Mathias Weller

Listing Conflicting Triples in Optimal Time

Keywords: 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph Theory parameterized algorithms, phylogenetic trees, triplet enumeration, enumeration algorithms, polynomial time Digital Object Identifier 10.4230/LIPIcs

come

Introduction

In bioinformatics -more precisely, phylogenetics -evolutionary trees ("phylogenetic trees") are one of the fundamental types of data representation and, thus, among the most important objects being algorithmically analyzed and manipulated. A phylogenetic tree visualizes the evolutionary history of a set of taxa (e.g. a family of genes, a collection of species, etc.). However, different sources of information might imply different evolutionary histories of the same taxa. Such contradictions manifest themselves as "conflict triples" (sometimes also "conflict triplets"), that is, three taxa, say a, b, and c such that one phylogenetic tree P implies that a common ancestor of a and b split off the common lineage of a, b and c before splitting into a and b while another tree Q implies that a common ancestor of b and c split off the common lineage before splitting into b and c. More formally, LCA P (ab) = LCA P (abc) and LCA Q (bc) = LCA Q (ab) = LCA Q (abc). See Figure 1 for an example. Conflict triples are essential ingredients to algorithms building so-called "supertrees", that is, phylogenetic trees that merge evolutionary histories into one that is "most consistent" [START_REF] Byrka | New results on optimizing rooted triplets consistency[END_REF][START_REF] Jansson | Algorithms for combining rooted triplets into a galled phylogenetic network[END_REF]. Conflict triples can also be used to reconcile gene trees into a single phylogeny by building a so-called "triplet-based median supertree" [START_REF] Ranwez | Supertriplets: A triplet-based supertree approach to phylogenomics[END_REF]. The problem of counting conflict triples has been used to measure the distance between phylogenetic trees. Brodal et al. [START_REF] Brodal | Efficient algorithms for computing the triplet and quartet distance between trees of arbitrary degree[END_REF] show how to compute this number in O(n log n) time. A recent study of the problem of finding a consensus tree given a set of disagreeing phylogenetic trees [START_REF] Chauve | Constructing a consensus phylogeny from a leaf-removal distance[END_REF] makes heavy use of the list of all conflict triples between any two of the input trees, but does not detail how to enumerating them efficiently. Here, we address this problem, showing how to enumerate all d conflict triples of a pair (P, Q) of phylogenetic trees on n taxa in O(n + d) time. Since all algorithms solving this problem need to read the input (size Θ(n)) and write the output (size Θ(d)), this is asymptotically "best possible".

XX:2

Listing Conflicting Triples in Optimal Time

P A B C D E Q A B C D E
While counting the number of conflicts has received some attention in the past [START_REF] Brodal | Efficient algorithms for computing the triplet and quartet distance between trees of arbitrary degree[END_REF], not much work has been done on enumerating them. Such development might have been discouraged by the fact that a significant portion of the n 3 triples of taxa might be in conflict, in which case the trivial algorithm that tests each triple of taxa for being a conflict would be optimal. This work emerged from the question whether we can do better if only few triples are actually in conflict. In this sense, our work is in the context of "FPT in P", a research direction that brings ideas of parameterized complexity theory to the world of polynomial-time solvable problems. Indeed, parameterized complexity theory aims at providing algorithms for hard problems that run fast in practice, assuming that some measure of difficulty (the "parameter") is small in the instances that a particular application produces. Previously, "hard" most often meant "NP-hard", but there is no reason not to widen ones view to include polynomial-time solvable problems with impractical running time. While preliminary works in this direction focussed on decision problems [START_REF] Fomin | Fully polynomial-time parameterized computations for graphs and matrices of low treewidth[END_REF][START_REF] Hochstein | Maximum s-t-flow with k crossings in o(k3n log n) time[END_REF][START_REF] Mertzios | Linear-time algorithm for maximum-cardinality matching on cocomparability graphs[END_REF], we consider an enumeration-type problem here.

Indeed, the concept of measuring the complexity in the size of the input and the output is fairly well known as output sensitivity in the context of enumeration algorithms. Running in O(n+d) time where n is the size of the input and d is the size of the output, our algorithm can be called total linear.

Preliminaries

A (phylogenetic) tree is a rooted, binary1 outbranching whose leaves are bijectively labeled by a set X (of taxa) and we refer to its root by r(T). Since the labeling is bijective, we use leaves and labels interchangeably. If some vertex v of T is a strict ancestor of a vertex u in T , we write u < T v and we abbreviate ∀v∈Z v < T u to Z < T u. We also abbreviate sets of leaves (or labels) by the concatenation of their names, that is, abc refers to {a, b, c}.

The least common ancestor of two leaves (or labels) a and b in T is the minimum among all u with ab < T u and we write LCA T (ab) = u. In this work a triple abc in T is a set of three labels abc ⊆ X. We say that abc touches LCA T (abc) and omit the mention of T if it is clear from context. We say a triple abc is ab-biased in T if LCA T (ab) = LCA T (abc) and we write ab| T c to indicate this fact. A triple abc is called a conflict of a pair (P, Q) of trees if, for some xy ⊆ abc, we have that abc is xy-biased in exactly one of P and Q (see Figure 1). Recall that abc and cab refers to the same conflict, so when claiming that abc is not listed twice, this also means that no two permutations of abc are listed.

For two vertices u ∈ V (P) and v ∈ V (Q), we define

u v := L(P u) ∩ L(Q v) and u v := L(P u) \ L(Q v).
Note that is symmetrical while is not.

Observation 1. Let P and Q be phylogenetic trees on the same leaf-set. Let r p and r q be the roots of P and Q, respectively, and let u p , v p and u q , v q be their respective children. Then, u p u q = u p v q = v q u p = v q v p .

In the following, we call a tree T LCA-enabled if the LCA of any two vertices in T can be found in constant time. Note that we can LCA-enable any tree in linear time [START_REF] Bender | The LCA problem revisited[END_REF][START_REF] Harel | Fast algorithms for finding nearest common ancestors[END_REF].

In the algorithm, we will want to compute the subtree T of a tree T that is induced by a set Z of leaves. If Z is ordered by an in-order or post-order traversal of T , then this can be done in O(|Z|) time [START_REF] Cole | An o(n log n) algorithm for the maximum agreement subtree problem for binary trees[END_REF]Section 8]. The idea is that the inner vertices of T are exactly the LCAs of consecutive (wrt. the order) leaves in Z and the arcs between them can be computed by looking at the nearest, lower vertex on the left and right of each inner vertex of T according to the order.

Observation 2 ([5, Section 8]). Let T be an LCA-enabled tree and let Z ⊆ L(T) be in post-order. Then, T | Z can be computed in O(|Z|) time.

Furthermore, for leaf-labelled trees P and Q and vertices u and v of P and Q, respectively, we will want to detect whether L(P u) = L(Q v) in constant time. To this end, we construct a mapping m that maps each vertex x of P to the unique vertex y of Q that is lowest among all vertices of Q satisfying

L(P x) ⊆ L(Q y). Note that, m(x) = LCA Q (m(x), m(x))
where x and x are the children of x in P and, thus, m can be computed in Observation 3. Let P and Q be phylogenetic trees on the same leaf-set and let Q be LCAenabled. Then, there is a linear-time preprocessing that allows answering if L(P u) = L(Q v) in constant time for each u and v.

O(|P | + |Q|) time if Q is LCA-enabled.

3

The Algorithm

Given two phylogenetic trees P and Q on the label-set X, our algorithm will first list all conflict triples abc that touch r(P) or r(Q) and then recurse into specific induced subtrees of P and Q such that, the conflicts in these subtrees are exactly the conflicts between P and Q that do not touch r(P) and r(Q). The observation that being a conflict triple is invariant under deletion of unrelated leaves implies the correctness of this approach.

Observation 1. Let Y ⊆ X, and let abc ⊆ Y . Then, abc is a conflict triple of (P, Q) if and only if abc is a conflict triple of (P | Y , Q| Y).

Observation 2. Let abc be a conflict triple of (P, Q) that touches neither r(P) nor r(Q). Let u p and v p be the children of r(P) and let u q and v q be the children of r(Q). Then, abc is completely contained in u p u q , u p v q , v p u q , or v p v q .

Note that the four sets mentioned in Observation 2 are disjoint, and so, no conflict can be contained in any two of them. Then, our algorithm can be described as the following recursion (see Algorithm 1 for a detailed description): Base Case: If r(P) and r(Q) are leaves, then return without listing anything. Recursion: First, choose an arbitrary pairing {(u p , u q), (v p , v q)} of the children of r(P) and r(Q). Second, list all conflict triples abc touching r(P) or r(Q).

Procedure ListCommonRootConflicts

Input: Trees P & Q on X, a child x p of r(P), a child x q of r(Q) Output: Conflict triples abc with ab ≤ x p touching r(P) and r(Q) 1 foreach a ∈ x p x q and b ∈ x p x q and c ∈ X \ L(x p) do list abc;

Procedure ListUncommonRootConflicts

Input: Trees P & Q on X, a child x p of r(P), a child x q of r(Q) Output: Conflict triples abc ≤ x p touching r(Q) (but not r(P)) 1 foreach a, b ∈ x p x q and c ∈ x p x q with ab | P c do list abc; 2 foreach a, b ∈ x p x q and c ∈ x p x q with ab | P c do list abc;

Procedure ListAllConflicts

Input:

Trees P & Q Output: Conflict triples of (P, Q) 1 if |L(P)| > 1 then 2 (u p , u q), (v p , v q) ← arbitrary pairing of children of r(P) & r(Q); 3 foreach (x p , x q) ∈ {(u p , u q), (v p , v q)} do 4 compute x p x q ,
x p x q and x q x p ; 5 ListCommonRootConflicts(P, Q, x p , x q); 6 ListUncommonRootConflicts(P, Q, x p , x q); 7 ListUncommonRootConflicts(Q, P, x q , x p); We defer showing correctness in favor of introducing some modifications that allow achieving our running-time goal. In order to see why this is necessary, let us analyze ListAllConflicts. This requires a closer look at how many triples are listed in each recursive step. ListCommonRootConflicts unconditionally lists |x p x q | • |x p x q | • |X \ L(x p)| conflicts for each pair (x p , x q) of the chosen pairing. However, ListUncommonRootConflicts has to perform numerous checks of the type "ab|c?". Since it is possible that none of these triples is a conflict, we cannot bound these operations in the number of listed conflicts. Instead, we use ListSubtreeConflicts to list all the triples abc with a, b ∈ x p x q and c ∈ x p x q (or vice versa), and ab | P c in constant time per listed triple (see Figure 2 for an illustration). The idea is (i) to focus on the subtree P of P that is rooted at LCA P (x p x q), (ii) to pick any leaf c ∈ x p x q and, (iii) for each y on the unique path from c to r(P), listing all triples abc for which a and c are "below y" and b is not, thereby ensuring LCA T (ac) = LCA T (abc). We will thus replace the first for-loop of ListUncommonRootConflicts by a call to ListSubtreeConflicts(P, x p x q) and the second for-loop with a call to ListSubtreeConflicts(P, x p x q). Second, suppose that any triple abc is listed twice. As y and y are siblings in each iteration of the while-loop, abc is listed for two different values of y. However, there is a single vertex (namely LCA(ab)) for which neither ab ⊆ L(T y) nor ab ⊆ L(T y). Thus, there is a single iteration for which abc can be output.

Finally, we show the claimed running time. We start by showing that, each time the while-loop is run, it outputs at least |Z|-1 triples. To this end, consider y and its sibling y in any last iteration of the while-loop (that is, the parent of y and y is r(T)). Then, the number of triples that are listed is (Task e) make recursive calls The algorithm in its current form has a worst-case running time of O(|X| 2). In the following, we show how to avoid the costly computations of (b), (c), and (d) if they are unnecessary and bound their running-time in O(d r) if they cannot be avoided. To this end, note that, when called with u p and u q , ListCommonRootConflicts outputs

|L(T y)-1|•|L(T y)| ≥ |L(T y)|-1+|L(T y |-1 = |L(T)|-1 = |Z|-
|u p u q | • |u p u q | • (|v p v q | + |v p v q |) ≤ d r unique conflicts. Thus, if u p u q = ∅ and u p u q = ∅, then |X| = (|u p u q | + |u p u q |) + (|v p v q | + |v p v q |) ≤ |u p u q | • |u p u q | • (|v p v q | + |v p v q |) + 2 ≤ d r + 2
and we can thus bound the time spent for (b), (c), and (d) in O(d r). By symmetry, the same holds if v p v q = ∅ and v p v q = ∅. It remains to explore the cases that one of u p u q and u p u q and one of v p v q and v p v q is empty. First, u p u q = v p v q = ∅. Then all leaves of P up are leaves of Q uq and all leaves of P vp are not leaves of Q vq . Thus, Q vq does not have any leaves, contradicting the fact that P and Q are binary trees. Symmetrically, u p u q = v p v q = ∅ cannot happen. Second, u p u q = v p v q = ∅. Then, L(u p) = L(u q) and L(v p) = L(v q). This situation can be detected in constant time, given a linear-time preprocessing of P and Q that links a node x p of P to a node x q of Q if and only if P xp and Q xq have the same leaf-set (see Observation 3). In this case, there are no root-conflicts and none of the costly steps (b)-(d) are necessary. Third, u p u q = v p v q = ∅. Then, changing the root-child pairing to (u p , v q) and (v p , u q)

gives the previous case. The same preprocessing allows us to detect and deal with this case. The final version of the algorithm is presented as Algorithm 2 and we can prove its running time and correctness. Lemma 2. Algorithm 2 outputs a triple if and only if it is a conflict. Moreover, no conflict is listed twice and Algorithm 2 runs in O(|X| + d) time, where X is the label set of the input trees and d is the total number of conflicts listed. Proof. Let line 2 of ListAllConflicts produce the pairs (u p , u q) and (v p , v q). "⇒": Let abc be a triple that is listed by Algorithm 2. If ListCommonRootConflicts lists abc then, without loss of generality, a ∈ u p u q , and b ∈ u p u q , and c ∈ X \L(u p). Thus, a ≤ u p , u q , and b ≤ u p , v q , and c ≤ v p . Now, if c ≤ v q , then ab| P c and a| Q bc, otherwise, ab| P c and ac| Q b. In both cases, abc is a conflict. Otherwise, abc is listed by ListSubtreeConflicts and, without loss of generality, let the first argument be P (lines 12 and 13). Then, by construction of ListSubtreeConflicts, there is some Z ∈ {x p x q , x p x q } and some y such that a, c < P y, and a, b ∈ Z, and c / ∈ Z, and y < LCA P (ab). Thus ac| P b. Now, if Z = x p x q then, as c < y < x p and c / ∈ Z, we have c x q , but a, b < x q , implying ab| Q c. If Z = x p x q then, as c < y < x p and c / ∈ Z, we have c ≤ x q , but a, b x q , implying ab| Q c. In both cases, abc is a conflict.

"⇐": Let abc be a conflict between P and Q and, by symmetry among abc, let ab| P c and ac| Q b. Further, by symmetry among u p and v p , let ab < u p . First, suppose that LCA P (abc) = r(P), that is, c ≤ v p . If abc < u q (or abc < v q), then there is Z := u p u q these sets are disjoint, this cannot happen. If LCA P (abc) = r(P) and LCA Q (abc) = r(Q), then abc < Q u q or abc < Q v q and c ≤ P v p . If abc < Q u q , then ab ⊆ u p u q and abc can be listed only in the call to ListSubtreeConflicts in line 14 for (x p , x q) = (u p , u q). If abc < Q v q , then ab ⊆ v q v p and abc can be listed only in the call to ListSubtreeConflicts in line 15 for (x p , x q) = (v p , v q). The case that LCA P (abc) = r(P) and LCA Q (abc) = r(Q) is completely analogous. Since the case that LCA P (abc) = r(P) and LCA Q (abc) = r(Q) is treated in a different recursive step, this case distinction is exhaustive and abc is indeed not listed twice.

To show the running time, let T denote the recursion tree for input (P, Q) and, for each node v of T , let δ v and γ v denote the time spent in lines 1-3 and in lines 8-15, respectively. Then, the algorithm finishes in v∈V (T) (δ v + γ v + O(1

Conclusion

We have shown how to list all conflict triples between two phylogenetic trees in O(n+d) time where n is the number of taxa and d is the number of listed conflicts. This improves the previously used, trivial Θ(n 3)-time algorithm that tests for each leaf-triple abc for being a conflict. The presented algorithm is fastest-possible (up to constant factors), since all algorithms solving the problem must at read the input and write the output. Our work is located in the field of output-sensitive enumeration algorithms as well as the rising field of "FPT in P", meaning the use of parameters to speed up polynomial-time algorithms.

A simple next step is to extend the algorithm to non-binary outbranchings. More challengingly, we want to reconsider other polynomial-time enumeration problems parameterized by the length of the output list in hope to produce more "fastest-possible" algorithms. We also plan to analyze real-world phylogenetic trees to see whether the parameter is sufficiently smaller than n 3 to make it worth implementing in practice.

Figure 1

 1 Figure 1 Two phylogenetic trees P and Q with conflict CDE (boxes = leaves, circles = inner vertices). In particular, CD|P E and DE|QC.

 Finally, we only need to know the number of leaves reachable from each vertex of P and Q, which can easily be computed in O(|P | + |Q|) time.

8

 ListAllConflicts(P | xp xq , Q| xp xq); 9 ListAllConflicts(P | up uq , Q| vq vp); 10 ListAllConflicts(P | vp vq , Q| uq up);

Lemma 1 . 3 T ← T | Z∪{c} ; 4 y ← parent of c; 5 while y = r(T) do 6 y 8 yFigure 2

 1345682 Figure 2 An example illustrating the tree T in two steps of ListSubtreeConflicts (gray = vertex y, black = leaf c with label C). Left: first step (y is the parent of c), listing DAC and DBC. Right: second step, listing all abC, with a ∈ {A, B, D} and b ∈ {E, F }.

1 .

 1 Since, by Observation 2, T can be computed in O(|Z|) time (line 3), we conclude that ListSubtreeConflicts runs in O(d) time. With Lemma 1, we can finally list all d r conflict triples abc with LCA P (abc) = r(P) or LCA Q (abc) = r(Q) in O(d r) time. Thus, ListAllConflicts completes the following tasks in the mentioned times. (Task a) list all conflict triples touching r(P) or r(Q): O(d r) time; (Task b) compute common and uncommon leaves: O(|X|) time; (Task c) compute the subtrees induced by these leaf-sets: O(|X|) time; (Task d) preprocess these subtrees for the recursive calls: O(|X|) time;

Theorem 3 .

 3)) time. First, using the leaf-set equivalence relation computed in line 10 in the parent of v (or pre-computed if v is the root), we execute lines 1-3 in constant time, that is, δ v ∈ O[START_REF] Bender | The LCA problem revisited[END_REF]. Second, by the consideration above, tasks (a)-(d) can be completed in O(d r) time, where d r is the number of triples output by ListCommonRootConflicts and ListSubtreeConflicts, that is, in lines 11-15. Then, we can bound the total running time byv∈V (T) δ v + v∈V (T) γ v = O(|T |) + O(d r) = O(|T | + d)where d r = d because each conflict has a root and no conflict is listed twice (see Lemma 1). Finally, note that the leaf-sets of the recursive calls of ListAllConflicts' form a partition of X and, therefore, each leaf of T has a "private" element of X that occurs only in that leaf, implying |T | ∈ O(|X|). Given phylogenetic trees P and Q on the same set of n taxa, Algorithm 2 enumerates all d conflict triples in O(n + d) time.

While we only consider binary phylogenetic trees in this work, I conjecture that it easily generalizes.

First shot at triplet enumeration. Note that, although theoretically unnecessary, we provide xq to the calls to ListCommonRootConflicts and ListUncommonRootConflicts, since this lets us use the pre-computed sets xp xq and xp xq and xq xp.

Acknowledgments

I thank the Institut de Biologie Computationelle for funding my research, as well as my colleagues Krister Swenson and Celine Scornavacca for fruitful discussions.

(or Z := u p u q) with a, b ∈ Z and c / ∈ Z and ab | Q c and, by Lemma Lemma 1, abc is listed by ListSubtreeConflicts in line 14 (or line 15). Otherwise, LCA Q (abc) = r(Q), that is, ac < u q and b ≤ v q or vice versa (since ac| Q b). But then, ac < u q (or ac < v p) and b ≤ v q (or b ≤ u p), implying a ∈ u p u q , and b ∈ u p u q (or b ∈ u p u q , and a ∈ u p u q), and c < u p and, thus, abc is listed by ListCommonRootConflicts in line 11. Second, suppose that LCA P (abc) < r(P), that is, c ≤ u p . If LCA Q (abc) = r(Q), then ac < u q and b < v q or vice versa. But then, there is Z := u p u q (or Z := u p u q) with a, c ∈ Z, and b / ∈ Z and ac | P b and, by Lemma 1, acb is listed by ListSubtreeConflicts in line 12 (or line 13). Otherwise, LCA Q (abc) < r(Q). If abc < u q then, by induction on the recursion depth, abc is listed by the recursive call on line 16 (or line 4 if L(u p) = L(u q)). Otherwise, abc < v q and, by induction on the recursion depth, abc is listed by the recursive call on line 17 (or line 4 if L(u p) = L(v q), as u q and v q would have been swapped in line 2 in this case).

To show that no conflict abc is output twice, assume the contrary. Again, symmetry lets us suppose ab| P c, and ac| Q b, and ab < u p . Note that the two occurrences of abc cannot be output by different recursive calls, since all tree-pairs in recursive calls have pairwise disjoint sets of leaf-labels, the same call to ListCommonRootConflicts since x p x q , and x p x q and X \ L(x p) are pairwise disjoint, or the same call to ListSubtreeConflicts by Lemma 1. Thus, abc is listed by different calls in the same node of the recursion tree. If LCA P (abc) = r(P) and LCA Q (abc) = r(Q), then abc is listed by both calls to ListCommonRootConflicts, implying that abc intersects u p u q and u p u q as well as v p v q and v p v q . However, as