
HAL Id: hal-01698097
https://hal.science/hal-01698097

Preprint submitted on 31 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Listing Conflicting Triples in Optimal Time
Mathias Weller

To cite this version:

Mathias Weller. Listing Conflicting Triples in Optimal Time. 2019. �hal-01698097�

https://hal.science/hal-01698097
https://hal.archives-ouvertes.fr

Listing Conflicting Triples in Optimal Time
Mathias Weller

CNRS, LIGM, Université Paris Est, Marne-la-Vallée, France

Abstract
Different sources of information might tell different stories about the evolutionary history of a
given set of species. This leads to (rooted) phylogenetic trees that “disagree” on triples of species,
which we call “conflict triples”. An important subtask of computing consensus trees which is
interesting in its own regard is the enumeration of all conflicts exhibited by a pair of phylogenetic
trees (on the same set of n taxa). As it is possible that a significant part of the

(
n
3
)
triples are

in conflict, the trivial θ(n3)-time algorithm that checks for each triple whether it constitutes a
conflict, was considered optimal. It turns out, however, that we can do way better in the case
that there are only few conflicts. In particular, we show that we can enumerate all d conflict
triples between a pair of phylogenetic trees in O(n+ d) time. Since any deterministic algorithm
has to spend Θ(n) time reading the input and Θ(d) time writing the output, no deterministic
algorithm can solve this task faster than we do (up to constant factors).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases parameterized algorithms, phylogenetic trees, triplet enumeration, enu-
meration algorithms, polynomial time

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

In bioinformatics – more precisely, phylogenetics – evolutionary trees (“phylogenetic trees”)
are one of the fundamental types of data representation and, thus, among the most important
objects being algorithmically analyzed and manipulated. A phylogenetic tree visualizes the
evolutionary history of a set of taxa (e.g. a family of genes, a collection of species, etc.).
However, different sources of information might imply different evolutionary histories of the
same taxa. Such contradictions manifest themselves as “conflict triples” (sometimes also
“conflict triplets”), that is, three taxa, say a, b, and c such that one phylogenetic tree P
implies that a common ancestor of a and b split off the common lineage of a, b and c before
splitting into a and b while another tree Q implies that a common ancestor of b and c split off
the common lineage before splitting into b and c. More formally, LCAP (ab) 6= LCAP (abc)
and LCAQ(bc) 6= LCAQ(ab) = LCAQ(abc). See Figure 1 for an example.

Conflict triples are essential ingredients to algorithms building so-called “supertrees”,
that is, phylogenetic trees that merge evolutionary histories into one that is “most consis-
tent” [3, 9]. Conflict triples can also be used to reconcile gene trees into a single phylogeny by
building a so-called “triplet-based median supertree” [11]. The problem of counting conflict
triples has been used to measure the distance between phylogenetic trees. Brodal et al. [2]
show how to compute this number in O(n logn) time. A recent study of the problem of
finding a consensus tree given a set of disagreeing phylogenetic trees [4] makes heavy use of
the list of all conflict triples between any two of the input trees, but does not detail how to
enumerating them efficiently. Here, we address this problem, showing how to enumerate all
d conflict triples of a pair (P,Q) of phylogenetic trees on n taxa in O(n + d) time. Since

licensed under Creative Commons License CC-BY
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Listing Conflicting Triples in Optimal Time

P

A B C D E

Q

A B C D E

Figure 1 Two phylogenetic trees P and Q with conflict CDE (boxes = leaves, circles = inner
vertices). In particular, CD|P E and DE|QC.

all algorithms solving this problem need to read the input (size Θ(n)) and write the output
(size Θ(d)), this is asymptotically “best possible”.

While counting the number of conflicts has received some attention in the past [2],
not much work has been done on enumerating them. Such development might have been
discouraged by the fact that a significant portion of the

(
n
3
)
triples of taxa might be in

conflict, in which case the trivial algorithm that tests each triple of taxa for being a conflict
would be optimal. This work emerged from the question whether we can do better if only
few triples are actually in conflict. In this sense, our work is in the context of “FPT in
P”, a research direction that brings ideas of parameterized complexity theory to the world
of polynomial-time solvable problems. Indeed, parameterized complexity theory aims at
providing algorithms for hard problems that run fast in practice, assuming that some measure
of difficulty (the “parameter”) is small in the instances that a particular application produces.
Previously, “hard” most often meant “NP-hard”, but there is no reason not to widen ones
view to include polynomial-time solvable problems with impractical running time. While
preliminary works in this direction focussed on decision problems [6, 8, 10], we consider an
enumeration-type problem here.

Indeed, the concept of measuring the complexity in the size of the input and the output
is fairly well known as output sensitivity in the context of enumeration algorithms. Running
in O(n+d) time where n is the size of the input and d is the size of the output, our algorithm
can be called total linear.

2 Preliminaries

A (phylogenetic) tree is a rooted, binary1 outbranching whose leaves are bijectively labeled
by a set X (of taxa) and we refer to its root by r(T). Since the labeling is bijective, we
use leaves and labels interchangeably. If some vertex v of T is a strict ancestor of a vertex
u in T , we write u <T v and we abbreviate ∀v∈Z v <T u to Z <T u. We also abbreviate
sets of leaves (or labels) by the concatenation of their names, that is, abc refers to {a, b, c}.
The least common ancestor of two leaves (or labels) a and b in T is the minimum among
all u with ab <T u and we write LCAT (ab) = u. In this work a triple abc in T is a set of
three labels abc ⊆ X. We say that abc touches LCAT (abc) and omit the mention of T if it is
clear from context. We say a triple abc is ab-biased in T if LCAT (ab) 6= LCAT (abc) and we
write ab|T c to indicate this fact. A triple abc is called a conflict of a pair (P,Q) of trees if,
for some xy ⊆ abc, we have that abc is xy-biased in exactly one of P and Q (see Figure 1).
Recall that abc and cab refers to the same conflict, so when claiming that abc is not listed
twice, this also means that no two permutations of abc are listed.

For two vertices u ∈ V (P) and v ∈ V (Q), we define u u v := L(Pu) ∩ L(Qv) and
u o v := L(Pu) \ L(Qv). Note that u is symmetrical while o is not.

1 While we only consider binary phylogenetic trees in this work, I conjecture that it easily generalizes.

Mathias Weller XX:3

I Observation 1. Let P and Q be phylogenetic trees on the same leaf-set. Let rp and rq be
the roots of P and Q, respectively, and let up, vp and uq, vq be their respective children.
Then, up o uq = up u vq = vq u up = vq o vp.

In the following, we call a tree T LCA-enabled if the LCA of any two vertices in T can
be found in constant time. Note that we can LCA-enable any tree in linear time [1, 7].

In the algorithm, we will want to compute the subtree T ′ of a tree T that is induced by
a set Z of leaves. If Z is ordered by an in-order or post-order traversal of T , then this can
be done in O(|Z|) time [5, Section 8]. The idea is that the inner vertices of T ′ are exactly
the LCAs of consecutive (wrt. the order) leaves in Z and the arcs between them can be
computed by looking at the nearest, lower vertex on the left and right of each inner vertex
of T ′ according to the order.
I Observation 2 ([5, Section 8]). Let T be an LCA-enabled tree and let Z ⊆ L(T) be in
post-order. Then, T |Z can be computed in O(|Z|) time.

Furthermore, for leaf-labelled trees P andQ and vertices u and v of P andQ, respectively,
we will want to detect whether L(Pu) = L(Qv) in constant time. To this end, we construct
a mapping m that maps each vertex x of P to the unique vertex y of Q that is lowest among
all vertices of Q satisfying L(Px) ⊆ L(Qy). Note that, m(x) = LCAQ(m(x′),m(x′′)) where
x′ and x′′ are the children of x in P and, thus, m can be computed in O(|P |+ |Q|) time if
Q is LCA-enabled. Finally, we only need to know the number of leaves reachable from each
vertex of P and Q, which can easily be computed in O(|P |+ |Q|) time.
I Observation 3. Let P and Q be phylogenetic trees on the same leaf-set and let Q be LCA-
enabled. Then, there is a linear-time preprocessing that allows answering if L(Pu) = L(Qv)
in constant time for each u and v.

3 The Algorithm

Given two phylogenetic trees P and Q on the label-set X, our algorithm will first list all
conflict triples abc that touch r(P) or r(Q) and then recurse into specific induced subtrees
of P and Q such that, the conflicts in these subtrees are exactly the conflicts between P and
Q that do not touch r(P) and r(Q). The observation that being a conflict triple is invariant
under deletion of unrelated leaves implies the correctness of this approach.
I Observation 1. Let Y ⊆ X, and let abc ⊆ Y . Then, abc is a conflict triple of (P,Q) if and
only if abc is a conflict triple of (P |Y , Q|Y).
I Observation 2. Let abc be a conflict triple of (P,Q) that touches neither r(P) nor r(Q).
Let up and vp be the children of r(P) and let uq and vq be the children of r(Q). Then, abc
is completely contained in up u uq, up u vq, vp u uq, or vp u vq.
Note that the four sets mentioned in Observation 2 are disjoint, and so, no conflict can
be contained in any two of them. Then, our algorithm can be described as the following
recursion (see Algorithm 1 for a detailed description):
Base Case: If r(P) and r(Q) are leaves, then return without listing anything.
Recursion: First, choose an arbitrary pairing {(up, uq), (vp, vq)} of the children of r(P) and

r(Q). Second, list all conflict triples abc touching r(P) or r(Q). Third, recursively list
all conflict triples of
1. (P |upuuq

, Q|upuuq
),

2. (P |vpuvq
, Q|vpuvq

),
3. (P |upuvq , Q|upuvq) and
4. (P |vpuuq

, Q|vpuuq
).

XX:4 Listing Conflicting Triples in Optimal Time

Procedure ListCommonRootConflicts
Input: Trees P & Q on X, a child xp of r(P), a child xq of r(Q)
Output: Conflict triples abc with ab ≤ xp touching r(P) and r(Q)

1 foreach a ∈ xp u xq and b ∈ xp o xq and c ∈ X \ L(xp) do list abc;

Procedure ListUncommonRootConflicts
Input: Trees P & Q on X, a child xp of r(P), a child xq of r(Q)
Output: Conflict triples abc ≤ xp touching r(Q) (but not r(P))

1 foreach a, b ∈ xp u xq and c ∈ xp o xq with ab6 |P c do list abc;
2 foreach a, b ∈ xp o xq and c ∈ xp u xq with ab6 |P c do list abc;

Procedure ListAllConflicts
Input: Trees P & Q

Output: Conflict triples of (P,Q)
1 if |L(P)| > 1 then
2 (up, uq), (vp, vq)← arbitrary pairing of children of r(P) & r(Q);
3 foreach (xp, xq) ∈ {(up, uq), (vp, vq)} do
4 compute xp u xq, xp o xq and xq o xp;
5 ListCommonRootConflicts(P,Q, xp, xq);
6 ListUncommonRootConflicts(P,Q, xp, xq);
7 ListUncommonRootConflicts(Q,P, xq, xp);
8 ListAllConflicts(P |xpuxq , Q|xpuxq);
9 ListAllConflicts(P |upouq

, Q|vqovp
);

10 ListAllConflicts(P |vpovq , Q|uqoup);

1 First shot at triplet enumeration. Note that, although theoretically unnecessary, we provide
xq to the calls to ListCommonRootConflicts and ListUncommonRootConflicts, since this lets us
use the pre-computed sets xp u xq and xp o xq and xq o xp.

We defer showing correctness in favor of introducing some modifications that allow
achieving our running-time goal. In order to see why this is necessary, let us analyze
ListAllConflicts. This requires a closer look at how many triples are listed in each recur-
sive step. ListCommonRootConflicts unconditionally lists |xp u xq| · |xp o xq| · |X \ L(xp)|
conflicts for each pair (xp, xq) of the chosen pairing. However, ListUncommonRootConflicts
has to perform numerous checks of the type “ab|c?”. Since it is possible that none of these
triples is a conflict, we cannot bound these operations in the number of listed conflicts.
Instead, we use ListSubtreeConflicts to list all the triples abc with a, b ∈ xp u xq

and c ∈ xp o xq (or vice versa), and ab6 |P c in constant time per listed triple (see Fig-
ure 2 for an illustration). The idea is (i) to focus on the subtree P ′ of P that is rooted
at LCAP (xp u xq), (ii) to pick any leaf c ∈ xp o xq and, (iii) for each y on the unique
path from c to r(P ′), listing all triples abc for which a and c are “below y” and b is
not, thereby ensuring LCAT (ac) 6= LCAT (abc). We will thus replace the first for-loop
of ListUncommonRootConflicts by a call to ListSubtreeConflicts(P, xp u xq) and the
second for-loop with a call to ListSubtreeConflicts(P, xp o xq).

I Lemma 1. ListSubtreeConflicts is correct, that is, it outputs a triple abc if and only
if a, b ∈ Z, c /∈ Z, and ab6 |T c. Further, the procedure takes O(d) time (where d is the total
number of listed triples) and no triple is listed twice.

Mathias Weller XX:5

Procedure ListSubtreeConflicts
Input: Tree T , leaf subset Z ⊆ L(T) in post-order
Output: Triples abc with a, b ∈ Z, and c ∈ L(T) \ Z, and ab6 |T c

1 if Z 6= ∅ then
2 foreach c ∈ L(T) \ Z do
3 T ′ ← T |Z∪{c};
4 y ← parent of c;
5 while y 6= r(T ′) do
6 y′ ← sibling of y in T ′;
7 foreach a ∈ L(T ′

y) \ {c} and b ∈ L(T ′
y′) do list abc;

8 y ← parent of y in T ′;

y

A B C D E F

y

A B C D E F

Figure 2 An example illustrating the tree T ′ in two steps of ListSubtreeConflicts (gray =
vertex y, black = leaf c with label C). Left: first step (y is the parent of c), listing DAC and DBC.
Right: second step, listing all abC, with a ∈ {A, B, D} and b ∈ {E, F}.

Proof. We first show the first equivalence.
“⇒”: Let abc be a listed triple. Then, there is some y with c < y < r(T ′) with sibling y′

such that a ∈ L(T ′
y) \ {c} and b ∈ L(T ′

y′) (by symmetry among ab). But then, a, b ∈ Z, and
c /∈ Z and ac <T ′ y and b ≤T ′ y′, implying ac|T ′b and, thus, ac|T b.

“⇐”: Let abc be a triple with a, b ∈ Z, c /∈ Z and ab6 |T c. Then, |Z 6= ∅, and c ∈ L(T)\Z.
Since ab6 |T c, we have LCAT (ab) = LCAT (abc) and, by symmetry among ab, we suppose
LCAT (ac) < LCAT (abc). Let y and y′ be the children of LCAT ′(abc) with a, c <T ′ y and
note that y will be reached by the while-loop. Clearly, a ∈ L(T ′

y), and b ∈ L(T ′
y′), and, thus,

abc is listed.
Second, suppose that any triple abc is listed twice. As y and y′ are siblings in each

iteration of the while-loop, abc is listed for two different values of y. However, there is a
single vertex (namely LCA(ab)) for which neither ab ⊆ L(T ′

y) nor ab ⊆ L(T ′
y′). Thus, there

is a single iteration for which abc can be output.
Finally, we show the claimed running time. We start by showing that, each time the

while-loop is run, it outputs at least |Z|−1 triples. To this end, consider y′ and its sibling y in
any last iteration of the while-loop (that is, the parent of y and y′ is r(T ′)). Then, the number
of triples that are listed is |L(T ′

y)−1|·|L(T ′
y′)| ≥ |L(T ′

y)|−1+|L(T ′
y′ |−1 = |L(T ′)|−1 = |Z|−1.

Since, by Observation 2, T ′ can be computed in O(|Z|) time (line 3), we conclude that
ListSubtreeConflicts runs in O(d) time. J

With Lemma 1, we can finally list all dr conflict triples abc with LCAP (abc) = r(P) or
LCAQ(abc) = r(Q) in O(dr) time. Thus, ListAllConflicts completes the following tasks
in the mentioned times.
(Task a) list all conflict triples touching r(P) or r(Q): O(dr) time;
(Task b) compute common and uncommon leaves: O(|X|) time;

XX:6 Listing Conflicting Triples in Optimal Time

(Task c) compute the subtrees induced by these leaf-sets: O(|X|) time;
(Task d) preprocess these subtrees for the recursive calls: O(|X|) time;
(Task e) make recursive calls
The algorithm in its current form has a worst-case running time of O(|X|2). In the following,
we show how to avoid the costly computations of (b), (c), and (d) if they are unnecessary
and bound their running-time in O(dr) if they cannot be avoided. To this end, note that,
when called with up and uq, ListCommonRootConflicts outputs

|up u uq| · |up o uq| · (|vp u vq|+ |vp o vq|) ≤ dr

unique conflicts. Thus, if up u uq 6= ∅ and up o uq 6= ∅, then

|X| = (|up u uq|+ |up o uq|) + (|vp u vq|+ |vp o vq|)
≤ |up u uq| · |up o uq| · (|vp u vq|+ |vp o vq|) + 2 ≤ dr + 2

and we can thus bound the time spent for (b), (c), and (d) in O(dr). By symmetry, the
same holds if vpuvq 6= ∅ and vp ovq 6= ∅. It remains to explore the cases that one of upuuq

and up o uq and one of vp u vq and vp o vq is empty.
First, up o uq = vp u vq = ∅. Then all leaves of Pup are leaves of Quq and all leaves of Pvp

are not leaves of Qvq
. Thus, Qvq

does not have any leaves, contradicting the fact that P
and Q are binary trees. Symmetrically, up u uq = vp o vq = ∅ cannot happen.

Second, up o uq = vp o vq = ∅. Then, L(up) = L(uq) and L(vp) = L(vq). This situation
can be detected in constant time, given a linear-time preprocessing of P and Q that
links a node xp of P to a node xq of Q if and only if Pxp and Qxq have the same leaf-set
(see Observation 3). In this case, there are no root-conflicts and none of the costly steps
(b)–(d) are necessary.

Third, up u uq = vp u vq = ∅. Then, changing the root-child pairing to (up, vq) and (vp, uq)
gives the previous case. The same preprocessing allows us to detect and deal with this
case.

The final version of the algorithm is presented as Algorithm 2 and we can prove its running
time and correctness.

I Lemma 2. Algorithm 2 outputs a triple if and only if it is a conflict. Moreover, no conflict
is listed twice and Algorithm 2 runs in O(|X|+d) time, where X is the label set of the input
trees and d is the total number of conflicts listed.

Proof. Let line 2 of ListAllConflicts produce the pairs (up, uq) and (vp, vq).
“⇒”: Let abc be a triple that is listed by Algorithm 2. If ListCommonRootConflicts

lists abc then, without loss of generality, a ∈ upuuq, and b ∈ up ouq, and c ∈ X\L(up). Thus,
a ≤ up, uq, and b ≤ up, vq, and c ≤ vp. Now, if c ≤ vq, then ab|P c and a|Qbc, otherwise, ab|P c
and ac|Qb. In both cases, abc is a conflict. Otherwise, abc is listed by ListSubtreeConflicts
and, without loss of generality, let the first argument be P (lines 12 and 13). Then, by
construction of ListSubtreeConflicts, there is some Z ∈ {xp u xq, xp o xq} and some y
such that a, c <P y, and a, b ∈ Z, and c /∈ Z, and y < LCAP (ab). Thus ac|P b. Now, if
Z = xp u xq then, as c < y < xp and c /∈ Z, we have c � xq, but a, b < xq, implying ab|Qc.
If Z = xp o xq then, as c < y < xp and c /∈ Z, we have c ≤ xq, but a, b � xq, implying ab|Qc.
In both cases, abc is a conflict.

“⇐”: Let abc be a conflict between P and Q and, by symmetry among abc, let ab|P c
and ac|Qb. Further, by symmetry among up and vp, let ab < up. First, suppose that
LCAP (abc) = r(P), that is, c ≤ vp. If abc < uq (or abc < vq), then there is Z := up u uq

Mathias Weller XX:7

Procedure ListAllConflicts’
Input: Trees P & Q, preprocessed to answer leaf-set equivalence in O(1)
Output: Conflict triples of (P, Q)

1 (up, uq), (vp, vq)← arbitrary pairing of children of r(P) & r(Q);
2 if L(up) = L(vq) then swap uq and vq;
3 if L(up) = L(uq) then
4 ListAllConflicts′(Pup , Quq);
5 ListAllConflicts′(Pvp , Qvq);
6 else
7 foreach (xp, xq) ∈ {(up, uq), (vp, vq)} do
8 compute & post-order the sets xp u xq, xp o xq and xq o xp;
9 compute P |xpuxq , P |upouq , Q|xquxp , and Q|xqoxp ;

10 compute the leaf-set equivalence relation for corresponding tree-pairs;
11 ListCommonRootConflicts(P, Q, xp, xq);
12 ListSubtreeConflicts(P, xp u xq);
13 ListSubtreeConflicts(P, xp o xq);
14 ListSubtreeConflicts(Q, xq u xp);
15 ListSubtreeConflicts(Q, xq o xp);
16 ListAllConflicts′(P |xpuxq , Q|xquxp);
17 ListAllConflicts′(P |upouq , Q|vqovp);
18 ListAllConflicts′(P |vpovq , Q|uqoup);

2 Refined algorithm to enumerate all conflict triples. Note that we do not have to update
leaf-set equivalence relations for the recursions in lines 4 and 5 since the relation computed in the
parent remains valid.

(or Z := up o uq) with a, b ∈ Z and c /∈ Z and ab6 |Qc and, by Lemma Lemma 1, abc is listed
by ListSubtreeConflicts in line 14 (or line 15). Otherwise, LCAQ(abc) = r(Q), that is,
ac < uq and b ≤ vq or vice versa (since ac|Qb). But then, ac < uq (or ac < vp) and b ≤ vq

(or b ≤ up), implying a ∈ up u uq, and b ∈ up o uq (or b ∈ up u uq, and a ∈ up o uq), and
c 6< up and, thus, abc is listed by ListCommonRootConflicts in line 11. Second, suppose
that LCAP (abc) < r(P), that is, c ≤ up. If LCAQ(abc) = r(Q), then ac < uq and b < vq

or vice versa. But then, there is Z := up u uq (or Z := up o uq) with a, c ∈ Z, and b /∈ Z
and ac6 |P b and, by Lemma 1, acb is listed by ListSubtreeConflicts in line 12 (or line 13).
Otherwise, LCAQ(abc) < r(Q). If abc < uq then, by induction on the recursion depth, abc
is listed by the recursive call on line 16 (or line 4 if L(up) = L(uq)). Otherwise, abc < vq

and, by induction on the recursion depth, abc is listed by the recursive call on line 17 (or
line 4 if L(up) = L(vq), as uq and vq would have been swapped in line 2 in this case).

To show that no conflict abc is output twice, assume the contrary. Again, symmetry lets
us suppose ab|P c, and ac|Qb, and ab < up. Note that the two occurrences of abc cannot be
output by

different recursive calls, since all tree-pairs in recursive calls have pairwise disjoint sets
of leaf-labels,
the same call to ListCommonRootConflicts since xp uxq, and xp oxq and X \L(xp) are
pairwise disjoint, or
the same call to ListSubtreeConflicts by Lemma 1.

Thus, abc is listed by different calls in the same node of the recursion tree. If LCAP (abc) =
r(P) and LCAQ(abc) = r(Q), then abc is listed by both calls to ListCommonRootConflicts,
implying that abc intersects up u uq and up o uq as well as vp u vq and vp o vq. However, as

XX:8 Listing Conflicting Triples in Optimal Time

these sets are disjoint, this cannot happen. If LCAP (abc) = r(P) and LCAQ(abc) 6= r(Q),
then abc <Q uq or abc <Q vq and c ≤P vp. If abc <Q uq, then ab ⊆ up u uq and abc can
be listed only in the call to ListSubtreeConflicts in line 14 for (xp, xq) = (up, uq). If
abc <Q vq, then ab ⊆ vq ovp and abc can be listed only in the call to ListSubtreeConflicts
in line 15 for (xp, xq) = (vp, vq). The case that LCAP (abc) 6= r(P) and LCAQ(abc) = r(Q)
is completely analogous. Since the case that LCAP (abc) 6= r(P) and LCAQ(abc) 6= r(Q) is
treated in a different recursive step, this case distinction is exhaustive and abc is indeed not
listed twice.

To show the running time, let T denote the recursion tree for input (P,Q) and, for
each node v of T , let δv and γv denote the time spent in lines 1–3 and in lines 8–15,
respectively. Then, the algorithm finishes in

∑
v∈V (T) (δv + γv +O(1)) time. First, using

the leaf-set equivalence relation computed in line 10 in the parent of v (or pre-computed if
v is the root), we execute lines 1–3 in constant time, that is, δv ∈ O(1). Second, by the
consideration above, tasks (a)–(d) can be completed in O(dr) time, where dr is the number
of triples output by ListCommonRootConflicts and ListSubtreeConflicts, that is, in
lines 11–15. Then, we can bound the total running time by∑

v∈V (T)

δv +
∑

v∈V (T)

γv = O(|T |) +O(
∑

dr) = O(|T |+ d)

where
∑
dr = d because each conflict has a root and no conflict is listed twice (see Lemma 1).

Finally, note that the leaf-sets of the recursive calls of ListAllConflicts’ form a partition
of X and, therefore, each leaf of T has a “private” element of X that occurs only in that
leaf, implying |T | ∈ O(|X|). J

I Theorem 3. Given phylogenetic trees P and Q on the same set of n taxa, Algorithm 2
enumerates all d conflict triples in O(n+ d) time.

4 Conclusion

We have shown how to list all conflict triples between two phylogenetic trees in O(n+d) time
where n is the number of taxa and d is the number of listed conflicts. This improves the
previously used, trivial Θ(n3)-time algorithm that tests for each leaf-triple abc for being
a conflict. The presented algorithm is fastest-possible (up to constant factors), since all
algorithms solving the problem must at read the input and write the output.

Our work is located in the field of output-sensitive enumeration algorithms as well as
the rising field of “FPT in P”, meaning the use of parameters to speed up polynomial-time
algorithms.

A simple next step is to extend the algorithm to non-binary outbranchings. More chal-
lengingly, we want to reconsider other polynomial-time enumeration problems parameterized
by the length of the output list in hope to produce more “fastest-possible” algorithms. We
also plan to analyze real-world phylogenetic trees to see whether the parameter is sufficiently
smaller than n3 to make it worth implementing in practice.

Acknowledgments

I thank the Institut de Biologie Computationelle for funding my research, as well as my
colleagues Krister Swenson and Celine Scornavacca for fruitful discussions.

REFERENCES XX:9

References
1 M. A. Bender and M. Farach-Colton. The LCA problem revisited. In LATIN 2000: Theoretical In-

formatics, 4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of LNCS, pages 88–94. Springer, 2000.

2 G. S. Brodal, R. Fagerberg, T. Mailund, C. N. Pedersen, and A. Sand. Efficient algorithms for
computing the triplet and quartet distance between trees of arbitrary degree. In Proceedings of the
Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1814–1832. Society for
Industrial and Applied Mathematics, 2013.

3 J. Byrka, S. Guillemot, and J. Jansson. New results on optimizing rooted triplets consistency. Discrete
Applied Mathematics, 158(11):1136 – 1147, 2010. ISSN 0166-218X. 10.1016/j.dam.2010.03.004.

4 C. Chauve, M. Jones, M. Lafond, C. Scornavacca, and M. Weller. Constructing a consensus phylogeny
from a leaf-removal distance. under review, 2017.

5 R. Cole, M. Farach-Colton, R. Hariharan, T. Przytycka, and M. Thorup. An o(n log n) algorithm
for the maximum agreement subtree problem for binary trees. SIAM Journal on Computing, 30(5):
1385–1404, 2000.

6 F. V. Fomin, D. Lokshtanov, M. Pilipczuk, S. Saurabh, and M. Wrochna. Fully polynomial-time
parameterized computations for graphs and matrices of low treewidth. CoRR, abs/1511.01379, 2015.
URL http://arxiv.org/abs/1511.01379.

7 D. Harel and R. E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM Journal on
Computing, 13(2):338–355, 1984.

8 J. M. Hochstein and K. Weihe. Maximum s-t-flow with k crossings in o(k3n log n) time. In Proceedings
of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’07, pages 843–847,
Philadelphia, PA, USA, 2007. Society for Industrial and Applied Mathematics. ISBN 978-0-898716-
24-5. URL http://dl.acm.org/citation.cfm?id=1283383.1283473.

9 J. Jansson, N. B. Nguyen, and W.-K. Sung. Algorithms for combining rooted triplets
into a galled phylogenetic network. SIAM Journal on Computing, 35(5):1098–1121, 2006.
10.1137/S0097539704446529.

10 G. B. Mertzios, A. Nichterlein, and R. Niedermeier. Linear-time algorithm for maximum-cardinality
matching on cocomparability graphs. CoRR, abs/1703.05598, 2017. URL http://arxiv.org/abs/
1703.05598.

11 V. Ranwez, A. Criscuolo, and E. J. Douzery. Supertriplets: A triplet-based supertree approach to
phylogenomics. Bioinformatics, (26):i115–i123, 2010.

http://dx.doi.org/10.1016/j.dam.2010.03.004
http://arxiv.org/abs/1511.01379
http://dl.acm.org/citation.cfm?id=1283383.1283473
http://dx.doi.org/10.1137/S0097539704446529
http://arxiv.org/abs/1703.05598
http://arxiv.org/abs/1703.05598

	Introduction
	Preliminaries
	The Algorithm
	Conclusion

