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Abstract: Pavement-watering as a technique of cooling dense urban areas and reducing the 

urban heat island effect has been studied since the 1990’s. The method is currently considered 

as a potential tool for and climate change adaptation against increasing heat wave intensity 

and frequency. However, although water consumption necessary to implement this technique 

is an important aspect for decision makers, optimization of possible watering methods has 

only rarely been conducted. An analysis of pavement heat flux at a depth of 5 cm and solar 

irradiance measurements is proposed to attempt to optimize the watering period, cycle 

frequency and water consumption rate of a pavement-watering method applied in Paris over 

the summer of 2013. While fine-tuning of the frequency can be conducted on the basis of 

pavement heat flux observations, the watering rate requires a heat transfer analysis based on a 

relation established between pavement heat flux and solar irradiance during pavement 

insolation. From this, it was found that watering conducted during pavement insolation could 

be optimized to 30-minute cycles and water consumption could be reduced by more than 80% 

while reducing the cooling effect by less than 13%. 
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1. Introduction 

Watering horizontal or vertical urban surfaces as a method for cooling urban spaces has 

been studied in Asia since the 1990s [1]–[6] and is only a recent topic in French cities such as 

Paris and Lyons [7]–[9]. With reported air temperature reductions ranging from 0.4°C at 2 m 

[8] to 4°C at 0.9 m [3], this technique is viewed as an efficient means of reducing urban heat 

island (UHI) intensity. In France and especially Paris, the predicted increases in heat wave 

intensity and frequency due to climate change [10], combined with the high sensitivity of 

dense cities to such episodes [11], [12], have focused efforts on the development of 

appropriate adaptation tools. In parallel to techniques such as green space development, 

pavement-watering is seen as one of these potential tools for heat-wave adaptation in mineral 

areas. 

Pavement-watering implies the choice of a watering method and a corresponding urban 

infrastructure. For any given target-area, every watering method can be characterized by three 

parameters: the watering period, the watering rate and the watering frequency. The former 

indicates the period of each day during which pavement-watering is active, the second is the 

average amount of water delivered per unit area and per unit time (expressed in mm/h, 

equivalent to L/m².h) and the last indicates the frequency of the watering cycles. Of these 

parameters, the watering rate is the one that defines the method’s water consumption and is 
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therefore important for decision-makers who face growing public pressure to reduce urban 

water use. 

Several watering methods have been proposed or studied in the existing literature. For 

methods including vertical surface watering, a closed-loop watering system is usually 

designed. He and Hoyano [5] describe a building surface water supply of 12 kg/(m².h) for 

watered building walls. Wei and He [6] conduct a similar simulation but include pavement-

watering of a water-retaining pavement. The simulated water-retaining pavement is saturated 

at midnight, but no detail is given as to the amount of water required to saturate the water-

retaining pavement. In 2008, the City of Paris funded a numerical research program aimed at 

testing different climate change adaptation strategies for heat wave events [7]. This work 

analyzed a daytime pavement-watering method based on a hypothetical infrastructure 

connected to the city’s non-potable water network. Pavements and sidewalks were watered at 

a rate of 0.2 mm/h for a duration of 3 minutes and frequency of every hour. During this work, 

a nighttime watering experiment was conducted over the summer of 2012 [8]. A single 

watering cycle of the pavement and sidewalk was conducted by cleaning truck around 10 pm 

sprinkling 1 L/m², which is estimated by city officials as the maximum retention capacity of 

standard Parisian pavements. Field studies conducted in Nagoaka City, Japan used an existing 

snow-melting infrastructure which consists of a ground-water network used to water the road 

surface. Kinouchi and Kanda [1] ran this system continuously at a rate of 11 mm/h, while 

Takahashi et al. [3] ran it intermittently to deliver an average 2 mm/h with 3-minute sprinkles, 

every 30 minutes. Yamagata et al. [4] used reclaimed waste water sprinkled onto a water-

retentive pavement by temporary pipes placed on a central road planter. The watering method 

parameters are not specified in this study or in any of the other cited studies not mentioned in 

this paragraph.  

Of these, only Takahashi et al. [3] and Météo-France and CSTB [7] describe attempts to 

optimize the watering method with atmospheric cooling parameters. Takahashi et al. [3] 

optimize both watering rate and frequency based on surface and 90-cm air temperature 

observations over a period of one hour after watering. Météo-France and CSTB [7] base their 

own optimization on findings from Takahashi et al. with the hypothesis of a pavement water-

holding capacity of 1 mm. They optimize the watering rate based on 2-m air temperature 

simulations with a one-hour time step.  

This paper looks into the optimization of an adapted version of Bouvier et al.’s [8] 

pavement-watering method by studying the pavement’s thermal behavior. We will 

demonstrate how pavement heat flux measurements can be used to fine-tune the watering 

frequency, and how a surface heat transfer analysis combined with a linear relation found 

between heat flux and solar irradiance during pavement insolation can provide information on 

the watering rate. Measurements were obtained from one of two experimental sites in Paris 

over the summer of 2013. For this campaign, the rue du Louvre was equipped with a ground 

heat flux sensor which was placed 5 cm below the pavement surface as well as a pyranometer, 

and was watered several times during the day. 

2. Materials and Methods 

Conductive heat flux and surface temperatures were investigated on rue du Louvre, near 

Les Halles in the 1
st
 and 2

nd
 Arrondissements in Paris, France over the summer of 2013. 

Watered and control weather station positions are illustrated in Figure 1. Both watered and 

dry portions of the street are approximately 180 m long and 20 m wide. Rue du Louvre has an 

aspect ratio approximately equal to 1 and has a N-NE – S-SW orientation. 



 

Figure 1: Map of the rue du Louvre site 

All data is presented in local daylight savings time (UTC +2). Statistical analyses were 

conducted using the R software environment, version 3.0.1. Because the control site was 

vandalized and thus rendered unoperational early during the experimental period, only 

watered station data on watered and dry (control) days will be discussed hereafter. 

2.1. Instruments 

The pavement at each site was equipped with a thermo-fluxmeter at a depth of 5 cm. This 

sensor was connected to a weather station which functioned continuously for the duration of 

the summer and was used for additional microclimatic measurements which will not be 

discussed here. Figure 2 illustrates a top view of sensor installation. The weather station was 

positioned at the Eastern end of the cable. 

The sensor was placed in the middle of the North-bound bus lane, causing no traffic 

disturbances once installed. Unauthorized parking and a 100-m distant traffic light ensured 

that only very limited shading or localized heat exhaust was caused by vehicles. Figure 3 

shows a detailed cross-section of how the pavement sensor was set in place before filling. 

 

Figure 2: Top view of pavement sensor 

 

Figure 3: Cross-section detail of pavement 

sensor filling materials 

Table 1 summarizes the instruments and data used for the upcoming analyses.  

 

Parameter Instrument Height Accuracy 

Solar irradiance  
Second Class Pyranometer  

ISO 9060 
4 m 10% daily 

Pavement heat 

flux  
Taylor-made flowmeter -5 cm 5% 

190 cm

160 cm 70 cm

60 cm

70 cm 50 cm

150 cm

N

Sidewalk borderstonePavement Sidewalk

Heat Flux Sensor 

& 

Thermocouple 
Sensor Cable

5 cm

1 cm

Pre-existing material

Binding concrete

Cold mix asphalt concrete

Pavement surface



Table 1: Instrument type, measurement height and accuracy 

2.2. Heat transfer analysis 

For the rest of this article, pavement heat flux density at a depth of 5 cm is referred to as G, 

solar irradiance measured by the pyranometer at a height of 4 m as S’ and that received by the 

pavement as S. All measurements are made at 1-minute intervals. All daily data is presented 

over a 24-hour period spanning from 6 am until 5:59 am the following day in order to better 

outline the effect of pavement-watering, which began around 6:30 am. 

 

Figure 4: Diagram of pavement heat budget at surface 

Figure 4, based on Kinouchi and Kanda [2], shows a diagram of the heat fluxes relevant to 

this experiment. Heat absorption by the water film is not illustrated but is taken into account 

in the last item of equation (3). In the case of excessive watering, significant runoff towards 

the sewer system may occur. The runoff water absorbs heat and transports to the sewers by 

advection.  

Asaeda et al. [13] and Kinouchi and Kanda [2] characterize the energy balance of the 

pavement surface by the following equations: 

 (1) 

 (2) 

 (3) 

 (4) 

 (5) 

Rn is the net downward radiation received by the pavement surface and is the sum of the 

downward solar irradiance (shortwave radiation) S, downward longwave radiation Ldown and 

upward longwave radiation Lup and reflected shortwave radiation Sref; H is the upward 

atmospheric sensible heat flux; V is the downward pavement heat flux at the surface;  is the 

heat flux absorbed by pavement-watering; l is the latent heat of vaporization for water 

(2,260 kJ/kg); E is the evaporation rate; c is the specific heat of water (4.18 kJ/kg.K); ρ is the 

density of water (1,000 kg/m
3
); VS is the water volume dispersed per unit surface area 

(1 L/m²); t0 is the water cycle period in seconds; TW is the water temperature; ΔQ is the heat 

flux absorbed by the first 5-cm layer of pavement. Φ designates the pavement-watering 

cooling flux. 

By subtracting equations (2) and (3): 

 ( ) 

According to Jürges’ formula [14], convective heat flux can be written as: 

 (7) 



TS is the surface temperature of the pavement and Tair is that of the air above it. h is the 

convective heat transfer coefficient. 

Furthermore, following the Stefan-Boltzmann law and infrared reflection, Lup can be 

expressed as: 

 (8) 

ε is the emissivity of the emitting surface, while σ is Boltzmann’s constant.  

By definition, Sref can be expressed as: 

 (9) 

Where a is the surface albedo, i.e. its shortwave reflectance.  

Hence: 

 (10) 

 (11) 

From these equations, the following can be derived: 

 (12) 

The resulting heat budget is analogous to that used by He and Hoyano [5] and Wei and He 

[6] for a vertical surface with a water film.  

Therefore, knowledge of G, ΔQ, Ldown, S, h, air, water and pavement surface temperatures 

and pavement emissivity and albedo under dry and wet conditions allows an estimation of the 

latent heat flux and thus the evaporation rate. 

Unfortunately, Ldown was not measured. In dry conditions, the asphalt surface’s emissivity 

(εd) was measured to be 0.97, while in wet conditions the surface’s emissivity (εw) is that of 

water, equal to 0.98. Because the difference in emissivity between the wet and dry pavements 

is minor, it is neglected in the second term of equation (10). Thus: 

 (13) 

Furthermore, pavement albedo was not measured either. According to Santamouris, the 

typical albedo range for asphalt is 0.05 to 0.20, the former value referring to new asphalt 

pavements, the latter to older ones [15]. Because of the road work necessary to lay the 

pavement sensor, the pavement above it was practically new. We therefore assume an albedo 

of 0.05 in dry conditions. According to Lekner and Dorf [16], since , both dry and wet 

asphalt have approximately equal albedos: . Therefore: . This holds 

true for the rest of the pavement surface as well if an albedo of 0.10 is assumed. 

Finally, several empirical formulae exist to calculate h based on wind speed, v (in m/s). 

These include h=6.15+4.18v used by Kusaka et al. [17] and h=5.7+3.8v in Duffie and 

Beckman [18]. Under the field conditions described (hourly wind speed approximately equal 

to 1 m/s), h is approximately equal to 10 W/m.K. 

With these approximations, the following equation is obtained: 

 (14) 



Thus, knowledge of G, ΔQ, air, water and pavement surface temperatures under dry and 

wet conditions is sufficient to estimate the latent heat flux. 

As defined, Φ has two components, a latent flux component and an advective flux 

component. Both components are positive and are dependent on the watering rate VS/t0.  

The analysis of the mass convection transport problem can also be used to estimate the 

evaporation rate, although it is inadequate at optimizing the watering frequency. This method 

assumes that evaporation is uninterrupted, i.e. that the watered surface does not dry out. 

Pagliarini and Rainieri use such a method to determine the evaporation rate on a 

continuously-watered glass roof [19]. Adapted to our problem by assuming that the water film 

and the road surface have the same temperature, their equation becomes: 

 (15) 

p0, ps and pv represent total air pressure, saturation vapor pressure at the water film 

temperature Ts
wet

 and partial air vapor pressure at Tair
wet

 in Pa, respectively. cp is air specific 

heat (1.005 J/g.K). 

The meteorological data required to solve this equation was not measured at the rue du 

Louvre site. The best available data is provided by Météo-France’s Montsouris weather 

station and consists of hourly measurements.  

This approach will be used to confront the results obtained from the heat transfer analysis.  

2.3. Watering method and optimization goals 

Watering was started if certain weather conditions were met based on Météo-France’s 

three-day forecast. These as well as those for heat-wave warnings are presented in Table 2. 

 

Parameter Pavement-watering Heat-wave warning level 

Mean 3-day minimum  

air temperature (BMIMin) 
> 16°C > 21°C 

Mean 3-day maximum  

air temperature (BMIMax) 
> 25°C > 31°C 

Wind speed < 10 km/h - 

Sky conditions Sunny (less than 2 oktas cloud cover) - 

Table 2: Weather conditions required for pavement-watering and heat wave warnings 

Cleaning trucks were used to sprinkle approximately 1 mm (VS) every hour from 6:30 am 

to 11:30 am and every 30 minutes from 2 pm until 6:30 pm on the sidewalk and pavement. 

1 mm is considered to be the maximum water-holding capacity of the pavement. Watering 

times were reported by truck operators and cross-checked against visible images taken by a 

rooftop thermal camera. Resulting watering time precision is estimated to be no better than 5 

minutes. 

Water used for this experiment was supplied by the city’s 1,600 km non-potable water 

network, principally sourced from the Ourcq Canal. Although water temperature was not 

measured, its summertime range is reported by city services to be 20°-25°C. 

In this situation, the goals chosen for optimization were, by order of importance:  

 Minimize the watering frequency, i.e. maximize t0 

 Maximize obtained pavement cooling, Φ 



 Minimize the watering rate,  

The last two goals can be recombined as “Minimize the watering rate to pavement cooling 

ratio, .” 

Direct pavement heat flux analysis is sufficient for the frequency optimization, while a heat 

transfer analysis is necessary to estimate the effect of pavement-watering and to optimize 

water consumption. The heat transfer analysis requires a preliminary analysis of pavement 

heat flux measurements. 

2.4. Derivation of pavement solar irradiance from measured solar irradiance 

S’ was measured continuously starting on July 2
nd

, 2013. Because of the difference in 

positioning of the pyranometer and the pavement sensor, S’ is not equal to S and can therefore 

not be used in its place for the heat transfer analysis. S must therefore be derived from S’. 

Apart from possible insolation interruptions due to road traffic not visible in S’, the only 

difference is the insolation period. The visible images taken by an infrared rooftop camera 

reveal a 20-minute-long time lag between the beginning of pavement sensor and pyranometer 

insolation during the month of July. The time lag is immediately identifiable when comparing 

the graphs of G and S’ for July 11
th

 in Figure 5. The beginning and end of pavement and 

pyranometer insolation are illustrated by the two dashed and long-dashed vertical lines, 

respectively. These coincide with the sudden increases and declines seen in each signal. The 

insolation period of the pavement is approximately 1:35 pm to 6:30 pm, while that of the 

pyranometer is 1:55 pm to 6:50 pm. No signal distortion other than the time lag is expected or 

taken into account. 

 

Figure 5: G (left) and S’ (right) measured on July 11
th
. 

With these hypotheses, a modification of S’ during the two 20-minute exclusive 

disjunctions of pyranometer and pavement insolation is undertaken to obtain S. The rest of the 

signal is unchanged, apart for distortions due to vehicles. Finally, to ensure signal continuity, 

the 5 minutes following and/or preceding these 20-minute periods are also modified. 

3. Watering period and frequency 

Pavement heat flux density data from the watered station will now be compared between 

watered days and days without watering (control days). These observations will help infer 

conclusions on the watering frequency. All selected days are of Pasquill Stability Class A (i.e. 

strong daytime insolation and surface wind speeds below 2 m/s) [20]. 

Pavement 
insolation 

Pyranometer 
insolation 

Pavement 
insolation 



3.1. Results 

3.1.1. Control days  

The evolution of G and S on July 11
th

, 14
th

, and 20
th

 are presented in Figure 6. S ranges 

from 0 W/m² to 200 W/m² during shading and from 200 W/m² to 900 W/m² during direct 

insolation. G ranges from -75 W/m² to 215 W/m². 

In terms of heat flux, each day can be divided into three periods: two of net heat release 

(G<0) in the morning and evening and one of net heat storage (G>0) during the day. The net 

release of heat by the pavement lasts about 18 hours, while heat is during the remaining 6 

hours, approximately between 1:30 pm and 7 pm. 

When the sun starts to hit the pavement, G enters a transient period during which the top 

5 cm layer of pavement begins to store heat, i.e. during which . The transient period is 

outlined by the first dotted vertical line in Figure 7 and the peak in heat flux. The last dashed 

vertical line indicates the instant when the pavement is shaded, at 6:30 pm. After the transient 

period, G and S follow a similar trend. 

 

Figure 6: Pavement heat flux G (left) and shortwave radiation S (right) on control days. 

It should be noted that an illegally-parked vehicle covered the pavement sensor for 30 

minutes on July 20
th

. S was been corrected in order to take this into account. 

3.1.2. Watered days
 

Watered days will now be considered in the following order: July 8
th

, 22
nd

 and 10
th

. Figure 

8 illustrates G and S on those dates. Long-dashed vertical lines represent watering cycles. S is 

in the same range as found on control days, while G ranges from -75 W/m² to 130 W/m².  

The watering methods applied in the afternoon on watered days and the daily maximum 

value of G is summarized in Table 3. Watering cycles occurred at the specified frequencies 

except for a 50-minute interruption on July 22
nd

 at approximately 3 pm.  

 

Watering method parameter July 8
th
  July 22

nd
  July 10

th
  

Watering rate (mm/h) 1.33 2 2 

Watering period (min) 45 30 30 

Delay of watering vs.  start of insolation (min) 35 65 <5 

Daily maximum value of G (W/m²) 115 130 70 

Table 3: Actual watering method on considered watered days 



 

Figure 7: Pavement heat flux G and shortwave radiation S on watered days. a) and d) July 8
th
; b) 

and e) July 22
nd

 c) and f) July 10
th 

The maximum value of G is about half that reached on control days, ranging from 70 W/m² 

to 130 W/m², approximately half that observed on control days. The daily peak in G is found 

to coincinde with the beginning of afternoon watering, except on July 10
th

 when afternoon 



watering began simultaneously to insolation. Furthermore, the observed reduction is inversely 

proportional to the delay between the start of afternoon watering and the start of pavement 

insolation. In other words, the later afternoon pavement-watering begins, the higher the daily 

peak in G. Between 3 pm and 6:30 pm, the average reduction in pavement heat flux compared 

to different reference control days is found to be between 100 and 150 W/m². Table 4 

summarizes these reductions. In the morning, G is reduced by approximately 15 W/m².  

 

Date July 8
th
 July 22

nd
 July 10

th
 

Control day (reference) July 11
th
 July 14

th
 July 14

th
 July 20

th
 July 11

th
 July 14

th
 

Average reduction (W/m²) -100 -120 -130 -150 -110 -130 

Table 4: Average heat flux density reduction in W/m² on watered days 

3.2. Discussion 

The comparison of G on watered days with control days revealed strong effects due to 

pavement-watering. On the one hand, heat flux density reductions were found to be highest in 

the afternoon during pavement insolation with G being more than halved. The average 

reduction is between 100 and 150 W/m² during this period. Morning heat flux density, when 

the pavement is shaded, was also reduced by pavement-watering in the order of 15 W/m². On 

the other hand, the daily peak in G was found to coincide with the first afternoon watering 

cycle and to be proportional to the delay between this cycle and pavement insolation. 

Furthermore, spikes in G were observed if watering cycles were more than 45 minutes apart. 

This provides insight on two aspects of the watering method: its watering period and its 

frequency. First, the value of the daily maximum of G depends on the start of afternoon 

watering relatively to pavement insolation. Second, if the pavement watering frequency is too 

low, the pavement surface has enough time to dry and G rises towards its normal control 

value until the next watering cycle. 

In order to maximize pavement cooling in the afternoon, watering should begin just a few 

minutes prior to pavement insolation. Furthermore, the watering frequency must be adjusted 

to prevent the pavement surface from drying. These observations suggest that a period of 45 

minutes is too long, while 30 minutes is nearly optimal during insolation. In the morning, in 

shaded conditions, the data suggests that watering every hour is sufficient, perhaps optimal. 

Overall, these observations are consistent with previous work. On control days, the trend in 

heat flux is comparable to measurements made without pavement-watering by Kinouchi and 

Kanda [2], also 5 cm deep, although inside a porous pavement. The heat flux values are about 

twice as large as what Asaeda et al. [13] observed 20 cm below the asphalt pavement surface. 

Given the difference in depth, this discrepancy is not considered surprising. On watered days, 

observations are similar to those of Kinouchi and Kanda [1], [2] as well: the first watering 

cycle on all watered days coincides with a small “nose-dive” in G in the order of 15 W/m². 

Lastly, the net storage period observed in this experiment is shorter than in reports from 

Kinouchi and Kanda [2] or Asaeda et al. [13], but they were working in nearly unmasked 

conditions. 

4. Watering rate 

Kinouchi and Kanda [2] put into perspective a correlation between Rn and G. They 

proceeded by plotting G as a function of Rn. Camuffo and Bernardi [21] explore the hysteris 

cycles found between surface heat fluxes and net radiation for soil. Other authors such as 



Asaeda et al. [13], studying the effect of pavement heat storage on the lower atmosphere, also 

look into this hysteris cycle for asphalt and concrete pavements. Because net radiation was 

not measured, we shall proceed in an analoguous fashion with S instead. This will permit the 

estimation of the surface cooling effect of pavement-watering based on a relation between S 

and G during pavement insolation. From this an estimate of the evaporation rate is obtained 

and therefrom watering rate adjustment recommandations can be made. 

4.1. Results 

Figure 8 shows G as a function of S on a) July 11
th

, b) July 14
th

, c) July 20
th

, d) July 8
th

, e) 

July 22
nd

 and f) July 10
th

. The chronological order of the data points is anti-clockwise. The 

least square regression line of G according to S between 3 pm and 6:30 pm, when the 

pavement has been both insolated and watered for at least 30 minutes, is plotted for each date.  

The parameters from the linear regression can be formalized as: 

 (16) 

α is the conversion coefficient of solar irradiance to pavement heat flux 5 cm below the 

pavement surface, while G0 is the intercept heat flux under these conditions. 

The regressions were conducted for control and watered days. On control days, an 

intercept of 0 W/m² was used. Table 5 summarizes the regression parameters for control days. 

 

Date July 11
th
 July 14

th
 July 20

th
  

α 0.222 0.271 0.247  

R² 0.999 0.998 0.986  

Table 5: α and R² on control days 

Each fit is statistically significant, with coefficients of determination in excess of 0.98. 

Overall, the conversion coefficients derived on control days range from 22% to 27%. 

On watered days, different intercepts, corresponding to the average reduction of G found in 

Table 4, were tested. Using these intercepts, similar slopes to those found on control days 

were obtained. Table 6 summarizes the regression parameters using the different intercepts for 

watered days.  

 

Date July 8
th
 July 22

nd
 July 10

th
 

Control day July 11
th
 July 14

th
 July 14

th
 July 20

th
 July 11

th
 July 14

th
 

G0 (W/m²) -100 -120 -130 -150 -110 -130 

α 0.216 0.244 0.237 0.269 0.232 0.262 

R² 0.997 0.995 0.986 0.985 0.996 0.996 

Table 6: α, R² and G0 on watered days. The value of G0 was input by the user. 

Regardless of the intercept value used, the conversion coefficients deviate only slightly 

from those derived on control days, remaining in the same 22-27% range. Considering the 

statistical significance of these regression parameters, it is concluded that pavement-watering 

does not significantly affect the conversion coefficient, but adds a constant heat flux, G0.  

 



Figure 8: G as a function of S on control and watered days. a) July 11
th
, b) July 14

th
, c) July 20

th
, d) 

July 8
th
, e) July 22

nd
, f) July 10

th
. 



Solar energy is therefore transmitted in the same manner 5 cm below the pavement surface 

when wet or dry up to a constant. It can therefore be assumed that ΔQ is unchanged by 

watering during insolation, i.e. ΔQwet = ΔQdry. In other words, V is also unchanged up to the 

same constant as G when dry or watered in insolated conditions.This hypothesis is in 

agreement with experimental data presented by Kinouchi and Kanda [2], which illustrate that 

ΔQ is unaffected by pavement-watering. 

This information allows the estimation of the cooling created by the sprinkled water. The 

contribution from water advection is found to be between 23 and 35 W/m², while that of 

evaporation is 269-341 W/m².  

This is derived by using the regression parameters from equation (16) in equation (14), 

resulting in the following equation: 

 (17) 

As stated in the introduction, previous studies of pavement-watering report air temperature 

reductions of up to 4°C [1]–[8]. It is assumed that  for the purpose 

of this analysis. Uncertainty propagation due to estimated parameters such as this one is 

integrated following Kline and McClintock [22]. 

In addition, collected pavement surface temperature data (not discussed here, for further 

details the authors refer the reader to [23]) reveal an average reduction during insolation of 

13°C, from 50°C (323 K) to 37°C (310 K). These findings agree well with observations made 

by Kinouchi and Kanda [1] and Wei and He [6]. Having found that h = 10 W/m².K, and 

considering that  on days with the optimal 30-minute watering: 

 

As stated previously, past non-potable water analyses conducted by the city services have 

shown that its temperature is in the 20-25°C range on hot summer days. Assuming that the 

runoff temperature increases to 35°C by contact with the pavement: 

 

Considering a latent heat of vaporization of 2,260 kJ/kg, it can be asserted that the 

evaporation rate is between 0.119 and 0.151 g/m².s, i.e. between 0.43 and 0.54 mm/h. This 

means that for each 30-minute watering cycle, 0.21 to 0.27 mm evaporate. Since the 

preliminary pavement heat flux analysis has shown that the pavement dries off after 30 

minutes, it can be asserted that the rest of the water runs off into the sewer system. 

4.2. Confrontation with the mass convection transport problem 

The previous solution will now be compared to the solutions obtained with the mass 

convection transport problem. Table 7 provides the relevant meteorological parameters and 

the solutions obtained by solving equation (15) for days with 30-minute watering, i.e. July 

22
nd

 and 10
th

, 2013. The values indicated are the averages of each parameter recorded by 

Météo-France at their Montsouris station between 3 pm and 6:30 pm.  

As can be seen from Table 7, the evaporation rates thus obtained are about three times 

higher than those obtained by solving the heat transfer problem. Since both methods were 



taken from the existing literature and are rigorous, they should agree if the shared parameters 

and assumptions are correct.   

 

Date July 22
nd

 July 10
th
 

p0 (Pa) 100,500 100,900 

Ts
wet

 (K) 310 310 

Tair (K) 306 299 

Relative Humidity 33% 45% 

ps (Pa) 6,295 6,295 

pv (Pa) 1,665 1,516 

lE (W/m²) 641 655 

E (g/m²s) 0.284 0.290 

Table 7: Average value of meteorological parameters on July 22
nd

, and 10
th
, 2013 between 3 pm 

and 6:30 pm and corresponding solutions to equation (15) 

One implicit shared assumption is that evaporation at the pavement surface is continuous 

between 3 pm and 6:30 pm. Since the pavement remained wet in between watering cycles, 

this assumption is correct and is therefore not the cause of the observed discrepancy.  

The only remaining shared parameter that must therefore have been incorrectly estimated 

is the convective heat transfer coefficient h. Good agreement between both methods is found 

if h is assumed equal to 3.5 W/m².K.  

Previous overestimation of h is attributed to the use of 4-m wind speed measurements. 

They appear to be too different from wind conditions closer to the pavement to be 

representative of the convective transfers taking place locally. Although 3.5 W/m².K may 

seem rather low, it should be noted that the weather conditions under which pavement-

watering was conducted are chosen to be representative of heat waves, with high temperatures 

and insolation and low wind speeds. They are therefore not representative of typical weather 

conditions for Paris. This also explains the low relative humidity observed on these two days. 

Table 8 presents the results from the mass convection transport problem with the corrected 

convective transfer coefficient.  

 

Date July 22
nd

 July 10
th
 

lE (W/m²) 224 229 

E (g/m²s) 0.099 0.101 

Table 8: Solutions to equation (15) obtained with h = 3.5 W/m².K 

With h = 3.5 W/m².K, total pavement cooling found using equation (17) amounts to 

between 232 and 279 W/m², divided between water advection and evaporation as follows: 

 



This corresponds to an evaporation rate of between 0.087 and 0.113 g/m².s, i.e. between 

0.31 and 0.41 mm/h. This means that for each 30-minute watering cycle 0.16 to 0.20 mm of 

water evaporate.  

4.3. Discussion 

The analysis of G as a function of S during insolation after the initial transient period has 

allowed the demonstration that pavement-watering accounts for 232 to 279 W/m² of pavement 

surface cooling. At least 85% of total cooling attributable to pavement-watering is produced 

by evaporation, 15% at most is produced by water advection. 

The relative contributions of advection and evaporation contrast strongly with the amount 

of water used by each of these phenomena which is respectively 2 mm/h and 0.31 to 

0.41 mm/h. Pavement cooling by water advection is therefore much less water efficient than 

that from evaporation: 12 to 18 W/m² of cooling per 1 mm/h of sprinkled water, compared to 

628 W/m² per 1 mm/h of evaporated water. However, evaporation cannot increase past a 

certain value, dependent on the local meteorological conditions. 

Figure 9 illustrates pavement cooling Φ (left) and the watering rate to cooling ratio (right) 

according to the watering rate, assuming a constant water and pavement surface temperature 

differential and a maximum evaporation rate of 0.41 mm/h. The 0.41 mm/h mark is 

emphasized by the long-dashed vertical lines in Figure 9. It is clear that once evaporation has 

been maximized, pavement cooling is only marginally increased by additional watering as the 

advective contribution increases.  

 

Figure 9: Pavement cooling Φ (left) and watering rate to pavement cooling ratio VS/(Φ.t0) (right) 

according to the applied watering rate. 

In regards to the optimization goals, the watering rate to pavement cooling ratio is 

minimized for a watering rate anywhere below the maximum evaporation rate. Therefore, any 

of the values below that rate are optimal. However, in order to maximize pavement-watering’s 

cooling effect, the best watering rate is that of the maximum evaporation rate. 

The authors therefore recommend adjusting the watering rate to match the maximum 

evaporation rate exactly. In the described experimental conditions, this would lower advective 

cooling to between 4 and 7 W/m², bringing total pavement cooling down to between 201 and 

263 W/m², i.e. a 6-13% reduction for a 80-84% water saving. 

Our estimations of latent heat flux are consistent with those reported by Météo-France and 

CSTB [7] who find that latent heat flux can reach 300 W/m². They also agree well with 

findings by He and Hoyano [5] who report an advective heat flux of 23-47 W/m² and a latent 

heat flux of 250-320 W/m² for a westward-facing building wall.  



Météo-France and CSTB found an optimal watering rate of 0.2 mm/h for all of Paris’ road 

surfaces was found [7]. This value was obtained by testing different watering rates with a 

frequency of every hour and a water-holding capacity of 1 mm. However, it is a daily and city 

average for watering every hour between 5 am and 7 pm and is not more accurately defined 

for individual street configurations. Furthermore, the authors were limited in the choice of the 

watering frequency since the model’s time step was one hour and was found sufficient 

considering a water-holding capacity of 1 mm. The findings reported here are therefore 

consistent with theirs. 

Another consequence of these results is information on the water-holding capacity of the 

pavement. Since the pavement dries 30 minutes after watering during insolation, the water-

holding capacity of the pavement is therefore equal to the amount of water evaporated in 

between 30-minute watering cycles, i.e. between 0.16 and 0.20 mm. This is significantly less 

than that assumed by Météo-France and CSTB [7], but is only valid for the portion of 

pavement surveyed by the heat flux sensor. This portion has a specific geometric 

configuration and surface composition (cold- versus hot-mix asphalt concrete). However, it 

can still be asserted that the optimized watering method applies the exact water-holding 

capacity of the target-area at the frequency that it takes for that amount of water to completely 

evaporate. Thus, if it is assumed that the watering frequency used in the morning is optimal, 

morning evaporation can be estimated to between 0.16 and 0.20 mm/h. 

Sources of uncertainty in these estimations lie in the use of S rather than Rn, assumptions 

regarding water temperature changes and those regarding ΔQ. Concerning the latter, 

observations over several days by Kinouchi and Kanda [2] substantiate our assumption as 

does the presented analysis of G which is unchanged up to a constant in dry and wet 

conditions over the considered time span. 

5. Conclusion 

The field study conducted on rue du Louvre in Paris over the summer of 2013 has allowed 

us to expose the thermal effects of pavement-watering on a pavement area located 1.6 m away 

from the eastern sidewalk in a street with an aspect ratio of H/W=1 and of approximate N – S 

orientation. Pavement heat flux density at 5 cm depth was found to be more than halved by 

pavement-watering during insolation. Furthermore, a heat transfer analysis based on a linear 

relation found between solar irradiance and heat flux density allowed the estimation of 

evaporative cooling to between 232 and 279 W/m², i.e. an evaporation rate of between 0.31 

and 0.41 mm/h. This was confirmed by an independent estimation obtained by solving the 

mass convection problem. In the study conditions, evaporation was found to represent at least 

85% of total pavement-watering cooling. Assuming that the one-hour morning watering 

cycles were optimal, the evaporation rate during morning shaded conditions is 0.16 to 

0.20 mm/h. Finally, it was found that the water-holding capacity of the surveyed pavement 

zone is 0.16 to 0.20 mm.  

Based on these analyses, it is recommended to sprinkle the exact water-holding capacity of 

the pavement at the lowest possible frequency that prevents the pavement from drying. In the 

case described in this paper, this translates to 30-minute watering cycles with a watering rate 

of 0.31 to 0.41 mm/h during pavement insolation. In the morning, 60-minute watering cycles 

and a watering rate of 0.16 to 0.20 mm/h are recommended. In the experimental conditions 

described here, this would use at least 80% less water while still providing at least 87% of 

observed pavement cooling. Finally, the watering period should be extended to include a few 

minutes before pavement insolation begins to maximize the cooling effect. 



In order to reduce the watering frequency further and thus cause less disturbance 

associated with watering cycles, the pavement water-holding capacity would need to be 

increased. As Parisian streets are currently designed to evacuate surface water as fast as 

possible, a change in street design is necessary to meet this objective. One alternative that can 

be considered is to use water-retaining pavement materials. The new street material would 

have to store water at or near its surface in order not to prevent evaporation. Such a material 

would permit the delivery of larger amounts of water per watering cycle with lower runoff 

and thus reduce the watering frequency. In addition, the new road structure may be able to 

store rainfall from summer storms or water already being used today for street cleaning long 

enough for evaporation on hot days. This would lead to additional water savings all while 

having positive impacts on rainwater runoff management. 

Water temperature, net radiation and sensible heat flux measurements as well as the 

determination of the thermal characteristics of the pavement material would help address the 

sources of uncertainty in this analysis. In addition, these measurements would help verify the 

conjecture on optimal watering during pavement shading via a similar approach to that used 

for the afternoon. 
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Nomenclature  

α α  conversion coefficient of solar irradiance to pavement heat flux density at 5 cm depth, - 

a ad/w  pavement albedo (dry/wet), - 

APUR  Parisian urban planning agency 

BMIMin Minimum biometeorological index, 3-day mean of daily low temperature, °C 

BMIMax Maximum biometeorological index, 3-day mean of daily high temperature, °C 

c  water specific heat, 4.18 J/g.K 

cp  air specific heat, 1.005 J/g.K 

ΔQ  downwards pavement heat flux density absorbed by top 5-cm layer of pavement, W/m² 

e  pavement thickness above the heat flux sensor, 5 cm 

E  evaporation rate, g/s 

εd  dry pavement emissivity, 0.97 

εw  wet pavement emissivity, 0.98 

G  downward conductive heat flux density, 5 cm below the pavement surface, W/m² 

H  upward sensible heat flux density at pavement surface, W/m² 

h  convective heat transfer coefficient, W/m².K
 

l  latent evaporation heat of water, 2,260 kJ/kg
 

Ldown  downward longwave radiation density, W/m² 

Lup  upward longwave radiation density, W/m² 

MRT  mean radiant temperature, °C 

p0  total air pressure, Pa 

ps  saturation water vapor pressure at TS
wet

, Pa 



pv  partial air water vapor pressure at Tair
wet

, Pa 

Φ  total pavement cooling, W/m² 

Rn  net radiation density, W/m² 

ρ  water density, 1,000 kg/m
3 

S  pavement solar irradiance, W/m² 

S’  pyranometer solar irradiance, W/m² 

Sref  reflected shortwave radiation density, W/m² 

Tair  atmospheric air temperature, °C 

TS  pavement surface temperature, °C 

Tw  water temperature, °C 

t0  watering cycle period, h 

V  pavement conductive heat flux density, at surface, W/m² 

VS  volume of sprinkled water per watering cycle, mm 

UHI  urban heat island 


