1, … , 𝑣}. A loaded transportation time 𝑡𝑖𝑗
𝑢𝑥  is defined 

from activity 𝑖 to 𝑗 with a vehicle 𝑢 loaded with 𝑥 units of 

resources. An unloaded transportation time 𝑒𝑖𝑗
𝑢  is also defined 

from activity 𝑖 to 𝑗 with an empty vehicle 𝑢. An activity 𝑗 is 

defined by a starting time 𝑆𝑗 with a completion time 𝐶𝑗 =  𝑆𝑗 +

𝑝𝑗 and resource supplies that meet the requirement 𝑏𝑗. An 

activity can only start when a total amount 𝑏𝑗  of resources is 

transferred from activity i to activity 𝑗.  

The resources transferred from activity 𝑖 to 𝑗 are modeled by a 

transport operation 𝑇(𝑖,𝑗,𝑢,𝑥) = (𝑃(𝑖,𝑗,𝑢,𝑥) , 𝐷(𝑖,𝑗,𝑢,𝑥) ), which is 

fully defined by a pickup operation 𝑃(𝑖,𝑗,𝑢,𝑥)  and a delivery 

operation 𝐷(𝑖,𝑗,𝑢,𝑦) . These two operations are defined by: 

 an arrival time and a departure time of the vehicle, 

𝐴 (𝑖,𝑗,𝑢,𝑥) and 𝐵(𝑖,𝑗,𝑢,𝑥),  respectively; 

 a quantity of resource (pickup or deliver) 𝑥; 

 a vehicle assigned to the transport operation 𝑢. 

The problem consists in a proper coordination of scheduling and 

routing operations to minimize the makespan 𝐶𝑚𝑎𝑥 (Fig. 1). A 

routing solution is defined as a set of trips, and each trip is an 

ordered sequence of loaded transport operations. The earliest 

starting time of an activity is the latest arrival time of the last 

vehicle assigned to the transportation of resources required by 

the activity.  

In Fig. 1, an extended Gantt diagram displays a solution with the 

earliest starting times and the durations of three activities, plus 

the trips of two vehicles with 𝑐1 = 3 and 𝑐2 = 2. For example, 

in Fig. 1, activity 1 has an earliest starting time equal to the 

arrival time 𝐴(0,1,1,3) = 2. For activity 3, the earliest starting 

time is equal to the maximum value between the arrival time of 

vehicle 2 with two units of resource, 𝐴(1,3,2,2) = 7 and the 

earliest completion time of activity 2, 𝐶2 = 16, due to a 

precedence constraint. Let us note that the earliest starting time 

of activity 2, is the latest arrival time of the vehicles (vehicle 1), 

meaning that two delivery operation are required to define the 

starting time of activity 2. 
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Figure 1. Coordination between routing and scheduling 

 

In this example, vehicle 2 transports one resource from activity 

0 to 2 (𝑇(0,2,2,1)) and then makes an unloaded move to activity 1 

in order to load and transport two resources to activity 3 

(𝑇(1,3,2,2)). Once the resources are delivered at time 7, vehicle 2 

goes back to the depot and arrives at time 10. Figure 2 shows 

that two deliveries are performed on activity 2, the first delivery 

operation permits to transport one unit of resource from activity 

0 with the vehicle 2 and the second delivery operation permits 

to transport one unit from activity 1 thanks to vehicle 1. The 

delivery operation are defined by both a location (activity) and 

a quantity of resource. The resource delivered at one activity are 

assumed to be in an input buffer on the activity. Such situation 

occurs for activity 2, where one unit of resource waits from time 

2 to time 6 in the input buffer of activity 2. At time 6, activity 2 

can start thanks to the transport operation 𝑇(1,2,1,1). This example 

is used throughout the paper in order to illustrate the proposed 

algorithm.  
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Figure 2. Impact of coordination on the ressource management 

 

1.3. Related problems 

Routing constraints are involved in numerous scheduling 

problems including, for example, the flexible job-shop 

scheduling problem with transport (Zhang et al., 2012b), the job-

shop with transport (Knust, 1999; Lacomme et al., 2013; Afsar 

et al., 2016), the Flexible Manufacturing Systems (FMS) 

(Caumond et al., 2009), the HSP (Hoist Scheduling Problem) 

(Honglin et al., 2016; Adnen and Mohsen, 2016; Chtourou et al., 

2013), and the RCPSP with transport (Quilliot et al., 2012). 

Numerous scheduling approaches take advantage of the 

disjunctive graph introduced by Roy et al. (1964), which has 

been extended to tackle transport constraints (see Lacomme et 

al. (2007) and Zhang et al. (2012a)), where vertex models 

transport operations and disjunctive arcs are added between 

operations that require the same resource (vehicle). The 

coordination between transport and scheduling can be achieved 

in two possible ways depending on the objective. The first one 

consists of the explicit modeling of transport from one location 

to another, and the second one consists in modeling only 

transport delay (minimal time-lags between machines). 

Maximal time-lags between activities can model a time window 

between activities and are used in pickup and delivery resolution 

approaches for trip evaluation (Cordeau and Laporte, 2003; Firat 

and Woeginger, 2011).  

Transport modeling depends on the vehicle capacity, and a trip 

is considered to be an ordered sequence of pickup/delivery 

operations including loaded/unloaded transport operations. 

Depending on the problem, the transportation time can be 

job/vehicle load-dependent and can be denoted 𝑡𝑖𝑗
𝑥  for a transport 

from activity 𝑖 to 𝑗 with 𝑥 resources. Similarly, 𝑡𝑖𝑗
0  (normally 

denoted 𝑒𝑖𝑗 = 𝑡𝑖𝑗
0 ) denotes the duration of an unloaded transport 

operation. If the transportation times are vehicle-dependent, they 

can be noted 𝑡𝑖𝑗
𝑢𝑥 where 𝑢 is the vehicle.  

2. Proposition 

2.1. RCPSPR modeling 

Several formulations were introduced for the RCPSP, including 

Alvarez-Valdés and Tamarit (1993), Pritsker et al. (1969), 

Pritsker and Watters (1968) and Dauzère-Pérès and Lasserre, 

(1995), and more recently, the flow formulation of Artigues et 

al. (2003) that defines a solution of the RCPSP using an activity-

on-node (AON)-flow network defining a so called 𝐺𝐴𝑂𝑁
𝜑 ( 𝑉, 𝐸) 

(Fig. 3). In this graph, there is a vertex in 𝑉 for each activity. In 

addition, the set 𝐸 of resource arcs represents the number of 

units of the resource directly transferred between two activities. 

The arc in Fig. 3 between node 0 and 𝑖1 models a resource 

transfer of 𝜑0,𝑖1
 units of the resource between activity 0 and 𝑖1. 

ϕi2,ip+2 0

i1 ip+1

i2 ip+2

ip ip+n

ip+.

...

n+1

ϕ0,i1 

ϕ0,ip 

ϕ0,i2 

ϕi1,ip+1 

ϕip+1,ip+2 
ϕip+2,* 

i.

  
Figure 3. Activity-on-node (AON)-flow network 𝐺𝐴𝑂𝑁
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Figure 4. Disjunctive graph 𝐷𝐺𝐴𝑂𝑁

𝜑 ( 𝑉, 𝐸) 

A disjunctive graph 𝐷𝐺𝐴𝑂𝑁
𝜑 ( 𝑉, 𝐸) (Fig. 4) is defined considering 

the (AON)-flow network 𝐺𝐴𝑂𝑁
𝜑 ( 𝑉, 𝐸) graph. For each node, 𝑖 ∈

 𝑉, all outgoing arcs (𝑖, 𝑗) ∈ 𝐸 are weighted by the duration 𝑝𝑖  of 

activity 𝑖. If there is an edge (𝑖, 𝑗) ∈ 𝐸, then 𝐶𝑖 = 𝑆𝑖 + 𝑝𝑖 ≤ 𝑆𝑗, 
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since activity 𝑗 has to be scheduled after activity 𝑖. The longest 

path from 0 to 𝑛 + 1 in graph 𝐷𝐺𝐴𝑂𝑁
𝜑 ( 𝑉, 𝐸) makes it possible to 

obtain the earliest starting time of all activities and a critical 

path. The dashed arc in Fig. 4 models a precedence constraint 

between the activities. 

𝐺𝐴𝑂𝑁
𝜑 ( 𝑉, 𝐸) and 𝐷𝐺𝐴𝑂𝑁

𝜑 ( 𝑉, 𝐸) make it possible to define a graph 

𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹), which explicitly models the activities and the 

transport operations of the RCPSPR. In our problem, the arc 

routing transportation graph 𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹) uses two types of 

arcs (Lacomme et al., 2005): 

 required arc (𝑖, 𝑗) ∈ 𝐸 corresponding to a positive flow 

transfer and consequently defining loaded transport 

operations. A required arc can be serviced by several trips 

depending on the total demand and on vehicle capacities. 

 non-required arcs (𝑖, 𝑗) ∈ 𝐹 corresponding to a null flow and 

that can be used for an unloaded transport operation. Non-

required arcs make it possible to define deadheading paths 

from 𝑖 to 𝑗. 

In the graph 𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹), the vertices are divided into two 

disjointed sets: 

 𝑈: the pickup node set (in white in Fig 5); 

 𝑉: the delivery node set (in gray in Fig 5). 

Every arc 𝑒 ∈ 𝐸 connects a vertex in 𝑈 to a vertex in 𝑉 to model 

a loaded transport operation, |𝐸| = 𝑛𝜑, and every arc 𝑓 ∈

𝐹 connects a vertex from 𝑉 to a vertex 𝑈 to model an unloaded 

transport operation (dotted arcs in Fig. 5). 

The required arcs (arcs modeling loaded transport operations) 

are defined by a couple (𝜑𝑖𝑗 , 𝑡𝑖𝑗) where 𝜑𝑖𝑗  is the number of 

resources to transport from 𝑖 to 𝑗 and where 𝑡𝑖𝑗 is the 

transportation time. The valuation of a non-required arc (an arc 

modeling an unloaded transport operation) is defined by (0, 𝑡𝑗𝑣). 

For convenience, two global dummy nodes are introduced, the 

first one referred to as # to represent the starting time of the first 

transport operation, and the second one ∗, the finishing time of 

the last transport operation. 
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Figure 5. Arc Routing Transportation Graph 𝑇 

𝜑(𝑈, 𝑉, 𝐸, 𝐹) 

 

A solution of the RCPSPR is composed of a set of trips assigned 

to vehicles, knowing that a trip is composed of an ordered set of 

required arcs and a deadheading path from the destination node 

of one required arc to the origin node of the next required arc in 

the trip: 

 First, from this point of view, the problem to solve falls into 

the family of arc routing problems, including, for example, 

the Chinese Postman Problem (CPP) first introduced by the 

mathematician Kwan (1962), the Rural Postman Problem 

(RPP) (Orloff, 1974), and the Capacitated Arc Routing 

Problem (CARP), that was introduced by Golden and Wong 

(1981). Contrary to the CARP, where the vehicle load 

increases during the trip, the pickup/delivery characteristics 

lead to a specific arc routing problem with no trip 

infeasibility due to vehicle capacity.  

 Second, the problem can be solved using a resolution 

approach based on a labeling algorithm with an efficient 

label processing procedure and a specific label definition that 

makes it possible to obtain a solution of a resource-

constrained shortest path problem. 

An optimal solution of the RCPSPR defined by the flow can be 

obtained by execution into 𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹) of a shortest path 

algorithm with resource constraints between the global dummy 

nodes # and ∗. The shortest path is defined by an ordered 

sequence of transport operations with alternation between 

loaded transport and unloaded transport operations. 

2.2. RCPSPR solution defined from a flow 

A flow solution defines an acyclic graph 𝐺𝐴𝑂𝑁
𝜑 ( 𝑉, 𝐸) where the 

flow arcs can make it possible to define the transport operations 

with the quantity of resource. The flow is assumed to comply 

with the definition of Artigues et al. (2003), and the input/output 

flow of an activity is assumed to be equal to its required capacity 

with flow conservation. A flow 𝜑𝑖𝑗  between activity 𝑖 and 

activity 𝑗 can exceed the vehicle capacity and can require several 

transport operations due to the vehicle capacity constraints (𝑐𝑣).  

The new algorithm dedicated to the resource-constrained 

shortest path problem is defined on a non-ordered set of 

transport operations and provides an optimal set of trips to build 

both a routing solution and a scheduling solution that consists 

of: 

 computing the earliest starting times 𝑆𝑖 of the activities; 

 defining the assignment of vehicles to transport operations; 

 ordering the transport operations for each vehicle to define a 

trip with the departure time and arrival time of the vehicle 

for each transport operation. 

The transport operations are divided into two categories with:  

 Loaded transport operation 𝑇𝑖,𝑗,∗,𝜑𝑖𝑗  from activity 𝑖 to 𝑗, 

modeled by an arc from 𝑖 to 𝑗 where the valuation is 
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composed of the flow 𝜑𝑖𝑗  (that must be transported from 

activity 𝑖 and activity 𝑗) and the transportation time 𝑡𝑖𝑗. 

 Unloaded transport operation, modeled by an arc (dotted arcs 

in Fig. 5) valuated with 0 for the flow and 𝑡𝑖𝑗 for the 

transportation time. 

2.3. A New Shortest Path Algorithm and its application to arc 

routing 

The resource-constrained shortest path problem considered in 

this paper makes it possible to define an optimal solution of the 

RCPSPR in the graph 𝑇 
𝜑(𝑈, 𝑉, 𝐸, 𝐹). Each solution (Fig. 6) is 

composed of a set of trips (modeled by a path in 𝑇 
𝜑(𝑈, 𝑉, 𝐸, 𝐹) 

from node # to node ∗) passing through every arc with a non-

null flow. The solution is optimal if it minimizes the arrival time 

of all the vehicles on the node ∗ with respect to all the 

constraints. Figure 6 shows two trips assigned to two vehicles. 

The trip of vehicle 1 is composed of six transport operations, 

whereas the trip of vehicle 2 consists of three transport 

operations. These two trips are interrelated due to some activities 

in both trips, e.g. activity 𝑖𝑝+2. The two delivery nodes 𝑖𝑝+2 must 

be scheduled before the two pickup nodes 𝑖𝑝+2,  and the 

departure times of the two loaded transport operations from the 

two pickup nodes 𝑖𝑝+2 are greater or equal to the completion 

time of the activity 𝑖𝑝+2. 
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Figure 6. A solution with two trips in the graph 𝑇 
𝜑(𝑈, 𝑉, 𝐸, 𝐹) 

 

Each partial solution (also denoted for convenience as a 

solution) is modeled by a path represented by a label 𝐿(𝑓, 𝑆, 𝑅) 

i.e., a data structure that provides all of the information about the 

solution such as the objective function, the system state and the 

remaining resources that allow the use of a dominance rule. A 

partial solution is defined by a label where all the flows between 

operations have not yet been transported by vehicles, meaning 

that all activities are not yet scheduled. Conversely, a final 

solution is a label where all flows have been transported, i.e., a 

label where all activities have been scheduled.  

For each node 𝑖 of the graph 𝑇 
𝜑(𝑈, 𝑉, 𝐸, 𝐹), 𝑌𝑖  is the ordered set 

of unprocessed labels, i.e., paths that have not been extended 

along all arcs (𝑖, 𝑗) leading to feasible paths. The set 𝑃𝑖  contains 

labels that are required to be kept, i.e., 𝑃𝑖  defines a set of non-

dominated labels on node 𝑖. The labels are sorted into non-

decreasing order of the total loaded transportation time 𝑡𝑖𝑗
  from 

activity 𝑖 to 𝑗 not yet serviced according to the required flow, 

and 𝑍𝑖 is the restriction of 𝑌𝑖 to the 𝑁𝐿 first labels. 

For each node 𝑖, the distance 𝐷[𝑖] is the longest path in terms of 

the number of arcs from 𝑖 to the dummy node * . In other words, 

𝐷[𝑖] is a distance between a partial solution and a solution of the 

problem and is representative of the computational effort 

required to obtain a final solution. The distances are 

preprocessed and are directly used in the following algorithm. 

The use of a dominance rule is optional in the sense that the 

algorithm otherwise enumerates all feasible paths starting at 

node #, but dominance is crucial in the design of one efficient 

resource-constrained shortest path algorithm to identify paths 

that do not need to be extended. 

The outline of the resource-constrained shortest path algorithm 

for solving the RCPSPR is presented in Algorithm 1. The 

problem consists of computing a minimum-cost feasible path 

ending at the global dummy nodes * where a set of non-

dominated labels (each label modeling a partial solution) is 

stored. The algorithm starts with one initialization step (lines 12-

15) where a label 𝐿0 is stored on the global dummy node # (that 

models the depot node of vehicles). Lines 16-34 define the outer 

loop where labels are propagated along feasible-path constraints. 

The algorithm terminates when no further unprocessed label on 

the node exists, i.e., when all labels giving the non-dominated 

paths from vertex # to * have been created, which is defined by 

an empty queue Λ. The algorithm selects a final solution 𝑆𝑜𝑙 
(line 35) that minimizes the objective function 𝑓. 
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   Procedure name: New Shortest Path Algorithm 

1.  procedure Shortest_Path 

2.  input parameters 

2.    𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹): Arc routing transportation graph 

3.    𝑈𝐵: Upper Bound of the problem 

4.    𝐿𝐵𝑖: Lower Bound to reach the final node from node 𝑖 
5.  output parameters 

6.    𝑆𝑜𝑙: Solution  
7.  global parameter 

8.    Λ: Queue 

9.    𝑛_𝑣𝑒ℎ𝑖𝑐𝑙𝑒: number of vehicles 
10.   𝑁𝐿: maximum number of unprocessed labels into 𝑍𝑖 ∈ 𝑈∪𝑉 

11.  begin 

12.    Definition of 𝐿𝑜 

13.    for 𝑛𝑜𝑑𝑒_𝑖 ∈ 𝑈 ∪ 𝑉 do 

14.      if (𝜆(𝑛𝑜𝑑𝑒_𝑖)  =  0) then 𝑍node_i = {𝐿𝑜},𝑃𝑈𝑆𝐻(Λ, 𝑛𝑜𝑑𝑒_𝑖) else 𝑃node_i = {∅} endif 
15.    endfor 

16.    while (Λ ! =  ∅) do 

17.     𝑛𝑜𝑑𝑒_𝑖 ∶=  𝑃𝑂𝑃(Λ) 
18.     for 𝐿𝑖 ∈ 𝑍node_i  do  //for each label unprocessed on node i 

19.       for 𝑛𝑜𝑑𝑒_𝑗 ∈  𝑠𝑢𝑐𝑐(𝑛𝑜𝑑𝑒_𝑖)do 
20.         if 𝑃𝐴𝑇𝐻(𝐿𝑖, 𝑛𝑜𝑑𝑒_𝑗) 𝑖𝑠 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 then  //resources and precedence constraints 

21.           for 𝑣: = 1 to 𝑛_𝑣𝑒ℎ𝑖𝑐𝑙𝑒 do 

22.              call 𝐶𝑅𝐸𝐴𝑇𝐸_𝐿𝐴𝐵𝐸𝐿(𝐿𝑤 , 𝑣, 𝐿𝑖, 𝑛𝑜𝑑𝑒𝑖 , 𝑛𝑜𝑑𝑒𝑗) 

23.              if (𝐷𝑂𝑀𝐼𝑁𝐴𝑇𝐸(𝐿𝑤 , 𝑛𝑜𝑑𝑒_𝑗 )) and (𝐶𝐻𝐸𝐶𝐾_𝑈𝐵_𝐿𝐵(𝐿𝑤, 𝐿𝐵𝑛𝑜𝑑𝑒_𝑗 , 𝑈𝐵)) then 

24.                 call 𝐼𝑁𝑆𝐸𝑅𝑇_𝐿𝐴𝐵𝐸𝐿(𝐿𝑤 , 𝑍𝑛𝑜𝑑𝑒_𝑗), call 𝑃𝑈𝑆𝐻(Λ, 𝑛𝑜𝑑𝑒_𝑗),  

25.                 call 𝐴𝑃𝑃𝐿𝑌_𝐷𝑂𝑀𝐼𝑁𝐴𝑁𝐶𝐸(𝐿𝑤 , 𝑍𝑛𝑜𝑑𝑒_𝑗) 
26.              endif 

27.              if (𝜆(𝑛𝑜𝑑𝑒_𝑗)  = ∗) then call 𝐶𝐻𝐸𝐶𝐾_𝑆𝑂𝐿(𝐿𝑤 , 𝑈𝐵 ) endif 
28.             endfor 

29.           endfif 

30.        endfor 

31.      𝑍node_i =  𝑍node_i \ 𝐿𝑖 

32.      𝑃node_i =  𝑃node_i ∪ 𝐿𝑖 

33.      endfor 

34.    endwhile 

35.   𝑆𝑜𝑙 ∶=  𝐵𝐸𝑆𝑇_𝑆𝑂𝐿 (𝑇 
𝜑)  //save the best solution 

36. end 

Algorithm 1. New shortest path procedure. 
 

The Boolean function 𝐷𝑂𝑀𝐼𝑁𝐴𝑇𝐸(𝑖, 𝑗) (line 23) return true if the 

label 𝑖 is not dominated by an unprocessed label on node 𝑗. 

𝐷𝑂𝑀𝐼𝑁𝐴𝑇𝐸(𝑖, 𝑗) = ∄𝑘 ∈ 𝑍𝑗 , 𝑘 ≪ 𝑖  (1) 

The algorithm also uses the function 𝐶𝐻𝐸𝐶𝐾_𝑈𝐵_𝐿𝐵(𝐿, 𝐿𝐵, 𝑈𝐵) 

(line 23), which returns true if the label 𝐿 cannot be pruned, and 

false if the objective function of the label 𝐿 plus the lower bound 

𝐿𝐵 does not fit the upper bound 𝑈𝐵.  

The label feasibility is checked considering the remaining 

resources in the function 𝑃𝐴𝑇𝐻(𝐿𝑖 , 𝑛𝑜𝑑𝑒_𝑗). The propagation rule 

to create a new label (detailed below) is achieved by the 

procedure 𝐶𝑅𝐸𝐴𝑇𝐸_𝐿𝐴𝐵𝐸𝐿(𝐿𝑤, 𝑣, 𝐿
𝑖
, 𝑛𝑜𝑑𝑒𝑖, 𝑛𝑜𝑑𝑒𝑗) (line 22), 

which makes it possible to obtain a new label 𝐿𝑤 from label 𝐿𝑖 

considering vehicle 𝑣. The procedure 

𝐼𝑁𝑆𝐸𝑅𝑇_𝐿𝐴𝐵𝐸𝐿(𝐿𝑤, 𝑍𝑛𝑜𝑑𝑒_𝑗) (line 24) carries out the insertion of 

the label 𝐿𝑤 in the ordered set of unprocessed labels 𝑍𝑛𝑜𝑑𝑒_𝑗 that 

take the maximum number of unprocessed labels authorized on 

each node 𝑁𝐿 into account. Then, with the function 

𝐴𝑃𝑃𝐿𝑌_𝐷𝑂𝑀𝐼𝑁𝐴𝑁𝐶𝐸(𝐿𝑤 , 𝑍𝑛𝑜𝑑𝑒_𝑗) (line 25), all labels on 𝑍𝑛𝑜𝑑𝑒_𝑗 

that are dominated by 𝐿𝑤 are removed from 𝑍𝑛𝑜𝑑𝑒_𝑗. 

The 𝐶𝐻𝐸𝐶𝐾_𝑆𝑂𝐿(𝐿𝑤, 𝑈𝐵 ) (line 27) function updates the upper 

bound of the problem for each new solution (defining a path 

through every arc with a non-null flow) on the final node. Finally, 

the best solution at the end of the algorithm is given by the 

function 𝐵𝐸𝑆𝑇_𝑆𝑂𝐿 (𝑇 
𝜑) (line 35) from the best final label in 𝑇 

𝜑. 

The resource-constrained shortest path algorithm must 

encompass the management of both the availability of vehicles 

and that of activities, and includes the following features:  

 a label definition to encompass the system state; 

 creation of the initial label; 

 a propagation rule to create a new label; 

 a label feasibility check; 

 a dominance rule to save only non-dominated labels on the 

node.  

 a label propagation selection rule required to choose the next 

path (next label) to be extended. 

Let us define a function that makes it possible to assign a number 

in [1. . 𝑛𝜑] to each arc. 

β: 𝑒 ∈ 𝐸 → [1. . 𝑛𝜑] , 

 β(𝑒 ∈ 𝐸 ) = 𝑖   
∀𝑒1 ∈ 𝐸, ∀𝑒2 ∈ 𝐸, 𝑒1 ≠ 𝑒2, β(𝑒1) ≠ β(𝑒2 ). 

Another notation is also used to identify the pickup node and the 

delivery node of each numbered arc 𝑖 𝜖 [1. . 𝑛𝜑]. Let us denote 𝑖+ 

as the position number of the pickup node in graph 𝐺 and 𝑖− as 

the position of the delivery node of arc 𝑖. Let us define λ as the 
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activity number where a pickup operation (resp. delivery 

operation) is achieved from position 𝑖+ (resp. 𝑖−) such that 𝜆(𝑖−) 

or 𝜆(𝑖+) gives the activity where the operations are achieved. 

Label definition 

A label 𝐿 = (𝑓, 𝑆, 𝑅) represents a partial or final solution and 𝐿𝑖
𝑗
 

denotes the 𝑖𝑡ℎ label on node 𝑗 = 𝑗− or 𝑗 = 𝑗+, which is composed 

of three parts: 

 The objective function value of the solution, i. e.,  the maximal 

completion time of the vehicles. 

 The system state 𝑆 that encompasses the vehicle fleet and the 

activities. The system state can be described by: 

- a 3𝑣-uplet  𝑉𝑖
𝑗
 defining the vehicle departure and arrival 

times, and positions, 𝑉𝑖
𝑗

=

( 𝑃𝑖𝑗
1 , … , 𝑃𝑖𝑗

𝑣 , 𝐴𝑖𝑗
1 , … , 𝐴𝑖𝑗

𝑣 , 𝐵𝑖𝑗
1 , … , 𝐵𝑖𝑗

𝑣 ), where  𝑃𝑖𝑗
1 , … ,  𝑃𝑖𝑗 

𝑣  

are the current position of each vehicle (𝑃𝑖𝑗
𝑢 = 𝑝  means 

that the position of the vehicle 𝑢 is on activity 𝑝), 

𝐴𝑖𝑗
1 , … , 𝐴𝑖𝑗

𝑣  are the arrival times, and 𝐵𝑖𝑗
1 , … , 𝐵𝑖𝑗

𝑣  are the 

departure times of the vehicles; 

- a 𝑛 + 1-uplet  𝑆𝑖
𝑗
 defining the earliest starting time of 

each activity 𝑆𝑖
𝑗 

= ( 𝑆𝑖𝑗 
0 , … ,  𝑆𝑖𝑗

𝑛+1). 

 The resource state 𝑅 remaining on arcs modeling loaded 

transport operations (required arcs) and the remaining number 

of resources to start each activity: 

- a 𝑛𝜑-uplet  𝜑𝑖
𝑅,𝑗 

= ( 𝜑𝑖𝑗 
𝑅,1, … , 𝜑

𝑖𝑗

𝑅,𝑛𝜑) defining the 

remaining resources of the arc 𝑒 ∈ 𝐸;  𝜑𝑖𝑗 
𝑅,β(𝑒)

 not yet 

transported;  

- a 𝑛 + 1-uplet  𝑏𝑖
𝑅,𝑗 

= ( 𝑏𝑖𝑗 
𝑅,0, … ,  𝑏𝑖𝑗

𝑅,𝑛+1) defining the 

remaining resources  𝑏𝑖𝑗 
𝑅,𝑘 for activity 𝑘 not yet 

transported. 

 

Creation of the initial label 

An initial label 𝐿 is stored on node # and propagated to all nodes 

𝑗 = 𝑗+, where  𝜆(𝑗+) = 0. To comply with the following 

definition, all the values are initialized: 

∀𝑢 ∈ 𝑇,   𝑃1𝑗
𝑢 = 0 

∀𝑢 ∈ 𝑇,   𝐴1𝑗
𝑢 = 0 

∀𝑢 ∈ 𝑇,   𝐵1𝑗
𝑢 = 0 

∀𝑘 ∈ 𝑉∗,   𝑆1𝑗
𝑘 = −∞ and 𝑆1𝑗

0 = 0  

∀𝑖 ∈ [1. . 𝑛𝜑],   𝜑1𝑗
𝑅,𝑖 = 𝜑λ(𝑗+),λ(𝑗−) 

∀𝑘 ∈ 𝑉,    𝑏𝑞𝑗 
𝑅,𝑘 =  𝑏k 

  

𝑓1𝑗
 = 0 

Propagation rule for a label on a pickup node (arc modeling a 

loaded transport operation) 

A propagation function defined by 𝑓: L  T → R that makes the 

propagation of a new label 𝐿𝑞
𝑖−

 from one label 𝐿𝑝
𝑖+

 and a loaded 

transport operation defined by (𝜑𝑚𝑘 , 𝑡𝑚𝑘) /𝑚 = 𝜆(𝑖+) and 𝑘 =
𝜆(𝑖−) possible. 

 

The new label 𝐿𝑞
𝑗

 for node number 𝑗 = 𝑖− is defined from the 

label 𝐿𝑝
𝑖  𝑖 = 𝑖+ using the vehicle 𝑢 with the following updates: 

𝑃𝑞𝑗
𝑢 = 𝜆(𝑗) 

𝐴𝑞𝑗
𝑢 = 𝐵𝑝𝑖

𝑢 + 𝑡𝜆(𝑖),𝜆(𝑗) 

𝐵𝑞𝑗
𝑢 = 𝐴𝑞𝑗

𝑢  

 𝑆𝑞𝑗
𝜆(𝑗)

= 𝑚𝑎𝑥 (𝐴𝑞𝑗
𝑢 ;  𝑆𝑝𝑖

𝜆(𝑗)
) 

𝜑𝑞𝑗
𝑅,𝑖 =  𝜑𝑝𝑖

𝑅,𝑖 − 𝑚 𝑖𝑛( 𝜑𝑝𝑖 
𝑅,𝑖;  𝑐𝑢) 

𝑏𝑞𝑗 
𝑅,𝜆(𝑗)

=  𝑏𝑝𝑖 
𝑅,𝜆(𝑗)

− 𝑚 𝑖𝑛( 𝜑𝑝𝑖 
𝑅,𝑖;  𝑐𝑢) 

𝑓𝑞𝑗
 = 𝑚𝑎𝑥 (𝑓𝑝𝑖

 ;  𝐴𝑞𝑗
𝑢 ) 

If 𝑏𝑞𝑗 
𝑅,𝜆(𝑗)

= 0, the propagation rule also updates all the starting 

times of the successors of activity 𝜆(𝑖), i.e., ∀𝑠 ∈

𝑠𝑢𝑐𝑐(𝜆(𝑖)), 𝑆𝑞𝑗
𝑠 = 𝑚𝑎𝑥(𝑆𝑝𝑖

𝑠 ;  𝑆𝑞𝑗
𝜆(𝑗)

+ 𝑝𝜆(𝑗)). This update ensures 

that precedence constraints hold. For the label 𝐿𝑝
𝑖 , all assignments 

to vehicles are investigated, leading to 𝑣 labels. These labels are 

included or not depending on the set of non-dominated labels 

previously stored on the node 𝑗 in 𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹). 

Propagation rule for a label on a delivery node (arc modeling an 

unloaded transport operation) 

A propagation function defined by 𝑓: L  T → R that makes the 

generation of a new label 𝐿𝑞
𝑗− 

 from one label 𝐿𝑝
𝑖+  and an unloaded 

transport operation defined by (0, 𝑡𝑚𝑘)/𝑚 = 𝜆(𝑗−) and 𝑘 =
𝜆(𝑖+) possible. 

The new label 𝐿𝑞
𝑗

 with 𝑗 = 𝑖+ is defined from the label 𝐿𝑝
𝑖 , where 

 𝑖 = 𝑗− using vehicle 𝑢 with the following updates: 

𝑃𝑞𝑗
𝑢 = 𝜆(𝑗) 

𝐴𝑞𝑗
𝑢 = 𝐵𝑝𝑖

𝑢 + 𝑒𝜆(𝑖),𝜆(𝑗) 

𝐵𝑞𝑗
𝑢 = 𝑚𝑎𝑥 (𝐴𝑞𝑗

𝑢 ;  𝑆𝑝𝑖
𝜆(𝑗)

+ 𝑝𝜆(𝑗)) 

𝑓𝑞𝑗
 = 𝑚𝑎𝑥 (𝑓𝑝𝑖

 ;  𝐴𝑞𝑗
𝑢 ) 

Label feasibility check 

The first and the second conditions detailed below only hold for 

label 𝐿𝑞
𝑖−

 stored at delivery node 𝑖 = 𝑖− propagated to a pickup 

node 𝑗 = 𝑗+. Both conditions are linked to the resource state. The 

first condition takes advantage of the flow. If the flow 𝜑𝑞𝑖
𝑅,𝑗 

= 0, 

i.e., all resources between 𝜆(𝑗+) and 𝜆(𝑗−) were transported, then 

an unloaded transport operation to activity 𝜆(𝑗+) must be 

forbidden. The second condition holds since an unloaded 

transport operation can only be achieved to an activity 𝜆(𝑗+) 

previously scheduled, i.e., for which all the resources were 

delivered 𝑏𝑞𝑖 
𝑅,𝜆(𝑗)

= 0. If 𝑏𝑞𝑖 
𝑅,𝜆(𝑗)

≠ 0, no unloaded transportation 

operation to 𝜆(𝑗+) must be scheduled. 

Dominance rule 

Whenever one or several new labels are created (by the 

propagation rule), they are compared for dominance with the 

non-dominated labels that are stored at the destination node. 

Considering two labels  𝐿𝑝
𝑖  and  𝐿𝑞

𝑖 ,  𝐿𝑝
𝑖  is defined as dominant as 

regards  𝐿𝑞
𝑖  ( 𝐿𝑞

𝑖 ≪  𝐿𝑝
𝑖 ) if the following conditions hold: 

Condition 1. All vehicles have the same location: 

  ∀𝑢 ∈ 𝑇, 𝑃𝑖𝑝
𝑢 =  𝑃𝑖𝑞

𝑢  
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Condition 2. ∀𝑢 ∈ 𝑇,  𝐵𝑖𝑝
𝑢 ≤  𝐵𝑖𝑞

𝑢   

Condition 3. ∀𝑢 ∈ 𝑇,  𝐴𝑖𝑝
𝑢 ≤  𝐴𝑖𝑞

𝑢   

Condition 4. ∀𝑘 𝜖 [1. . 𝑛𝜑], 𝜑𝑖𝑝
𝑅,𝑘 ≤  𝜑𝑖𝑞

𝑅,𝑘 
  

Condition 5.                  𝑆𝑖𝑝
𝑛+1 ≤  𝑆𝑖𝑝

𝑛+1  

Condition 6. ∃𝑢 ∈ 𝑇, 𝐵𝑖𝑝
𝑢 <  𝐵𝑖𝑞

𝑢   

or     ∃𝑢 ∈ 𝑇, 𝐴𝑖𝑝
𝑢 <  𝐴𝑖𝑞

𝑢   

or     ∃𝑘 ∈ [1. . 𝑛𝜑], 𝜑𝑖𝑝
𝑅,𝑘 <  𝜑𝑖𝑞

𝑅,𝑘 
 

or                 𝑆𝑖𝑝
𝑛+1 <  𝑆𝑖𝑝

𝑛+1 

If 𝐿𝑝
𝑖  is not dominant as regards  𝐿𝑞

𝑖  ( 𝐿𝑞
𝑖 ≪̅  𝐿𝑝

𝑖 ), this does not 

imply that  𝐿𝑞
𝑖  is dominant as regards  𝐿𝑝

𝑖 . If  𝐿𝑞
𝑖 ≪̅  𝐿𝑝

𝑖  

and  𝐿𝑝
𝑖 ≪̅  𝐿𝑞

𝑖 , then  𝐿𝑝
𝑖  cannot be compared to  𝐿𝑞

𝑖 . Thus, if ∃𝑘 

on node 𝑖/  𝐿𝑝
𝑖 ≪  𝐿𝑘

𝑖  , then  𝐿𝑝
𝑖  is not added to node 𝑖.  

On the other hand, each label 𝐿𝑘
𝑖  |𝐿𝑘

𝑖 ≪  𝐿𝑝
𝑖  can be removed from 

node 𝑖. The dominance rule limits the number of labels stored at 

each node to a subset of labels while maintaining algorithm 

optimality. An additional time-saving approach consists in 

limiting the maximal number 𝑁𝐿 of labels stored on each node. 

Such restrictions, in addition to the dominance rule, can strongly 

reduce the CPU time but can yield to a sub-optimal final solution. 

Label propagation selection rule 

The algorithm relies on a queue referred to as Λ that supports the 

following operations: 

 Push (Λ, i): adds the node number 𝑖 to the queue and 

guaranties that each node number 𝑖 cannot be added to the 

queue more than once; 

 Pop (Λ): removes the node with the minimal 𝐷[𝑖] and the 

largest number of labels.  

By adopting the Λ order for the node selection (line 17), the 

algorithm favors propagation of labels that are more prone to 

create a solution within an efficient time delay. 

2.4. Example 

In this section an example is introduced in order to build a graph 

𝑇 
𝜑 = (𝑈, 𝑉, 𝐸, 𝐹) to illustrate some steps of the algorithm. The 

example introduced below is composed of three activities and 

two dummy activities modeling the depot where four resources 

are available. The duration of the activities is given in Table 1 

and the distance matrix is introduced in Table 2. For the routing 

part, two vehicles are available, vehicle 1 with a capacity of 3 and 

vehicle 2 with a capacity of 2. Both vehicles are assumed to have 

a traveling speed of 1. 

Table 1 

Information about the activities. 

Activity Duration 
Resource 

requirement 
Successors 

0 0 / 1,2,3,4 

1 2 3 4 

2 10 2 3,4 

3 5 2 4 

4 0 / / 

 

Table 2 

Matrix distance between the activities. 
 0 1 2 3 4 

0 0 2 2 3 0 

1 2 0 2 3 2 

2 2 2 0 5 2 

3 3 3 5 0 3 

4 0 2 2 3 0 

Let us assume that a specific algorithm solves the flow problem 

defining a flow-network solution 𝐺𝐴𝑂𝑁
𝜑 ( 𝑉, 𝐸) (Fig. 7) and let us 

define the graph 𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹) on this solution, where 𝑈 =

{0,0,1,1,2,3}, 𝑉 = {1,2,2,3,4,4}, |𝐸| = 6, and |𝐹| = 20, 
introduced in Fig. 8. 

0

1

3

2

4

3

1

2

2

1
2

 
Figure 7. Example of an activity-on-node (AON)-flow network 

𝐺𝐴𝑂𝑁
𝜑 ( 𝑉, 𝐸). 

For the first step (Fig. 8), the graph is initialized with a label 𝐿# 

leading to two labels stored on node 1+ and 2+, corresponding 

to activity 0 as 𝜆(1+) = 0 and 𝜆(2+) = 0. The two labels 𝐿1
1+

 

and 𝐿1
2+

 are both equal to:  

System state : S Resource state : Rf

Pij , Pij
1 2

Aij , Aij
1 2

Bij , Bij
1 2

Sij , Sij , Sij , Sij 
1 2 3 4

(0|0,0,0,0,0,0|0,-∞,-∞,-∞,-∞|1,3,1,2,2,2|0,3,2,2,4)

ϕij , ϕij , ϕij , ϕij , ϕij , ϕij 
R,1 R,2 R,3 R,4 R,5 R,6

bij , bij , bij , bij , bij  
R,0 R,1 R,2 R,3 R,4

 

with respect to the label definition, 𝑖 = 1 and 𝑗 = {1+, 2+}. The 

queue is equal to Λ = [1+, 2+]. 
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0

2

(1,2)

1+

1-L1
+

1

1

2

(1,2)

3-

1

3

(2,3)

4+

4-

2

4
5+

5-

4

3
(2,3)

6+

6-0

1

(3,2)
2+

2-

1
2

+

L

(2,2)

(0,2)

(0,0)

(0,0) 3+

(0,2)

#
*

#
L

 
Figure 8. Initialization of the graph 𝑇 

𝜑( 𝑈, 𝑉, 𝐸, 𝐹).  
 

In the second step, the node number 2+ is removed from the 

queue and all the labels on node 2+ are propagated on node 2−. 

In this step, two labels are created (Fig. 9):  

 𝐿1
2−

= (2|1,0,2,0,2,0|0,2, −∞, −∞, 4|1,0,1,2,2,2|0,0,2,2,4)  
 𝐿2

2−
= (2|0,1,0,2,0,2|0,2, −∞, −∞, 4|1,1,1,2,2,2|0,1,2,2,4)  

0 1(3,2)L2
+

1

2+ 2-

L2
-

1

L2
-

2
 

Figure 9. Step 2: Propagation of the label on arc number 2 in 

𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹). 

The creation of label 𝐿1
2−

can be designed to take label 𝐿1
2+

, the arc 

(0,1) with the information (3,2) and the assignment of vehicle 1 

into account.  

 

Label 𝐿1
2−

 is created considering the propagation rule (loaded 

transport operation): 
𝑃1,2−

1 = 𝜆(2−) = 1 

𝐴1,2−
1 = 𝐵1,2+

1 + 𝑡0,1 = 0 + 2 = 2 

𝐵1,2−
1 = 𝐴1,2−

1 = 2 

𝑆1,2−
1 = 𝑚𝑎 𝑥(𝑆1,2+

1 ;  𝐴1,2−
1 ) = 𝑚𝑎 𝑥(−∞; 2) = 2 

𝜑1,2−
𝑅,2 =  𝜑1,2+

𝑅,2 − 𝑚 𝑖𝑛( 𝜑1,2+ 
𝑅,2 ;  𝑐1) = 3 − 𝑚𝑖𝑛(2; 3) = 0 

𝑏1,2− 
𝑅,1 =  𝑏1,2+ 

𝑅,1 − 𝑚 𝑖𝑛( 𝜑1,2+ 
𝑅,2 ;  𝑐1) = 3 − 𝑚𝑖𝑛(2; 3) = 0 

and because 𝑏1,2− 
𝑅,1 = 0, the earliest starting time of all successors 

of activity 1 should be updated: 

𝑆1,2−
∗ =  𝑆1,2−

1 + 𝑝1 = 2 + 2 = 4 

The two labels created are not comparable due to the position of 

the vehicles. They are therefore both stored on node 2−. The 

queue is updated and is equal to Λ = [1+, 2−]. 

In the third step, the node number 2− is removed from the queue 

and the labels on node 2− are propagated on nodes 1+, 2+, 3+, 4+ 

with a feasibility check. This label propagation concerns 

unloaded transport operations in the dashed arcs in Fig. 8. 

 

 

Ten labels are created: 

 Four on node 1+: 

𝐿1
1+

= (4|0,0,4,0,4,0|0,2, −∞, −∞, 4|1,0,1,2,2,2|0,0,2,2,4)  

𝐿2
1+

= (2|1,0,2,0,2,0|0,2, −∞, −∞, 4|1,0,1,2,2,2|0,0,2,2,4)  

𝐿3
1+

= (2|0,1,0,2,0,2|0,2, −∞, −∞, 4|1,1,1,2,2,2|0,1,2,2,4)  

𝐿4
1+

= (4|0,0,0,4,0,4|0,2, −∞, −∞, 4|1,1,1,2,2,2|0,1,2,2,4)  

 Two on node 2+: 

𝐿1
2+

= (2|0,1,0,2,0,2|0,2, −∞, −∞, −∞|1,1,1,2,2,2|0,1,2,2,4)  

𝐿2
2+

= (4|0,0,0,4,0,4|0,2, −∞, −∞, −∞|1,1,1,2,2,2|0,1,2,2,4)  

 Two on node 3−: 

𝐿1
3+

= (4|1,0,2,0,4,0|0,2, −∞, −∞, 4|1,0,1,2,2,2|0,0,2,2,4)  

𝐿2
3+

= (4|1,1,2,2,2,4|0,2, −∞, −∞, 4|1,0,1,2,2,2|0,0,2,2,4)  

 Two on node 4−:  

𝐿1
4+

= 𝐿1
3+

and 𝐿2
4+

= 𝐿2
3+

 

Table 3 

Details of all the labels of the optimal solution in Fig. 10. 
Node  List of labels 

# 𝐿.
# = (0|0,0,0,0,0,0|0, −∞, −∞, −∞, −∞|1,3,1,2,2,2|0,3,2,2,4) 

1+ 𝐿.
1+

= (2|1,0,2,0,2,0|0,2, −∞, −∞, 4|1,0,1,2,2,2|0,0,2,2,4) 

1− 𝐿.
1−

= (2|1,2,2,2,2,2|0,2,2, −∞, 4|0,0,1,2,2,2|0,0,1,2,4) 

2+ 𝐿.
2+

= (0|0,0,0,0,0,0|0, −∞, −∞, −∞, −∞|1,3,1,2,2,2|0,3,2,2,4) 

2− 𝐿.
2−

= (2|1,0,2,0,2,0|0,2, −∞, −∞, 4|1,0,1,2,2,2|0,0,2,2,4) 

3+ 𝐿.
3+

= (4|1,3,2,7,4,7|0,2,2,7,11|0,0,1,0,2,2|0,0,1,0,4) 

3− 𝐿.
3−

= (6|2,3,6,7,6,7|0,2,6,16,16|0,0,0,0,2,2|0,0,0,0,4) 

4+ 𝐿.
4+

= (4|1,1,2,4,2,4|0,2,2, −∞, 4|0,0,1,2,2,2|0,0,1,2,4) 

4− 𝐿.
4−

= (6|1,3,2,7,2,7|0,2,2,7,11|0,0,1,0,2,2|0,0,1,0,4) 

5+ 𝐿.
5+

= (16|2,3,16,7,16,7|0,2,6,16,16|0,0,0,0,2,2|0,0,0,0,4) 

5− 𝐿.
5−

= (18| ∗ ,3,18,7,18,7|0,2,6,16,18|0,0,0,0,0,2|0,0,0,0,2) 

6+ 𝐿.
6+

= (21|3,3,20,7,21,7|0,2,6,16,18|0,0,0,0,0,2|0,0,0,0,2) 

6− 𝐿.
6−

= (24| ∗ ,3,24,7,24,7|0,2,6,16,24|0,0,0,0,0,0|0,0,0,0,0) 

* 𝐿.
∗ = (24| ∗,∗ ,24,10,24,10|0,2,6,16,24|0,0,0,0,0,0|0,0,0,0,0) 

 

At the end of the algorithm, i.e., when all labels have been 

propagated (the queue Λ is then empty), a set of non-dominated 

solutions are obtained. The final solutions that minimize the 

makespan are optimal since they minimize the objective function 

(first parameter in the labels). An optimal solution (solution 

minimizing the makespan) is introduced in Fig. 10 considering 

the trip of vehicle 1 in Fig. 10.a and the trip of vehicle 2 in Fig. 

10.b. All the labels are fully described in Table 3. In Fig. 1 and 2, 

an extended Gantt diagram displays this optimal solution. 

2.5. Discussion 

The algorithm proposed to solve the RCPSPR from a flow 

solution takes advantage of a resource-constrained shortest path 

algorithm. 

This algorithm is dedicated to the resolution of an arc routing 

problem with specific features based on the fact that the 
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scheduling and the routing are interrelated with shared resource 

management. In the problem of interest here, the transport 

operations are first linked by precedence constraints due to the 

flow definition and, second, model the required arcs with a 

quantity that can eventually exceed the vehicle capacity. To the 

best of our knowledge, there is no specific method in the arc 

routing community that simultaneously tackles these constraints 

and that could provide time-saving implementation. 

This algorithm first attempts to optimally transform a RCPSP 

flow solution into a RCPSPR solution and is the first step 

towards defining an efficient framework based on the indirect 

modeling of solutions using the flow. This is a theoretical 

contribution with a practical application. 
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a. Trip of vehicle 1 
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b. Trip of vehicle 2 

Figure 10. Representation of the two trips of an optimal solution on the graph 𝑇 
𝜑( 𝑈, 𝑉, 𝐸, 𝐹).  

 

3. Numerical experiments  

The aim of these experiments is to provide feedback on the 

efficiency of the algorithm to compute an optimal RCPSPR 

solution from one RCPSP solution. The efficiency is analyzed 

considering the CPU time required in practice and the total 

number of labels generated during the process.  

All experiments were carried out on a single thread C program, 

using Visual Studio and a Windows 7 operating system on a Dell 

Optiflex9020 with an Intel Core i7-4770 CPU 3.4 GHz and 16 

Gb of RAM, meaning approximately 2671 Mflops (see Dongarra 

et al., 2014). The CPLEX experiments were carried out on the 

same computer. In order to ensure fair future comparative studies, 

all results and one example are available at the following web 

page: 

http://fc.isima.fr/~vinot/Research/RCPSPR_Flow.html 

3.1. New set of instances 

To the best of our knowledge, no instance dealing with this 

problem is available. Consequently, numerical experiments are 

based on a new set of small-scale instances composed of 18 

instances with six activities (plus the dummy nodes). In these 

instances, the location of the activities can be divided into two 

configurations: the first one with a uniform distribution of the 

activities and the second one with two clusters.  

Tables 4 and 5 introduce the number of activities to be scheduled, 

but this number does not include information on the number of 

transport operations. The number of transport operations depends 

on the flow modeling a RCPSP solution and on the vehicle 

capacities. Column 𝐿𝐵(𝑛) is the lower bound of the total number 

of operations to be scheduled, considering both 𝑛 and the 

minimal number of arcs with a non-null flow, i. e., 𝑛 + 1, 

obtained with an ordered sequence of activities. 

http://fc.isima.fr/~vinot/Research/RCPSPR_Flow.html
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Table 4 

Small-scale instance characteristics. 

Instances n LB(n) Location 
Resource 

requirement 

Resource  

availability 

Vehicle  

capacity 
Ratio 

LMQV_U1 6 13 uniform {4;10;3;3;8;4} 12 {12;12} 1.6 

LMQV_U2 6 13 uniform {4;10;3;3;8;4} 12 {12;12} 1.1 

LMQV_U3 6 13 uniform {4;10;3;3;8;4} 12 {12;12} 1.3 

LMQV_U4 6 13 uniform {2;8;7;8;8;5} 14 {6;5} 0.5 

LMQV_U5 6 13 uniform {2;8;7;8;8;5} 14 {6;5} 0.4 

LMQV_U6 6 13 uniform {2;8;7;8;8;5} 14 {6;5} 0.4 

LMQV_U7 6 13 uniform {5;3;8;2;3;1} 10 {4;2} 0.3 

LMQV_U8 6 13 uniform {5;3;8;2;3;1} 10 {4;2} 0.3 

LMQV_U9 6 13 uniform {5;3;8;2;3;1} 10 {4;2} 0.3 

LMQV_C1 6 13 clusters {7;7;5;7;5;4} 7 {7;7} 3.0 

LMQV_C2 6 13 clusters {7;7;5;7;5;4} 7 {7;7} 2.1 

LMQV_C3 6 13 clusters {7;7;5;7;5;4} 7 {7;7} 3.0 

LMQV_C4 6 13 clusters {7;1;2;6;2;6} 11 {6;5} 1.1 

LMQV_C5 6 13 clusters {7;1;2;6;2;6} 11 {6;5} 1.0 

LMQV_C6 6 13 clusters {7;1;2;6;2;6} 11 {6;5} 1.0 

LMQV_C7 6 13 clusters {4;10;4;6;3;4} 12 {4;2} 0.8 

LMQV_C8 6 13 clusters {4;10;4;6;3;4} 12 {4;2} 0.8 

LMQV_C9 6 13 clusters {4;10;4;6;3;4} 12 {4;2} 0.8 

 

The resource requirement and availability, the capacity of the 

vehicles and the ratio are given in Table 4. The ratio is defined 

as the ratio between the average duration of an activity and the 

average duration of a transport operation per vehicle, which is 

representative of the relative importance of the scheduling vs. 

the routing. A ratio greater than one means that the scheduling 

processing time represents a greater amount of time than the 

routing, and a ratio lower than one implies the reverse.  

A new set of medium-scale instances composed of nine 

instances with 30 activities (plus the dummy nodes) is also 

introduced. In these instances, the location of the activities is 

divided into three configurations: the first one with a uniform 

distribution of the activities and the depot located at the center 

of the location, the second one with two clusters and the depot 

located at the center of the location, and the third one with two 

clusters and the depot location in a cluster (Table 5).  

Due to the combinatorial nature of the RCPSP, obtaining 

optimal solutions using exact methods for problems with over 

60 or so activities becomes intractable and, hence, impractical 

(Valls et al., 2005). Moreover, the RCPSPR is an extension of 

the RCPSP with the management of a fleet of vehicles where the 

decision variables encompass both RPCSP variables and a set of 

variables for the routing problem. In this new set of medium 

instances, more than 60 operations have to be scheduled 

(𝐿𝐵(𝑛) = 61). The optimal resolution of this set of instances is 

challenging due, first, to the large number of operations to be 

scheduled, including both the activities and the transport 

operations and, second, to the coordination between the 

activities and the transport operations, including the assignment 

of vehicles to the transport operations.  

All the details of the instances are available at the web page. 

 

Table 5 

Medium-scale instance characteristics. 

Instances n LB(n) Location 
Resource 

requirement 

Resource 

availability 

Vehicle 

capacity 
Ratio 

LMQV_J30_U1 30 61 uniform [1;10] 13 {13;13} 0.7 

LMQV_J30_U2 30 61 uniform [1;10] 14 {8;6} 0.3 

LMQV_J30_U3 30 61 uniform [1;10] 13 {13;9} 1.0 

LMQV_J30_C1 30 61 clusters [1;10] 15 {15;15} 0.8 

LMQV_J30_C2 30 61 clusters [1;10] 11 {7;5} 0.3 

LMQV_J30_C3 30 61 clusters [1;10] 12 {12;9} 0.9 

LMQV_J30_CC1 30 61 clusters [1;10] 13 {13;13} 0.6 

LMQV_J30_CC2 30 61 clusters [1;10] 14 {8;6} 0.3 

LMQV_J30_CC3 30 61 clusters [1;10] 13 {13;8} 1.1 

3.2. Performance of the shortest path algorithm 

The effectiveness of the shortest path algorithm can be evaluated 

on small-scale instances by considering a restriction of 𝑌𝑖 to 500 

labels per node, with 𝑟 = 10 replications per instance. One 

replication models one randomly generated flow (with one 

replication considering the flow leading to the optimal RCPSP 

solution). The shortest path algorithm is compared to an optimal 

resolution with IBM ILOG CPLEX 12.6 and a linear 

formulation of the problem (Lacomme et al., 2017). 

For each instance, ℎ𝐶(𝑥, r) defines the average solution cost with 

CPLEX, and 𝑡𝐶(𝑥, 𝑟) the average computational time required to 

find the optimal solution with CPLEX. Similarly, ℎ𝑆𝑃(𝑥, r) 

denotes the average best-found solution cost using the shortest 

path algorithm (restriction of 𝑌𝑖 can lead to a suboptimal 

solution), and 𝑡𝑆𝑃(𝑥, 𝑟) the average resource-constrained shortest 

path algorithm time to the best-found solution. The notation 

𝑔(𝑥, 𝑛) denotes the gap between ℎ𝑆𝑃(𝑥, 𝑟) and ℎ𝐶(𝑥, 𝑟) for the 

instance 𝑥, and 𝑔(𝑥, 𝑟) is an estimation of the average gap 

considering 𝑛 replications. The number of optimal solutions 



Submitted to EAAI 

 

 

12 

found by the shortest path algorithm for the instance 𝑥 with 𝑛 

replications is denoted 𝑛𝑆𝑃(𝑥, 𝑛). Let us denote 𝑔(. , 𝑟) as the 

estimation of the average gap considering the 18 instances, 

𝑡∗(. , 𝑟) (resp. 𝑡𝑆𝑃(. , 𝑟), and 𝑡𝐶(. , 𝑟)) the estimation of the average 

computational time (resp. of CPLEX and of the shortest path), 

𝑛𝑆𝑃(. , 𝑟) the average number of optimal solutions found over the 

18 instances, and 𝑛𝑆𝑃(. , . ) = ∑ 𝑛𝑆𝑃(𝑥, 𝑟),𝑥=18
𝑥=1  i.e., the total number 

of optimal solutions found during the 10 replications and the 18 

instances. 

 

The average resource-constrained shortest path computational 

time 𝑡𝑆𝑃(. , 𝑟) in Table 6 is approximately 8.2 seconds, 

approximately two times lower that the CPLEX computational 

time 𝑡𝐶(. , 𝑟), which is approximately 17.8 seconds (Table 6). The 

average number of optimal solutions found by the resource-

constrained shortest path algorithm is greater than 9.9, which 

means that the percent of optimal solutions found is close to 

100%. It can be observed that the resource-constrained shortest 

path algorithm finds the optimal solution for 176 flows out of 

180 (𝑛𝑆𝑃(. , . )), with an average gap of 0.04%. 

Table 6 

Average shortest path efficiency with a restriction of 𝑌𝑖 to 500 labels per node (𝑟 = 10 flows per instance) for small-scale instances.  

 
CPLEX  

optimal resolution 

Shortest path  

optimal resolution 

 

Instances  ℎ𝐶(𝑥, r) 𝑡𝐶(𝑥, 𝑟)  ℎ𝑆𝑃(𝑥, r)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑛𝑆𝑃(𝑥, 𝑟) 𝑡𝑆𝑃(𝑥, 𝑟)  𝑔(𝑥, 𝑟)  

LMQV_U1 101.5 46.6 101.5 10/10 10.6 0.00 % 

LMQV_U2 198.5 37.2 198.7 9/10 10.2 0.09 % 

LMQV_U3 246.6 29.0 246.6 10/10 11.9 0.00 % 

LMQV_U4 123.3 31.0 123.3 10/10 3.6 0.00 % 

LMQV_U5 247.1 32.3 247.1 10/10 4.3 0.00 % 

LMQV_U6 288.1 34.5 288.1 10/10 7.0 0.00 % 

LMQV_U7 128.4 9.9 128.4 10/10 2.2 0.00 % 

LMQV_U8 261.1 9.3 261.1 10/10 2.4 0.00 % 

LMQV_U9 276.1 9.2 276.1 10/10 2.5 0.00 % 

LMQV_C1 78.6 11.1 78.6 10/10 0.0 0.00 % 

LMQV_C2 135.6 9.0 135.6 10/10 0.0 0.00 % 

LMQV_C3 160.6 10.0 160.6 10/10 0.0 0.00 % 

LMQV_C4 45.2 10.5 45.3 9/10 21.1 0.20 % 

LMQV_C5 92.0 12.2 92.3 9/10 25.8 0.28 % 

LMQV_C6 94.6 12.2 94.8 9/10 24.6 0.19 % 

LMQV_C7 66.4 5.6 66.4 10/10 6.3 0.00 % 

LMQV_C8 132.6 5.2 132.6 10/10 10.2 0.00 % 

LMQV_C9 136.7 5.7 136.7 10/10 5.2 0.00 % 

𝑔(. , 𝑟)      0.04 % 

𝑡∗(. , 𝑟)    17.8   8.2  

𝑛𝑆𝑃(. , 𝑟)     9.99   

𝑛𝑆𝑃(. , . )    176/180   

 

Table 7 

RCPSP/RCPSPR solutions (instance LMQV_U1).  
  RCPSPR Solution 

 
 

CPLEX optimal resolution 
Shortest path optimal 

resolution 
 

Flow RCPSP Solution ℎ𝐶(𝑥, 1) 𝑡𝐶(𝑥, 1)  ℎ𝑆𝑃(𝑥, 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑡𝑆𝑃(𝑥, 1)  ℎ𝐶(𝑥, 1) 
1 19* 95 20.4 95 22.5 0.0 % 

2 19 115 97.1 115 25.0 0.0 % 

3 20 87 20.3 87 0.1 0.0 % 

4 20 117 115.7 117 22.3 0.0 % 

5 21 96 22.8 96 1.3 0.0 % 

6 22 99 27.7 99 5.8 0.0 % 

7 23 86 26.1 86 5.2 0.0 % 

8 23 105 40.7 105 1.5 0.0 % 

9 24 102 30.5 102 1.0 0.0 % 

10 24 113 65.2 113 23.4 0.0 % 

Average  101.5 46.6 101.5 10.6 0.0 % 

 

Table 7 gives the set of flows randomly generated for instance 

LMQV_U1 (that include the optimal RCPSP flow) and provides 

the optimal RCPSP solution (column 2) for each flow and the 

optimal RCPSPR solutions provided by CPLEX and by the 

shortest path algorithm. The set of 10 flows introduced in Table 

7 encompasses the flow of the optimal RCPSP solution. Note that 

the best (optimal) solution of the RCPSP has a cost equal to 19, 

whereas the worst one in Table 7 has a cost equal to 24. 

Nevertheless, the best solution found for the RCPSPR has a cost 

equal to 87 and was obtained with a solution of the RCPSP with 

a cost equal to 20 (flow number 3 in Table 7). Such results lead 

us to consider that high-quality solutions of the RCPSP do not 

lead to high-quality RCPSPR solutions, which is not really 

surprising since there is no reason that a quality solution for one 

sub-problem favors the computation of a quality solution for the 

whole problem. Indeed, several solutions of the RCPSP with the 

same makespan (for example, 23) could lead to very different 

solutions of the RCPSPR with a cost ranging from 86 to 105. 

Such behavior suggests that it would be difficult to devise a rule 
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that could provide quality RCPSPR solutions by considering the 

quality RCPSP solutions. 

 

Table 8 

Shortest path for 𝑟 = 1 flow on each medium-scale instance. 
    Shortest path optimal resolution (NL=50) 

Instances n 𝑛𝜑 RCPSP Solution ℎ𝑆𝑃(𝑥, 1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ 𝑡𝑆𝑃(𝑥, 1)  

LMQV_J30_U1 30 56 96 250 80.4 

LMQV_J30_U2 30 57 105 276 697.0 

LMQV_J30_U3 30 50 82 129 5.3 

LMQV_J30_C1 30 53 113 221 729.0 

LMQV_J30_C2 30 56 81 231 336.9 

LMQV_J30_C3 30 57 83 139 32.9 

LMQV_J30_CC1 30 60 103 271 270.3 

LMQV_J30_CC2 30 58 108 270 305.6 

LMQV_J30_CC3 30 58 100 158 89.9 

𝑡∗(. , 𝑛)       283.0 

Table 8 reports the results obtained by the resource-constrained 

shortest path algorithm with a restriction of 𝑌𝑖 to 50 labels per 

node, with 𝑟 = 1 replication per instance. In Table 8, the cost of 

the RCPSP solution associated with the flow is reported in 

column 4. Unfortunately, the best-found solution of the algorithm 

cannot be compared to a solution obtained with CLEX. With 30 

activities, the linear formulation remains intractable due the huge 

numbers of both variables and constraints, including binary 

variables. For example, it should be noted that the instance 

LMQV_J30_U1 cannot be solved to optimality in 2 days of 

computational time using CPLEX.  

For the couples instance/flow introduced in Table 8, a lower 

bound of the number of transport operations is provided in 

column 𝑛𝜑. For the instance LMQV_J30_CC1, we have 30 

activities plus at least 60 transport operations, representing a total 

of 90 operations to be scheduled, assuming that each flow is 

transferred by one vehicle only with one transport. The minimal 

number of transport operations (with a value of 60) is induced by 

arcs with a non-null flow. 

 3.3. Performance of the label management rules  

To evaluate the efficiency of the algorithm, no restriction of 𝑌𝑖, 

i.e., all labels that are required to be kept, is stored on nodes, and 

Table 9 provides the number of: 

 labels inserted on the node due to the 𝐼𝑁𝑆𝐸𝑅𝑇_𝐿𝐴𝐵𝐸𝐿() 

function; 

 labels pruned on the node with 𝐶𝐻𝐸𝐶𝐾_𝑈𝐵_𝐿𝐵() function; 

 labels deleted on the node with 𝐴𝑃𝑃𝐿𝑌_𝐷𝑂𝑀𝐼𝑁𝐴𝑁𝐶𝐸() function. 

All experiments were carried out on the 18 small-scale instances 

considering the 10 replications previously used, and the 

following notations are used in Table 9:  

 𝑇𝑁𝐿𝐺(𝑥, 𝑗) Total number of labels generated during the  

  replication number 𝑗; 

 𝑇𝑁𝐿𝐺(𝑥, 𝑟) Average number of labels generated during  

the 𝑟 replications; 

 𝑇𝑁𝐿𝑃(𝑥, 𝑟) Average number of labels pruned per instance 

𝑥  

during the 𝑟 replications; 

 𝑃𝑝(𝑥, 𝑗) Percent of labels pruned considering  

𝑇𝑁𝐿𝐺(𝑥, 𝑗); 

 𝑃𝑝(𝑥, 𝑟) Average percent of labels pruned with  

𝑃𝑝(𝑥, 𝑟) = 𝐴𝑣𝑔𝑗=1,𝑟 (𝑃𝑝(𝑥, 𝑗)) ; 

 𝑇𝑁𝐿𝐷(𝑥, 𝑟) Total number of labels dominated; 

 𝑃𝑑(𝑥, 𝑗) Percent of labels discarded thanks to the  

domination rule considering 𝑇𝑁𝐿𝐺(𝑥, 𝑗); 

 𝑃𝑑(𝑥, 𝑟) Average percent of labels discarded, with  

𝑃𝑝(𝑥, 𝑟) = 𝐴𝑣𝑔𝑗=1,𝑟 (𝑃𝑝(𝑥, 𝑗)) ; 

 𝑃(. , . ) Average percent of 𝑃𝑝(𝑥, 𝑟) or 𝑃𝑑(𝑥, 𝑟) for all  

  instances; 

 𝐴𝑣𝑔(. , . ) Average number of labels generated, pruned  

or dominated. 
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Table 9 

Efficiency of the label management rules with 𝑍𝑖 = 𝑌𝑖  for small-scale instances.  

Instances 𝑇𝑁𝐿𝐺(𝑥, 𝑟) 𝑇𝑁𝐿𝑃(𝑥, 𝑟) 𝑇𝑁𝐿𝐷(𝑥, 𝑟) 𝑃𝑃(𝑥, 𝑟) 𝑃𝑑(𝑥, 𝑟) 
LMQV_U1 256 514.9 49 313.8 114 201.4 19.2 44.5 

LMQV_U2 245 631.8 47 122.1 111 452.6 19.2 45.4 

LMQV_U3 298 695.6 57 901.4 136 189.4 19.4 45.6 

LMQV_U4 124 521.7 21 261.5 64 856.7 17.1 52.1 

LMQV_U5 134 996.0 22 109.0 73 049.9 16.4 54.1 

LMQV_U6 198 907.8 28 581.2 112 077.0 14.4 56.3 

LMQV_U7 177 200.4 40 449.2 78 194.4 22.8 44.1 

LMQV_U8 189 100.6 42 760.4 84 848.8 22.6 44.9 

LMQV_U9 217 710.7 51 939.6 92 055.1 23.9 42.3 

LMQV_C1 4.4 2.8 0.0 63.6 0.0 

LMQV_C2 4.4 2.8 0.0 63.6 0.0 

LMQV_C3 4.4 2.8 0.0 63.6 0.0 

LMQV_C4 543 915.1 101 480.3 267 705.7 18.7 49.2 

LMQV_C5 589 227.4 107 571.8 281 184.5 18.3 47.7 

LMQV_C6 580 233.6 107 110.3 280 699.6 18.5 48.4 

LMQV_C7 230 693.0 26 232.9 167 281.8 11.4 72.5 

LMQV_C8 294 602.6 35 820.0 203 370.0 12.2 69.0 

LMQV_C9 273 935.0 33 845.2 187 245.9 12.4 68.4 

𝐴𝑣𝑔(. , . ) 241 994.4 42 972.6 125 255.8   

𝑃(. , . )    25.4 43.6 

 

The following remarks hold: 

 25% of the labels generated are pruned (thanks to the function 
𝐶𝐻𝐸𝐶𝐾_𝑈𝐵_𝐿𝐵(𝐿, 𝐿𝐵, 𝑈𝐵)); 

 43% of the labels generated are deleted (thanks to the 

dominance rule with 𝐷𝑂𝑀𝐼𝑁𝐴𝑇𝐸(𝑖, 𝑗) and 

𝐴𝑃𝑃𝐿𝑌_𝐷𝑂𝑀𝐼𝑁𝐴𝑁𝐶𝐸(𝐿, 𝑍). 

These results lead us to consider that the dominance rule we 

introduced is highly efficient and defines the cornerstone of the 

shortest path algorithm. 

 

3.4. Remarks 

The results first confirm the algorithm efficiency from a 

computational point of view and prove that the algorithm can be 

used in practice and could be integrated into an iterative 

metaheuristic-based search on an indirect representation of 

solutions (Cheng et al., 1996) (Prins, 2002). The resource-

constrained shortest path algorithm can be used to determine an 

evaluation function that defines the optimal RCPSPR solution for 

one flow. From this point of view, the computational efficiency 

of the method is crucial. Intensive numerical experiments have 

shown that the algorithm can be adapted depending on the 

context, and should make it possible to find quality RCPSPR 

solutions within an acceptable computational time. An 

experiment based on 18 flows revealed that the computational 

time can be reduced to 15 seconds with 500 labels per node, and 

to 0.4 seconds with 50 labels per node, providing the optimal 

RCPSPR solution in 67% of the flows (the average deviation to 

the optimal solution is less than 0.9%). Because the evaluation 

function that makes it possible to associate a flow with a solution 

can be a part of a global optimization process, the capacity of the 

algorithm to ensure quasi-optimal evaluation in a very short 

computational time is a significant highlight of the algorithm. 

4. Concluding remarks  

A new resource-constrained shortest path algorithm is introduced 

to define a RCPSPR solution from one RCPSP flow solution. The 

RCPSPR is a new integrated problem dealing with scheduling 

and routing based on the RCPSP to which routing constraints 

with a heterogeneous fleet of vehicles with limited capacities 

have been added.  

 

Our contribution concerns: (1) the label definition that 

encompasses both system state and resources; (2) the dominance 

rule; (3) the propagation rule. 

The algorithm ensures an efficient algorithmic solution to deal 

with a proper coordination between scheduling and routing 

problems since it points the way towards a definition of an 

iterative search process based on an indirect representation by an 

efficient computation of RCPSP solutions from a flow of the 

RCPSP.  It should be noted that the resource-constrained shortest 

path algorithm we have introduced is a new way to solve arc 

routing problems by shortest path computation. 
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