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Abstract

The challenges of understanding the impacts of air pollution require detailed information on the state of air

quality. While many modeling approaches attempt to treat this problem, physically-based deterministic methods

are often overlooked due to their costly computational requirements and complicated implementation. In this

work we apply a non-intrusive reduced basis data assimilation method (known as PBDW state estimation) to

air quality case studies with the goal of rendering methods based on parameterized partial differential equations

(PDE) realistic in applications requiring quasi-real-time approximation and correction of model error in imper-

fect models. Reduced basis methods (RBM) aim to compute a cheap and accurate approximation of a physical

state using approximation spaces made of a suitable sample of solutions to the problem. One of the keys of

these techniques is the decomposition of the computational work into an expensive one-time offline stage and a

low-cost parameter-dependent online stage. Traditional RBMs require modifying the assembly routines of the

computational code, an intrusive procedure. We propose a less intrusive reduced method using data assimilation

for measured pollution concentrations. In case studies presented in this work, the method allows to correct for

unmodeled physics and treat cases of unknown parameter values, all while significantly reducing online computa-

tional time.

Keywords: Reduced Basis method, Model order reduction, Parameterized partial differential equations, Air

quality modeling, Variational data assimilation.

1. Introduction

With the urbanization of world populations and estimations of millions of deaths caused yearly by air pollution

[1], air quality modeling is of increasing interest. The need for improved approximation and model reduction is

particularly pertinent in these applications, modeling complex and not-fully-known physics. Many modeling

methods exist, from statistical and empirical, to deterministic methods [2]. Within the category of deterministic
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models, approaches vary in sophistication from simple box models [3], to Gaussian plume models, to physically-

based Lagrangian methods [4] and Eulerian CFD models [5, 6, 7]. The more sophisticated models, when applied

with precise information on the environment and emissions, and if correctly calibrated, can provide very detailed

information on spatial and time-varying pollutant concentrations, as well as the physical phenomena affecting

air quality; however, these models can be computationally expensive to solve. Additionally, given the complexity

of real-world applications, we cannot assume that even a highly informed and sophisticated deterministic (or

non-deterministic for that matter) model can exactly represent all the physical phenomena at play. Therefore,

the combination of model order reduction methods and data assimilation methods is of great interest to these

complicated and pertinent applications.

In most modeling and data assimilation endeavors, the overall goal is to find the most precise approximation

of the physical system while expending minimal resources. In practice this can translate to using the a priori

information encoded in the best model possible, and available data, without requiring excessive computational

investment for each evaluation of the problem. These goals are clear in various data assimilation methods, a com-

mon concept in meteorological forecasting, which require a set of observations of the state, a mathematical model,

and a data assimilation scheme. Many data assimilation methods involve the minimization of a cost function, such

as least-squares type, designed to compute the mismatch between the model approximation and the observations.

For example, the adjoint method [8, 9] is a typical method to treat the reconstruction of a physical state involving

the minimization of a cost function to optimize the parameters of the model with respect to the measurement

data. A sensitivity analysis of the adjoint problem for air quality models can be found in [10]. These methods

require the forward resolution of the problem for many parameter values, which can prove costly. Model order

reduction (MOR) methods can offer highly advantageous reduction of computational effort without significant

loss of precision. The Proper Generalized Decomposition method [11] is a model order reduction method based

on a separation of variables to break down the solution into less costly pieces, applied for example to the Navier-

Stokes equations in [12]. A common approach to rapidly compute reliable approximations of solutions to complex

parameter-dependent problems is by projection-based reduction methods, such as reduced basis methods (RBM)

[13]. These methods aim to reduce the complexity of the model using the information given by a well-chosen set

of particular solutions to the problem. A basis (called the reduced basis) of a low-dimensional subspace of the

space representing all the solutions to the parametrized problem, is constructed from these particular solutions.

The equations of the full model are projected onto the reduced basis space by a Galerkin method. Examples of

reduced basis methods used in the adjoint problem framework can be found in [14, 15, 16], and specifically in

the case of air quality modeling in [17, 18]. RBMs used for 4D-Var data assimilation on an advection-diffusion

model are presented in [19]. One of the drawbacks of standard variational data assimilation methods is that it is

intrusive from a computational point of view, requiring the development of an adjoint calculation code, despite

efforts to automatically differentiate a given software. In some cases this could mean relatively small modification

of the original calculation code, while in others more significant modifications could be required. For example,
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when the wind field is a varying parameter in the model, the implementation of the adjoint method would require

the reconstruction of the wind field at each iteration during the approximation of the optimal parameter (i.e. for

each approximation of the adjoint solution). For these reasons, less intrusive options can be valuable.

The Generalized Empirical Interpolation Method (GEIM) [20, 21], is a non-intrusive and non-iterative method

combining Model Order Reduction (MOR) and data assimilation. This method relies on the knowledge of some

particular solutions to the parameterized model, and some measurements over the physical state to be approxi-

mated, from which an empirical interpolation is constructed. Another non-intrusive and non-iterative approach

is the Parameterized-Background Data-Weak (PBDW) state estimation method [22, 23], which employs RBMs

and variational data-assimilation techniques to correct model error. The weak formulation of the PBDW method

is based on least-squares approximation, as is the case of the adjoint inverse method and many variational data

assimilation methods. In this paper we will apply this non-intrusive reduced basis method of data assimilation

for parameterized PDEs modeling outdoor pollutant dispersion. Given a parameterized model for a physical

system, which we will refer to as the ”best-knowledge” (bk) model, and a number of measurements of the state

we wish to approximate, we employ the PBDW method to achieve the best possible approximation by a formu-

lation actionable in real-time. In section 2 we will present the application in air quality modeling, in section 3

the mathematical formulation of the PBDW method, and in section 4 we will discuss important factors in the

numerical implementation of the PBDW method. In section 5 we will show through numerical application that

the PBDW method succeeds in the reconstruction of a pollution field on the case study considered for well-chosen

sensor locations. We will also show a comparison of the PBDW state estimation to the GEIM method, demon-

strating that the PBDW method outperforms the GEIM method when model error is present. We finally give

computational times required for state estimation on this case study, showing the significant advantages of the

RB technique in the PBDW method.

2. A Case study in air quality modeling

The applications studied in this work represent simplified real-world scenarios of residential air pollution. In

this section we will first explain the geometry of the test domain considered for this case study, then describe our

best-knowledge mathematical model, and finally set the reduced basis framework to this model.

2.1. Physical problem formulation

Let us consider a physical system described by a PDE, and denote p the parameter configuration of the physical

system, encoding information such as operation conditions (e.g. emissions or frequency), environmental factors

(e.g. temperature), or physical components. Let p ∈ D, where D is the set of all parameters of interest, and a

bounded domain Ω ⊂ Rd. We will assume a solution space X , a Hilbert space, such that H1
0 (Ω) ⊂ X ⊂ H1(Ω),

and associated inner product (·, ·)X . We will denote X ′ its dual space.
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We study here a simple two-dimensional domain of dimensions 75m × 120m, seen in Figure 1. The domain

represents a neighborhood with a house, a building, and pollution source of a street. These choices were made to

give a simplified case study representing a residential area with pollution from traffic.

Figure 1: Two-dimensional test domain with boundaries corresponding to the velocity field (left) and traffic pollution source repre-

senting a street (right), residential character represented by a house and a building.

We chose a particulate pollutant PM2.5 (particulate matter of diameter d ≤ 2.5µm) in this study, which on the

short term can be considered to have negligible reaction. We set wind velocities (in a fixed direction (1, 1)T ) up

to force 1 as the varying parameter in the best-knowledge parameter space Dbk ⊂ D, and set source intensity

representing varying traffic of 1× 10−3 and 1× 10−2 mg
m3·s .

For accuracy of the pollutant transport model, we use CFD wind fields, solutions to Navier-Stokes with

k − ε turbulence by Code Saturne [24] (a general purpose CFD software). The CFD model can be coupled

with transport equations, or precalculated for a decoupled procedure. In our study we chose to decouple the

computation of the wind fields, and then used the velocity and turbulent viscosity fields in the dispersion model.

For our case study, we consider a simple stationary advection-diffusion PDE as our best-knowledge parametrized

transport model Pbk: Find cbk(p) ∈ X such that
ρ~v(p) · ∇cbk(p)− div

(
εtot(x)∇cbk(p)

)
= ρFsrc(p) in Ω,

cbk(p) = 0 on ΓD = {x ∈ ∂Ω |~v(x) · ~n < 0},

εtot∇cbk(p) · ~n = 0 on ΓN = ∂Ω \ ΓD,

(1)

where ρ = 1.225 kg
m3 is the density of the air, ~v is the wind field, Fsrc the pollutant source term. Considering

turbulent (or eddy) diffusion εturb = νF

sc
, where νF is the turbulent viscosity and sc = 0.7 the dimensionless

Schmidt number, the total diffusion is thus εtot = εmol + εturb, with εmol = 1.72× 10−5m2

s the molecular diffusion

in air. The (strict) inflow boundary is denoted by ΓD = Γin and ΓN = Γwall ∪ Γout represents non-inflow
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boundaries.

Problem (1) is solved in FreeFem++ [25] by the finite element method over Nh degrees of freedom, combined

with a SUPG stabilization method [26, 27] to avoid numerical instabilities known to affect transport problems

solved by finite element methods. The resolution Nh of the finite element problem is sufficiently fine to assume

that the concentration field cbk(p) = cbkh (p) is assumed to commit minimal discretization error (with respect to

the errors we will see by model reduction).

2.2. Reduced basis background

Reduced basis methods exploit the parametrized structure of our problem and construct a low-dimensional

approximation space representing the manifold of solutions, Mbk = {cbk(p) ∈ X | p ∈ Dbk}, to the parameter-

ized model Pbk in equation (1). A key factor of the reduced basis methods is the small Kolmogorov n-width

[28]. The n-width measures to what extent the manifold Mbk, the set of solutions to problem (1), can be ap-

proximated by an n-dimensional subspace of X [29]. If the manifold Mbk can be sufficiently approximated by

a low-dimensional space, we can identify parameter values SN = (p1, . . . ,pN ) ∈ Dbk such that the particular

solutions
(
cbk(p1), . . . , cbk(pN )

)
will generate a RB approximation space. We find our state approximations in

this low-dimensional space, essentially replacing a large-dimensional finite element space of dimension Nh, with

a RB space generated by N << Nh particular solutions to Pbk. Thus for any parameter value p ∈ Dbk, the

solution can be approximated by a linear combination of these particular solutions:

cbkN (p) '
N∑
i=1

αi(p)cbk(pi). (2)

The parameters generating reduced basis spaces can be chosen by multiple methods, and we chose to focus on

Greedy algorithms. We present a weak-Greedy algorithm (Algorithm 1 in appendix) employed in the construction

of reduced basis spaces from the best-knowledge model Pbk over the bk parameter space Dbk. We refer to [30]

for a justification of this construction where quasi optimality of the procedure is proven.

This RB approximation space will be henceforth referred to as the Background space ZN , representing solutions to

the best-knowledge model Pbk in the PBDW method, and we will construct our Background spaces as a sequence

of nested RB spaces

Z1 ⊂ · · · ⊂ ZN ⊂ · · · ⊂ X .

In order to achieve stable implementation of RBMs, it is common practice to improve the basis of the RB

space by a Gram-Schmidt orthonormalization method. We introduce new orthonormal basis functions {ζi}Ni=1

and denote our background RB space as

ZN = span{ζi}Ni=1 = span{cbk(pi)}Ni=1 ⊂ X . (3)

To minimize the appoximation error associated to discretization error (on the reduced N -dimensional space),
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we need to construct a suitably precise RB space ZN such that, for a tolerance εZ ,

∀p ∈ Dbk, inf
w∈ZN

‖cbk(p)− w‖X ≤ εZ . (4)

This RB space representing the solution manifold to Pbk described by equation (1) could be used in the

implementation of RBMs in the framework of an inverse problem. Here we wish to take advantage of the simple

and non-intrusive character of the PBDW method as an alternative to this integration of MOR into a classical

inverse technique.

3. PBDW Formulation

The goal of the Parameterized-Background Data-Weak formulation (PBDW) is to estimate the true state

ctrue(p) ∈ X (or desired output quantity `out(ctrue(p)) ∈ R, where we assume `out linear and continuous, for

example the average value over a domain of interest.) using the best-knowledge model Pbk and M observations

associated to the parameter configuration p.

The RB Background space is built from Pbk, as in section 2.2. Information on the sensors is then used to build

an Update space of low dimension representing the information gathered by the sensors.

A recent PhD thesis [31] gives detailed analysis of PBDW error and stability, as well as discussion of treat-

ment in the case of noisy data. The case of noisy data, which was first studied in the PBDW formulation in

[23], is treated with a probabilistic distribution, for example independent normal distributions, with an added

regularization term over the observations (similarly to the 3D-var formulation), dependent on the variance of the

distribution, in the minimization statement. In this study we will not treat the case of noisy data, as a proposed

extension for this case has been well documented in [31]. In addition, we could consider that pollution sensors are

not just noisy: relative errors may be large, but are small on a log scale, which is more pertinent to air quality

modeling.

3.1. Data-informed Update

We assume that we have M sensors, which we will mathematically represent as follows (for example):

ϕm = exp
(
−(x− xm)2

2r2

)
such that

∫
Ω
ϕm(x) dΩ = 1, 1 ≤ m ≤M (5)

where xm ∈ Rd is the center of the mth sensor, of radius r. The underlying idea of such sensor modeling is that

a sensor, especially a gas sensor (as well as PM sensors), is a complex system with spatial extension. Such a

sensor does not sense pointwise, but rather performs some averaging around the sensor location. To evaluate

the information these sensors can gather from a physical state v ∈ X , we define the following linear functionals

`m ∈ X ′

`m(v) =
∫

Ω
ϕm(x) v(x)dΩ 1 ≤ m ≤M. (6)

6



We want to use these sensors to construct an additional approximation space UM ⊂ X of low dimension,

the Update space. We consider that UM represents the information which the sensors can provide, and its

basis functions, denoted qm, 1 ≤ m ≤ M , represent the functionals `m. Let us thus define the Riesz operator

RX : X ′ → X such that

(v,RX `)X = `(v) ∀v ∈ X . (7)

We then introduce the Update basis functions qm = RX `m ∈ X such that

(v, qm)X = `m(v) ∀v ∈ X . (8)

The construction of this space takes place offline, as it can be relatively computationally expensive, although

often less than the construction of the background space.

3.2. PBDW problem statement

The PBDW aims at approximating the true physical state ctrue(p) for some configuration p by

cN,M = zN + ηM . (9)

where the first right-hand-side term zN is in ZN and corresponds to some RB approximation of the best-knowledge

solution cbk(p), and the second right hand side term ηM is in UM and is a correction term associated with the

M observations. We pose the PBDW approximation as the solution to the following minimization problem. Find

(cN,M ∈ X , zN ∈ ZN , ηM ∈ UM ) such that

(cN,M , zN , ηM )X = arginf
c̃N,M∈X
z̃N∈ZN

η̃M∈UM

{
‖η̃M‖2X

∣∣∣∣ c̃N,M = z̃N + η̃M

(c̃N,M , φ)X = (ctrue, φ)X ,∀φ ∈ UM

}
. (10)

The minimization over the Update term ηM ∈ UM (proven to be equivalent to minimizing over ηM ∈ X in [22])

translates to requiring the PBDW approximation to remain close to the manifoldMbk represented by ZN , ensuring

that the approximation maintains a physical sense with respect to the physics of the model Pbk. The constraints

on the minimization impose the two-part Background-Update PBDW solution, and the measured values at sensor

locations. This minimization problem can be expressed by a Lagrangian and the derivation of Euler-Lagrange

equations. Simplifying the Euler-Lagrange equations, the PBDW estimation statement can be written, for a given

parameter configuration p ∈ D, as the following saddle problem [22, 23]. Find (ηM ∈ UM , zN ∈ ZN ) such that:(ηM , q)X + (zN , q)X = (ctrue(p), q)X ∀q ∈ UM ,

(ηM , p)X = 0 ∀p ∈ ZN .
(11)

We recall here that given the definition of the Update basis functions qm ∈ X in equation (8), the right-hand-side

of this formulation is assumed to be (ctrue(p), qm)X = yobsm (p), with yobsm (p) = `m(ctrue(p))X , 1 ≤ m ≤M .
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The corresponding algebraic formulation to problem (11) is : find ( ~ηM ∈ RM , ~zN ∈ RN ) such that A B

BT 0

~ηM
~zN

 =

~yobs
0

 (12)

where (~yobs)m = yobsm , Am,m′ = (qm, qm′) and Bm,n = (ζn, qm) for 1 ≤ m,m′ ≤ M and 1 ≤ n ≤ N . The PBDW

approximation can then be rewritten as

cN,M =
M∑
m=1

( ~ηM )mqm +
N∑
n=1

( ~zN )n ζn.

RBMs are often considered particularly well-suited to problems in which the quantity of interest is not the full

reconstruction of the solution, but the evaluation of an output functional over the solution, allowing for complete

independence from the calculation mesh in the online stage. The desired output functional can be evaluated

without reconstructing the full solution:

`out(cN,M ) =
M∑
m=1

( ~ηM )m`out (qm) +
N∑
n=1

( ~zN )n `out(ζn).

This saddle problem (11) is not a function of the original PDE, making the method non-intrusive. Once the back-

ground RB space has been constructed from particular solutions to the Pbk model, the procedure is independent

of the Pbk computational code provided the mesh information is available.

The key to most model reduction methods is a decomposition of the computational effort into offline and

online stages. The majority of the workload is computed only once in advance, offline, while only parameter-

dependent computations are completed during the online stage, which is much more efficient. The construction

of the background space ZN , Update space UM , as well as the matrices A and B, also takes place during the

offline stage — as computation time of these procedures depends on the mesh with Nh degrees of freedom —

allowing for an efficient online phase. Thus, when observation data is collected, the linear system can generally

be solved online in at most O((N + M)3) operations. The output quantity over the basis functions of the two

approximation spaces can be precalculated, allowing for evaluation of the output of the PBDW approximation in

O(N +M) operations, without fully reconstructing the PBDW approximation from the basis functions {ζn}Nn=1

and {qm}Mm=1, a procedure in O(Nh) operations. However depending on the visualization method, reconstruction

of full solutions can be very efficient, making RBMs equally suitable for the general case.

3.3. PBDW error and stability considerations

The well-posedness of the PBDW problem depends on the construction of the Background and Update spaces.

In fact we can define the inf-sup stability constant depending on the two approximation spaces.

βN,M = inf
w∈ZN

sup
v∈UM

< w, v >X
‖w‖X ‖v‖X

. (13)
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βN,M is a non-increasing function of N and a non-decreasing function of M , with βN,M = 0 for N > M .

In [22] an a priori error estimation is derived for the formulation as a function of the stability constant and

the best-fit of the approximation spaces.

‖ctrue − cN,M‖X ≤
(

1 + 1
βN,M

)
inf

q∈UM
inf

z∈ZN
‖ctrue − z − q‖X . (14)

Given the strong dependence of the PBDW approximation error on the stability constant, we need to build

the approximation spaces in a manner to maximize the stability of the formulation.

If we have the option of choosing the M best measurements, we want to:

(a) Maximize the stability constant βN,M for each M with respect to the Background Space ZN

(b) Minimize the best-fit error in the secondary approximation by the Update space UM :

inf
q∈UM∩ZN⊥

‖ΠZN⊥c
true − q‖X (15)

If we consider that the Pbk model provides most of the information about the solution, the primary approxi-

mation will be taken from the Background space ZN , as imposed by equation (10). The Update term η will be

taken from outside the Background space, as stated in equation (11). The best-fit error in the Update space is

thus given by the projection of the portion of the true state not approximated by the Background space onto the

Update space orthogonal to the Background space.

This can be attempted through optimal construction of the Update space employing a Greedy-type selection

of sensor functions (among a set of possible locations) to improve the space with respect to (a) or (b). The latter

can be done using for example via a double-greedy procedure in order to minimize the GEIM error interpolation,

as in [20, 21], which selects Background RB basis functions and Update sensor basis functions simultaneously.

The former can be done for example using an algorithm to maximize βN,M under a certain tolerance, reverting

otherwise to minimization of the best-fit error, as in [31].

4. Numerical Implementation of the PBDW method

In this section we will discuss problem-specific details of the implementation of the PBDW method.

The goal of this application is to test the feasibility of the PBDW method in the air quality context. In fact

RBMs are notoriously ill-suited to problems of transport by convection or to problems with too many varying

parameters. We aim to demonstrate that the modeling of air pollution by PBDW can be feasible thanks to the

strategic treatment of the velocity field as a parameter in the bk problem and the non-intrusive data assimilation

allowing to correct for unmodeled physics.
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In realistic applications, air quality sensors are often limited in number; we want to consider a relatively small

number of sensors over the domain (we’ll consider up to 20) and test various sensor locations. We will consider

PBDW results in the (academic) case of a perfect Pbk model, and in the case of unmodeled physics such as a

reaction term or a true solution calculated with a different computational model.

4.1. Background RB space

The construction of a RB Background space ZN for our 2D case study was done using the weak Greedy

algorithm 1 on a training set of particular solutions for varying parameters of wind velocity pv and source

intensity ps in the parameter set Dbk = {(pv,ps) ∈ [0.1; 1.3ms ]× [1× 10−3; 1× 10−2mg
m3 ]}.

A sign of a good reduced basis is the estimation of a small Kolmogorov n-width by rapid decay of projection

errors of these training solutions onto the N -dimensional RB space. In figure 2 we see the mean and maximal

relative projection errors in H1 norm as a function of N

ErrGreedymean = 1
Nbtrial

Nbtrial∑
i=1

‖cbk(pi)−ΠZN cbk(pi)‖H1

‖cbk(pi)‖H1
, (16)

as well as mean relative projection errors over the calculation domain, corresponding to a pointwise mean on the

calculation mesh over the following error formula.

ErrGreedyΩ (pi) = |c
bk(pi)−ΠZN cbk(pi)|
‖cbk(pi)‖L∞

∈ X (17)

This serves as a representation of the approximation quality of the reduced basis space ZN for the solution space

Mbk.
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Figure 2: Relative mean and maximal projection errors in H1 norm of the training solutions during the greedy construction of the

RB space, as a function of N following equation (16) (top left) ; Relative mean projection error of the training solutions over the

Greedy RB space, pointwise over domain Ω from equation (17) for RB dimensions N = 1 (top right), N = 5 (bottom left), and

N = 10 (bottom right). The lowest contour curve represents 1% error.

We can see that the discretization error of the RB Background space rapidly converges to under 1%. Given the

complexity of reducing convection-dominated problems, we consider this wholly satisfactory. In applications of

air quality modeling input errors are commonly much larger, in the range of 30−70% if not higher: an additional

1% error (with respect to the Pbk model) from the dimensional reduction of the approximation space from a finite

element space to a RB space would thus be considered negligible. We will note from the RB discretization error

maps over the domain that for RB dimension N = 10, we have nearly eliminated the error, excepting small but

unavoidable ”shocks” from varying convection fields. We can thus hope to fix our online basis size at N ∼ 5,

which we will consider further in section 5.1.

4.2. Sensor locations and Update Space

We will compare two cases of sensor locations in this case study: the case of sensor locations chosen randomly,

and the case of sensor locations chosen by a weak Greedy method as in the GEIM.
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The GEIM simultaneously defines the set of so-called generating functions (e.g. the Background basis func-

tions) ξi ∈ Mbk and the associated linear forms (i.e. the sensor functions). The first chosen generating function

ξ1 is the ”largest” bk solution by X -norm, and the associated sensor function `1 (chosen among the set of available

sensor locations Σ) is the sensor which gives the most ”information” on cbk(p1). We then define the interpolation

operator

IM (cbk) =
M∑
j=1

βjξj such that `i
(
IM (cbk)

)
= `(cbk) ∀1 ≤ i ≤M (18)

Ideally we want to choose the linear forms `i and basis functions ξi ∈ Mbk in an optimal manner. We can

consider a Greedy algorithm similar to algorithm 1, selecting each new generating function to maximize the

interpolation error. The details of the GEIM method can be found in [21].

In figure 3 we can see a set of sensor locations chosen randomly, as well as the set Σ of possible sensor locations

chosen for this application and those selected by the GEIM-based double-Greedy algorithm.

Figure 3: Sensors locations chosen randomly (left) and chosen by a Greedy algorithm (right).

In figure 4 we see the values of the stability constant βN,M from equation (13), with ‖ · ‖X = ‖ · ‖H1 , for

various N -values as a function of M , for each sensor set. This figure represents the stability of the PBDW system

induced by choice of sensor locations.
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Figure 4: PBDW inf-sup stability constant βN,M in H1 norm, equation (13), for the associated PBDW linear systems (12) as a

function of the number of data points M , for various Background RB dimensions N . Sensors chosen randomly (left) and chosen by

a Greedy algorithm (right).

The PBDW systems were constructed from equation (12) using the RB Background space discussed in sec-

tion 4.1 and an Update spaces built from these respective sensor locations (placed randomly or by the Greedy

algorithm). As βN,M is a non-decreasing function of M , we see improvement in the stability constants for larger

numbers of data points, for each fixed Background RB dimension N . We note that in general for N ' M the

formulation is less stable, as evidenced by very low values of βN,M and discussed in [21]. Given this knowledge,

we make the choice to disregard PBDW results for N 'M (as we will see in section 5.1).

If we compare the stability constants for randomly chosen sensor locations to those for sensor locations chosen

via Greedy, we can see that in our case study we’ve improved by multiple orders for some M and N values, and

at least by a factor of 2 for smaller Background dimensions.

Given the relatively small size of the sensors providing our observational data with respect to the large domain

of study, we chose to modify the norm used in the definition of the update basis functions by Riesz representation

in equation (8). We introduce the following H̃1 scalar product for u, v ∈ H1.

〈u, v〉H̃1(Ω) = 〈u, v〉L2 + L2
g〈∇u,∇v〉L2 , (19)

where Lg = 75 is a characteristic length of the domain. This scalar product serves to enlarge the support of

the Update basis functions in order to provide improved approximation properties to the Update approximation

space (see (15)). The induced H̃1 norm is used in the variational formulation (11) for equivalence.

5. State Estimation Results

In this section we will present the numerical results of the PBDW method on the 2D case study presented

in section 2. We will present the PBDW state estimation results over the full domain and over a domain of
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interest, considering the variations in sensor choice discussed in paragraph 4.2. Above we presented analysis of

stability of the system, and in this section we will present the state estimation results of the associated PBDW

systems, along with error bounds for parametric variation only (the case of a perfect Pbk model), and for little to

significant model error. We will also compare the results of the PBDW method to those obtained by the GEIM,

both non-intrusive reduced order data assimilation methods, in precision and computational time.

For purposes of analyzing results and numerically calculating the error bound in equation (14), we will consider

the following relative best-fit error onto what we will refer to as the PBDW approximation space ZN⊕(UM∩ZN⊥):

‖ctrue −ΠZN⊕(UM∩ZN⊥)c
true‖X

‖ctrue‖X
. (20)

5.1. PBDW applied to an Exterior Air Quality case study

The two-dimensional case study on the domain represented in figure 1 was considered for varying parameters

in Dbk introduced in section 4. In figure 5 we can see concentration fields for lowest and highest wind velocity

and emission rates.

Figure 5: Concentration fields (logarithmic scale) from the Pbk model (1) over velocity fields and different pollutant source intensities.

(pv ,ps) = (0.1 m
s
, 1× 10−3 mg

m3 ) (left), and (pv ,ps) = (1.3 m
s
, 1× 10−2 mg

m3 ) (right).

In the following we will consider three sets of 6 trial solutions to test the method. Each of the trials corresponds

to velocity parameters pv, and to varying intensity of the pollutant sources ps. The values of the trial parameters

lie within Dbk but are different from the values used in the training set for the RB space: Dtrial = {(pv,ps) ∈

{0.15, 0.6, 1.28}ms × {3 × 10−3, 7 × 10−3}mgm3 } ⊂ Dbk \ Dtraining. One set consists of solutions to equation (1)
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representing the (unrealistic) case of a perfect Pbk model, with the goal of demonstrating the error inherent to

the MOR approach of the PBDW method. The remaining trial sets consist of solutions to an advection-diffusion-

reaction problem:

ρ~v · ∇c− div((εmol + εturb)∇c) + ρRc = ρFsrc, (21)

with linear reaction terms of coefficients R = 0.001 and R = 0.0001. These sets are used to demonstrate how

the method handles two levels of model error, with an average error over 8% (and up to 17%) and 1%, respectively.

In figure 6 we compare the FEM solution to PBDW state estimates for trial solutions with significant model

error: we can see the trial solution corresponding to maximal error, ctrial(pmax), with

pmax = argmax
p∈Dtrial

‖ctrial(p)− cN,M (p)‖H1

‖ctrial(p)‖H1
(22)

compared with the PBDW approximations from randomly-chosen sensor locations and Greedy sensors.

We see reasonable reconstruction of the physical state with both sensor sets. While the Greedy sensors add a

very small phantom concentration in some regions, this error is negligible. The Greedy system has more accurately

reconstructed the concentration peak near the source, however both PBDW approximations underestimate the

peak. The under-representation of the concentration remains relatively small.

Figure 6: Approximation of the concentration for p = pmax. Trial solution with model error simulated by a reaction term of R = 0.001.

FEM solution ctrue (left), PBDW approximation using synthetic data, with random sensors (middle), PBDW approximation with

greedy selected sensors (right). We set M = 13 and N = 6 here.

In figure 7 we can see relative mean best-fit errors from equation (20), measure in the H1 norm, over our set

of trial solutions with significant model error. We notice that in the case of a perfect model, for each N -value

the relative best-fit error is nearly constant with respect to M . This implies that our Update basis functions

qm do not provide new information outside the span of the background approximation space ZN . This effect

is to be expected, as the trial solutions were computed with the same model as the reduced basis, which is

meant to approximate the associated solution space. However, we see improvement of the best-fit error in the

case of an imperfect model. The added Update basis functions enlarge the span of the PBDW approximation
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space ZN ⊕ (UM ∩ ZN⊥) to capture information on the trial solutions from the shifted model not spanned by

the background space. We also note that additional background basis functions do not greatly improve the

approximation, as the trial solutions do not lie on the same solution manifold.
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Figure 7: Relative mean best-fit error, equation (20), for the set of trial solutions over p ∈ Dtrial, as a function of M in H1-norm.

No model error (left), and model error with an added reaction term of R = 0.001 (right). Sensors chosen by a Greedy algorithm.

In figure 8 we see relative mean PBDW approximation errors mapped over the domain for the case of significant

model error given by.

ErrPBDWΩ (pi) = |c
trial(pi)− cN,M (pi)|
‖ctrial(pi)‖L∞

∈ X . (23)
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Figure 8: Relative mean pointwise PBDW approximation error maps, equation (23) over trial set p ∈ Dtrial with model error by an

added reaction term of R = 0.001, for N = 2 (left), N = 6 (right), and for M = 8 (top) and M = 15 (bottom). Randomly-chosen

sensor locations. The lowest contour line shows 1% error.

We see significant improvement between N = 2 and N = 6, but smaller improvements when adding more

data points. In this simple test, M = 8 is sufficient data for the PBDW system to approximate the state

over the N = 6 Background functions, and adding more Update basis functions does not greatly improve the

approximation, which we attribute to sensor placement.
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Figure 9: Relative mean (equation (24), left) and maximal (equation (25), right) PBDW approximation error in H1-norm as a function

of Background RB dimension N , for various numbers of data points M , over p ∈ Dtrial with no model error. Randomly-chosen

sensor locations.
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Figure 10: Relative mean (equation (24), left column) and maximal (equation (25), right column) PBDW approximation error in

H1-norm as a function of Background RB dimension N , for various numbers of data points M , over p ∈ Dtrial, model error with an

added reaction term of R = 0.001. Randomly-chosen sensor locations.

We define mean and maximal PBDW approximation errors in the H1-norm:

ErrPBDWmean = 1
Nbtrial

Nbtrial∑
i=1

‖ctrial(pi)− cN,M (pi)‖H1

‖ctrial(pi)‖H1
(24)

ErrPBDWmax = max
p∈Dtrial

‖ctrial(p)− cN,M (p)‖H1

‖ctrial(p)‖H1
(25)

In figures 9 and 10 we see relative mean and maximal error curves for the PBDW approximation with randomly

sensor locations for two trial sets, showing of the quality of the PBDW state estimation in the H1 norm, using

randomly-chosen sensor locations. We can see that with no model error with N = 6 Background functions we

achieve ∼ 2% mean error (and ∼ 3% maximal error on the worst trial solution), and ∼ 4% (and under 8% maximal

error on the worst trial solution) error with significant model error. We note that the non-monotone error curves

are to be expected: there is no mathematical argument for strictly decreasing error, as the error depends not only

on the best-fit of the PBDW approximation space, but also on the stability and conditioning of the system. We

can observe that the instability for N approaching M (seen in the stability coefficient βM,N of equation (13)) has

an amplified effect on the error in the case of more significant model error. This is consistent with equation (14).

In figures 11 and 12 we see relative mean and maximal error curves for the PBDW approximation with Greedy

sensor locations for each of two trial sets. We can see that with no model error with N = 6 Background functions

we achieve ∼ 1% mean error (and under 3% maximal error on the worst trial solution), and ∼ 3% error (and

6% maximal error on the worst trial solution) with significant model error. We note that we see more consistent

error results for varying N -values, with fewer peaks in the error, as compared to sensors chosen randomly. We

can attribute this to the increased stability and conditioning of the PBDW linear system. We also note that while

we see only small improvement of the approximation error in the best case (of N - and M -values), we see global

improvement with the Greedy sensors. We could thus draw the preliminary conclusion that the Greedy-placed

sensors is no guarantee of improved precision in the PBDW approximation (here it depends on N - and M -values),
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but seems to improve the stability of the system and consistency of the results, which would be a non-negligible

advantage in the online stage when precise a posteriori error analysis is not feasible.
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Figure 11: Relative mean (equation (24), left) and maximal (equation (25), right) PBDW approximation error in H1-norm as a

function of Background RB dimension N for various numbers of data points M , over p ∈ Dtrial with no model error. Sensor

locations chosen by a greedy procedure.
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Figure 12: Relative mean (equation (24), left) and maximal (equation (25), right) PBDW approximation error in H1-norm as a

function of Background RB dimension N for various numbers of data points M , over p ∈ Dtrial, model error with an added reaction

term of R = 0.001. Sensor locations chosen by a greedy procedure.

In figure 13 for Greedy sensors we see relative mean errors mapped over the domain in the case of no model

error. Here we see a bit more improvement between M = 8 and M = 15, which can be attributed to better-

placed sensors. However, the background space alone can represent these trial solutions, so as expected the most

improvement is provided by N .
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Figure 13: Relative mean pointwise PBDW approximation error maps, equation (23), for N = 2 (left), N = 6 (right), and for M = 8

(top) and M = 13 (bottom), over p ∈ Dtrial with no model error. The lowest contour line shows 1% error. Sensor locations chosen

by a greedy procedure.

In figure 14 we consider Greedy sensors for the case of significant model error. Here we see more significant

improvement with added data points. We again note that the correction by the Update basis functions can add

non-physical error to the approximation, however this is generally of negligible order. Again we see significant

improvement between N = 2 and N = 6. We see that with N = 6 and M = 15 the error is under 7% everywhere,

and often under 1%. Compare to the corresponding case with randomly placed sensors, where the approaches

and error surpasses 7% in a some areas.
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Figure 14: Relative mean pointwise PBDW approximation error maps, equation (23), for N = 2 (left), N = 6 (right), and for M = 8

(top) and M = 13 (bottom), over p ∈ Dtrial with model error by an added reaction term of R = 0.001. The lowest contour line

shows 1% error. Sensor locations chosen by a greedy procedure.

In RBM applications it is often unnecessary to reconstruct the approximated solution over the full domain

Ω; instead the solution of some output value on the solution over a smaller domain of interest Ωout ⊂ Ω is

approximated. This is highly compatible with air quality studies, as often the physical quantity of interest (QoI)

is a concentration peak in an area or the average concentration over a period of time in an area. This renders

RBMs much more advantageous (no online complexity is dependent on the mesh dimension Nh). In this case

study we considered the quantity of interest to be the average concentration over a subdomain of interest, which

could represent, for example, a playground, and achieved greatly reduced computational times (seen in table 2)

for equivalent precision.

In figure 15 we can see relative mean PBDW approximation errors and bounds over p ∈ Dtrial, comparing a set

without model error and a set with model error (an added reaction term of R = 0.0001). Plots show best-fit error

from equation (20), PBDW approximation error (i.e. the left-hand-side of equation (14)), and an a priori error

bound given by (the right-hand-side of) equation (14), all in relative mean with respect to ‖ctrial(pi)‖H1(Ωout)

over the trial set. We choose to fix the Background basis size at N = 6, as would be chosen in the online

implementation of this study. We notice that in this case with N chosen well after offline study of results, the

improvement by Greedy-placed sensors is less important, however we attribute this to the simplified case study.
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Figure 15: Relative mean PBDW results in H1-norm as a function of number of data points M for Background basis dimension

N = 6. Error bound from equation (14), PBDW approximation error, and best fit error from equation (20), over p ∈ Dtrial with

model error of R = 0.001. Randomly chosen sensors (left), and sensors chosen by Greedy (right).

5.2. Comparison of non-intrusive methods: PBDW or GEIM?

In this section we want to compare the results of the PBDW state estimation on this two-dimensional case

study to those optained by the GEIM interpolation method discussed in previous sections. The GEIM method is

implemented with M = N , equal number of basis functions and data points. Below we can see the results of the

two methods, both of which we implemented offline from the same set of training solutions and selection from the

same sensor grid, and applied to the same set of 6 trial solutions of varying parameters and with added model

error, described in section 5.1.
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Figure 16: Relative mean and maximal PBDW H1-errors as a function of number of data points M for PBDW Background basis

dimension N = 6, and GEIM H1 interpolation errors as a function of M = N , over p ∈ Dtrial. Model error by an added reaction

term R = 0.0001(left), and an added reaction term R = 0.001(right). Greedy sensor set used in both methods.
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We can see that the GEIM method performs similarly, and even surpasses for M = 10, to the PBDW method

in the case of little model error. However in the case of significant model error and M > 10, the PBDW method

provides a significantly better estimation. In this particular case study, we seem to have more consistent error

results for varying M -values, and aspect that could be valuable in online studies without feasible a posteriori

error analysis.

Figure 17: Relative mean pointwise GEIM (left) and PBDW (right) approximation error maps for M = 10 and N = 6-M = 10,

respectively, over p ∈ Dtrial. Model error of R = 0.0001 (top) and R = 0.001 (bottom). Mapping of the errors is truncated at

1× 10−6, and the lowest contour line shows 1% error.

In figure 17 we compare relative mean error maps for the GEIM and PBDW approximations over trial sets

with little or significant model error. We consider the case of M = 10, the best case of the GEIM approximation

according to figure 16. We can see similar results for little model error, with only a small region over 1% error

in both approximations, while the GEIM approximation reduces a region of error with respect to the PBDW

estimation. In the case of significant model error, however, we see a clear advantage in the PBDW estimation,

with no peak near or above 15% and only a small misrepresentation of the source intensity.

In table 1 we see computational times for the classical FEM approximation of equation (1), with no data

assimilation or model error correction.

1In Code Saturne, in order to treat the nonlinearity of the fluid problem, the steady-state solution is compute as the limit of a

transient one, leading to an iterative procedure requiring sufficient solutions to reach a stabilized velocity field.
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CPU Times
Best-knowledge State Estimatation

Ω : 125m× 75m

FEM-SUPG cbk(p) 7.4h1+61s
Nh ∼ 323, 000 (fluid) (dispersion)

Table 1: Computational times of the standard FEM approximation of (the imperfect) equation (1), before applying any model order

reduction or data assimilation techniques. Average over the set of trial solutions considered here.

In table 2 we compare computation times of the PBDW state estimation and GEIM approximation. Both of

these methods rely on a training set of solutions to the best-knowledge problem, for which we set Ntrain = 40,

requiring approximately 296.6h of calculations. After calculating the training set, the offline stage of the PBDW

method, with M = 10 and N = 6, requires another 10.26 minutes, whereas the GEIM with M = 10 requires 42.7

minutes. Once the one-time offline stage has been completed, in the case of full reconstruction of the physical state

the PBDW method requires a computational time of 10 times less than that needed to approximate a single direct

best-knowledge dispersion solution, and even nearly 5000 times less if we recomputed a wind field. The GEIM

method saves even a few more seconds, given the smaller linear system size. This is for the reconstruction of the

concentration over the full domain, thus a finite element vector of dimension Nh. We also compare computational

times for the PBDW estimation and the GEIM approximation of an output quantity, considering the average

pollution concentration over a 10m × 20m subdomain Ωout. In the case of a QoI, rendering full reconstruction

of the physical state unnecessary, we see a reduction by nearly 30 times with respect to the already inexpensive

full state estimate for the PBDW method. The GEIM method requires equivalent time to compute the QoI,

leaving nearly negligible calculation times. These differences could be taken into consideration in the case of full

reconstruction of the pollution field, along with the precision and peaks in error results when determining which

MOR data assimilation method is most pertinent and advantageous to the application. However the improved

model error correction provided by the PBDW method for relatively equivalent calculation times gives a clear

advantage to PBDW state estimation.

CPU Times: Online Stage (average CPU times)
Non-intrusive reduced

order data assimilation State Estimate c(p) Quantity of Interest `out(c(p))

Ω : 125m× 75m Ωout : 20m× 10m

PBDW (M = 10, N = 6) 5.35s 0.18s

GEIM (M = 10) 3.32s 0.17s

Table 2: Computational times of the two MOR-data assimilation methods for state estimation over the full calculation domain and

estimation of a quantity of interest (average concentration over a subdomain) during the online stage. Average over the set of trial

solutions considered here.
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6. Conclusions

In this paper we presented the PBDW state estimation method for non-intrusive real-time data assimilation,

and give a first application in exterior air quality modeling. This method shows great promise for extension to

more complicated case studies. We discussed the advantages of the PBDW method with respect to other data

assimilation methods, such as inverse methods, and we discussed the importance of sensor placement, giving a

possible method of improving data points based on the physical quantity to measure. We then presented the

results of the PBDW state estimation in the case of a perfect Pbk model (and thus only parametric variation), as

well as the cases of an imperfect model. We found that in the case of significant model error the PBDW method

was able to approximate the physical state with an overall error of ∼ 3% and no more than 15% peaks.

When compared to the GEIM approximation, results were similar between the two methods with little model

error, but the PBDW methods proves advantageous in the case of significant model error. Computational times

of the two reduction methods are similar, however the GEIM does have the slight advantage of a smaller linear

system. This advantage is outweighed however by the PBDW’s improved ability to correct model error. An

important conclusion of this paper is that the definition using (19) of the properly scaled Riesz representation in

(8) greatly affects the ability of the PBDW to correct model error.

We aimed in this study to demonstrate the feasibility of RBMs in the context of air quality data assimilation

and modeling, and the ability of the PBDW to contribute to the use of parameterized PDE models for air

quality by reducing computational costs and accounting for unmodeled physics. The results presented above are

encouraging, and show that this method may prove very useful in larger-scale air quality studies, if adapted and

implemented properly for the case of study.

25



AppendixA. Greedy Algorithm

Algorithm 1 : Weak Greedy algorithm to construct ZN

1: Initialization: given

Ξtest = (p1, . . . ,pntrain) ∈ Dntrain , ntrain >> 1

2: Choose randomly p1 ∈ D

3: Set S1 = {p1} and X 1
h = span(cbkh (p1)).

4: for N = 2 to Nmax do

5: pN = argmax
p∈Ξtest

‖cbk
h (p)−PN−1c

bk
h (p)‖H1

‖cbk
h

(p)‖H1

(where PN−1 is the H1-orthogonal projection operator from Xh into XN−1
h )

6: SN = SN−1 ∪ pN
7: XNh = XN−1

h + span(cbkh (pN ))

8: end for
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