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A 3D shock computational strategy for real assembly and shock attenuator

H. Lemoussu*, P.-A. Boucard, P. Ladevèze

LMT-Cachan, E.N.S. Cachan/C.N.R.S./Université Paris 6, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France 

The extension of an approach, suitable for bolting structures impact computation with a large number of unilateral friction contact

surfaces, and with local plasticity of the bolts, is presented. It is a modular approach based on a mixed domain decomposition method and the

LATIN method. This iterative resolution process operates over the entire time–space domain. A 3D Finite-Element code is presented and

dedicated to applications concerning connection refined models for which the structure components are assumed elastic. Several examples

are analysed to show the method’s capability of describing shocks throw real three-dimensional assembly. Comparisons between classical

dynamic code LS-DYNA3D are presented.
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1. Introduction

The aim of the present work is to present the feasibility of

a flexible computational tool that contains all the ingredients

needed to represent the response of a real launcher

assembly. The concerned loadings are associated with the

shocks initiated by the explosion of a cord cutter on a spatial

structure. This typical loading appears during the two-stage

separation of a launcher. Therefore, this study is part of the

pyrotechnic shock investigation conducted by the National

Centre for Space Studies (CNES), based in Evry (France).

The goal is to be able to compute the behaviour of a real

assembly in order to represent the evolution of a shock

response spectrum that cross through an assembly or to have

all the information needed to be able to build a dynamic

condensed model of the assembly.

In order to meet this expectation, we use an approach

well adapted to the problem to solve. This is leaded by the

specificity of the problem:

† We are far enough from the shock initiation to admit that

the contacting bodies remain in elasticity and satisfy the

small perturbations hypothesis, except bolts which can

plastify.

† The solution is characterised by the large number of

friction contact surfaces that leads the structure into a

highly non-linear global behaviour.

The principles of our approach are given in Ref. [7].

The first ingredient is a mixed-domain decomposition

method that allows for a parallel-oriented analysis. The idea

herein is to introduce a partition from two different

mechanical entities. The structure is represented by an

assembly of sub-structures and interfaces.

The sub-structures display a linear behaviour and the

interfaces can display non-linear behaviour, exhibit to the

friction contact problem or to bolt’s plasticity. The

unilateral contact with Coulomb friction is used and the

plasticity is described by a simple classical model with one

hardening variable.

The exchange between these two different types of sub-

structure is performed with two quantities: velocity and

force. This velocity–force-duality, is very well-suited with

the dynamic framework.

To solve the mechanical problem associated with this

decomposition, a computational strategy based on the

LArge Time INcrement method (LATIN) [6,7], is proposed.

Many works have demonstrated the ability of this approach

to solve difficult problems, like large displacements, non-

linearity of material and contact problems [3] under a quasi-

static hypothesis. This study reinforces such an approach

and constitutes the final step in order to reach the response
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of a real 3D-assembly using this dynamic extension to the

LATIN method.

The proposed strategy is non-incremental and thus

strongly differs from step-by-step methods, convergence

mathematical results are proved in Ref. [7].

The unidimensional feasibility of this approach as been

showed in previous work [2] and we describe herein its

extension for 3D structures.

The basic principles of this approach are recalled and a

full description of the method is provided within a dynamic

three-dimensional framework. A specific strategy for

solving, on the time–space domain, the global problem

obtained at each iteration is detailed such as the specific

treatment of contact conditions and plasticity, both taken

into account at the interfaces.

This approach has been introduced into the finite element

code DYGITA3D based on CASTEM 2000 [10]. Two

examples will subsequently be used to highlight the

feasibility of this method and its capability of describing

shock and frictional unilateral contact problems with good

convergence results. A comparison with the industrial code

LS-DYNA3D [4] is developed.

2. Reference problem

The studied structure is V and the studied time interval is

½0;T�: On a part ›1V of its boundary, a displacement or a

velocity field can be prescribed. On the rest of the boundary

›2V; traction boundary conditions can be applied (Fig. 1).

The structure can be made of several sub-structure ðV ¼

VE þVE0

Þ; contacting together on an interface called gEE0

:

The problem is to find an element ðUðMÞ;sðMÞÞ on V £

½0;T� that satisfy:

† initial conditions:

;M [ V;

Ut¼0 ¼ U0

Vt¼0 ¼ :
dU

dt
t¼0 ¼ V0j

8><
>:

† kinematic admissibility:

;t [ ½0;T�;
U›1V

¼ Ud

U [ U½0;T�

(

† contact conditions:

;t [ ½0;T�; ;M [ gEE0

;

UN ¼ UE0

N 2 UE
N $ 0

FN ¼ FE
N ¼ 2FE0

N # 0

ðUE
N 2 UE0

N ÞFE
N ¼ 0

8>>><
>>>:

† equilibrium equations:

;t [ ½0;T�; ;Up [ U0;

ð
V
r

d2U

dt2
·Up dVþ

ð
V

Trðs1ðUpÞÞdV

¼
ð
V

f d·Up dVþ
ð
›2V

Fd·Up dS

† constitutive law:

;t [ ½0;T�;;M [ V; sðM; tÞ ¼ K1ðUÞ

where K is the Hooke tensor, 1ðUÞ is the small

displacement strain, N is relevant to the normal vector

of the interface, U½0;T� is the space where the displace-

ment U; defined on V £ ½0; T� is searched for. U0 is the

virtual space defined by:

U0 ¼ {Up·Up ¼ 0 on ›1V; regular}

The resolution of this problem needs a space–time

discretisation. The finite element method is frequently used

[11] for the space domain and most of the numerical scheme

can be written in the Newmark algorithm way [5,9]. In

three-dimensional cases, the size of the problem to solve is

not proportional to the number of degree of freedom (d.o.f.),

but follows a power rule.

Therefore, many problems appear in terms of database

manipulation and memory allocation and specific tech-

niques are needed in order to be able to solve the problem.

Therefore, domain decomposition methods are frequently

used.

The main difference between these methods lies in the

choice of the kinematic or dual quantities prescribed at the

interface.

Fig. 1. Reference problem with contact.
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3. Principles of the approach

This approach is composed of two major ingredients:

† a mixed domain decomposition well adapted to the

problem description,

† a specific resolution process using a non-incremental

resolution technique.

3.1. Structural decomposition

The approach is slightly different from the classical

methods. It is a real meso-modelisation of the structure that

can be associated to the non-overlapping version of the

Schwartz method [8].

The structure is decomposed into two mechanical

entities: the substructures VE and the interfaces gEE0

: Each

of them has its own unknowns and its own equations. A sub-

structure can dialogue with the interfaces around it, using

both quantities: velocity and surface traction fields as it is

shown in Fig. 2.

Moreover, this exchange dialogue existing between the

two entities is mixed and performed with a velocity–force

duality, which is very well-suited for the dynamic

framework.

3.2. Solution process

In order to solve the problem associated with the above

decomposition, we use a non-incremental approach, called

the LATIN method, proposed by Ladevèze in 1985 (more

details can be found in Ref. [7]). This method has yielded

some excellent results for quasi-static loadings. Previous

works have shown computation times divided by 50 for 3D

connections problems with many contact surfaces [1]. The

present study consists of its development in dynamics.

Convergence mathematical results are proved in Ref. [7].

The LATIN method is based on three principles. The first

one is to separate difficulties in order to avoid the

simultaneity of global and non-linear problems. By taking

into account the mechanical properties of the equations, two

groups can be distinguished: the local space variables

equations which might be non-linear on the one hand (the

associated space will be called G), and the linear equations

that might be global in space on the other hand (the

associated space will be called Ad).

The second principle of the method is a two-stages

iteration scheme which alternatively solves each set of

equations. The local stage solves the problem associated

with G and leads to a non-unique solution; it is therefore

necessary to add other equations, called search direction

equations, ðEþÞ: The linear global stage solves the problem

associated with Ad and leads to an ill-posed problem. It

becomes necessary to add new search direction equations,

ðE2Þ: A representation of this scheme is given Fig. 3 where

sn is the solution to a linear global stage and ŝnþ1=2 is the

solution to the local stage at iteration n.

The third principle of the method lies in the resolution of

the global problem. One main characteristic of the present

computational technique is that the global operators

involved in this stage are constant with respect to the

iterations. Thus, they are all treated during the method’s

initialisation.

4. Resolution process

Each iteration of our approach is composed of two

stages.

4.1. Global linear stage at iteration n

The global linear stage begins with an element

ŝnþ1=2ð _̂W
E
nþ1=2; _̂W

E0

nþ1=2; F̂
E
nþ1=2; F̂

E0

nþ1=2Þ that belongs to G and

is defined on gEE0

£ ½0; T�:

One then must find an element snþ1ðV
E
nþ1;s

E
nþ1Þ; defined

on VE £ ½0; T�; that satisfies:

kinematic admissibility

initial conditions

equilibrium equations

�������� þ search direction equations

:
FE

nþ1 2 F̂E
nþ1=2 ¼ 2k0ð _W

E
nþ1 2 _̂WE

nþ1=2Þ

FE0

nþ1 2 F̂E0

nþ1 ¼ 2k0ð _W
E0

nþ1 2 _̂WE0

nþ1=2Þ

������
where E and E0 are relative to sub-structures VE and VE0

: k0

is a positive constant and the method parameter associated

with the global linear stage.

Using these search direction equations, the problem

Fig. 2. Exchange between sub-structures and interfaces.

Fig. 3. Iterative scheme.
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becomes:

;t [ ½0;T�; ;Vp [ VE
0 ;ð

VE
r

dVE
nþ1

dt
·Vp dVþ

ð
VE

K1ðUE
nþ1Þ1ðVÞdVþ

ð
›VE

	 k0VE
nþ1·Vp dS

¼
ð
VE

fdE·Vp dVþ
ð
›VE

F̂E
nþ1=2 þ k0

_̂WE
nþ1=2

� 	
·Vp dS

This is a classical formulation of a problem in which the

density of surface traction ~F is applied:

~F ¼ F̂E
nþ1=2 þ k0

_̂WE
nþ1=2

The added step herein concerns the resolution of the global

problems, whereby the constancy of the matrices present

throughout the iterations is used. Consequently, these

matrices have been pre-calculated during the method’s

initialisation.

4.2. Local stage at iteration n

The local stage begins with a known element snðV
E
n ;s

E
n Þ

that belongs to Ad and is defined on VE £ ½0; T�:

One then must find an element

ŝnþ1=2ð _̂W
E
nþ1=2;

_̂WE0

nþ1=2; F̂
E
nþ1=2; F̂

E0

nþ1=2Þ; defined on gEE0

£

½0;T�; that satisfies:

linterface behaviour þ search direction equations

:
F̂E

nþ1=2 2 FE
n Þ ¼ k0ð _̂W

E
nþ1=2 2 _WE

n Þ

ðF̂E0

nþ1=2 2 FE0

n Þ ¼ k0ð _̂W
E0

nþ1=2 2 _WE0

n Þ

������
The resolution of this problem is greatly dependant of the

involved type of interface. Two groups can be distin-

guished: linear behaviour (perfectly connected, boundary

conditions, etc.) and non-linear behaviour (frictional contact

with void and plasticity interfaces).

Frictional contact. In the case of frictional contact,

velocity and surface traction fields are decomposed:

_̂WE
nþ1=2 ¼ ðNEE0 · _̂WE

nþ1=2ÞNEE0 þ p _̂WE
nþ1=2

¼ _̂WE
nþ1=2

NNEE0 þ p _̂WE
nþ1=2

where NEE0 is the outward unit normal vector from VE to

VE0

:

Contact conditions are: ;M [ gEE0

; ;t [ ½0; T� :

F̂E
nþ1=2 þ F̂E0

nþ1=2 ¼ 0

F̂E
nþ1=2

N # 0

ðŴE0N
nþ1=2 2 ŴE

nþ1=2
NÞ $ j

F̂E0N
nþ1=2 2 F̂E

nþ1=2
NÞðŴE0N

nþ1=2 2 F̂E
nþ1=2

N 2 jÞ ¼ 0

�������������
ð1Þ

where j is the initial gap.

In the normal direction, we define a local indicator which

can be determined with the known element sn :

2CnðtÞ ¼
ðŴE0N

nþ1=2ðtÞ2 ŴE0N
nþ1=2ðtÞ2 jÞ

ð1 2 gÞDt

þ
ðŴE0N

nþ1=2ðtÞ2 ŴE0N
nþ1=2ðtÞÞ

k0

the sign of this indicator gives us the solution in the normal

direction:

separation: Cn . 0

F̂E
nþ1=2

N ¼ F̂E0N
nþ1=2 ¼ 0; _̂WE

nþ1=2
N ¼ _WE

nþ1=2
N 2

1

k0

FE
n

N
;

_̂WE0N
nþ1=2 ¼ _WE0N

nþ1=2 2
1

k0

FE0N

contact: Cn # 0

_FE
nþ1=2

N ¼ 2 _FE0N
nþ1=2 ¼ k0Cn;

_̂WE
nþ1=2

N ¼
1

2
_WE N þ _WE0N 2

1

k0

ðFE N þ FE0NÞ


 �
;

_̂WE0N
nþ1=2 ¼ _̂WE

nþ1=2
N

The Coulomb law is used here. The conditions are

if kFT k # mlFN l with kFT k , mlFN l then _UT ¼ 0

if kFT k ¼ mlFN l then ’l . 0 satisfying _UT ¼ 2lFT

(

where m is the friction coefficient, FT ¼ pF denotes the

tangential part of F and p denotes the tangential coefficient

operator.

In the tangential direction, we define a vectorial

indicator:

2GnðtÞ ¼ k0p
_̂WE0

nþ1=2ðtÞ2
_̂WE

nþ1=2ðtÞ
h i

2 p F̂E0

nþ1=2ðtÞ2 F̂E
nþ1=2ðtÞ

h i

This indicator gives the solution, using the sliding limit g ¼

mlF̂E
nþ1=2·NEE0 l

sticking: kGnk # g

pðF̂E
nþ1=2Þ ¼ 2pðF̂E0

nþ1=2Þ ¼ Gn;

p _̂WE
nþ1=2 ¼ p _WE

n 2
1

k0

pðF̂E
nþ1=2 2 FE

n Þ;

p _̂WE0

nþ1=2 ¼ p _̂WE
nþ1=2
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sliding: kGnk . g

pðF̂E
nþ1=2Þ ¼ 2pðF̂E0

nþ1=2Þ ¼ g
Gn

kGnk
;

p _̂WE
nþ1=2 ¼ p _WE

n 2
1

k0

pðF̂E
nþ1=2 2 FE

n Þ;

p _̂WE0

nþ1=2 ¼ p _WE0

n 2
1

k0

pðF̂E0

nþ1=2 2 FE0

n Þ

Plasticity. We introduce here a classical unidimensional

rigid-plastic behaviour. A single internal variable formu-

lation is used. Let u be this variable. The associated

thermodynamic force is called R: At the initial time t0; u can

be negative: ut¼0 ¼ u0 # 0: This is used, for example, to

apply a prestress to a bolt (this point will be detailed

further). The evolution of this variable is given by the plastic

threshold at time t;

Rt ¼ max
t#t

ðse; F̂
E
nþ1=2ðtÞÞ :

if F̂E
nþ1=2ðtÞ , _u ¼ 0

otherwise

F̂E
nþ1=2ðtÞ ¼ Rt _u ¼

h

se

k _snsnlþ

The resolution of the problem, using the search direction

equation defined before is performed as follows: F̂E
nþ1=2ðtÞelas

is the elastic prediction of F̂E
nþ1=2ðtÞ :

2F̂E
nþ1=2ðtÞelas ¼ FEðtÞ2 FE0

ðtÞ2 k0ð _W
E
nþ1ðtÞ2 _WE

nþ1ðtÞÞ

The sign of the characteristic function gives the solution:

if elasticity: ~f . 0

Rt ¼ Rt2Dt; F̂E0

nþ1=2ðtÞ ¼ 2F̂E
nþ1=2ðtÞ;

_̂WE
nþ1=2ðtÞ ¼ _WE

n ðtÞ þ
1

k0

ðF̂E
nþ1=2ðtÞ2 FE

n ðtÞÞ;

_̂WE
nþ1=2ðtÞ ¼ _̂WE0

nþ1=2ðtÞ

if plasticity: ~f ¼ 0 F̂E
nþ1=2ðtÞ satisfying f ¼ 0;

Rt ¼ F̂E
nþ1=2ðtÞ ¼ 2F̂E0

nþ1=2ðtÞ;

Fig. 4. Two specimens crushing, problem and meso-modelisation.

Fig. 5. Evolution in contact during the iterations.
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_̂WE
nþ1=2ðtÞ ¼ _WE

n ðtÞ þ
1

k0

ðF̂E
nþ1=2ðtÞ2 FE

n ðtÞÞ;

_̂WE0

nþ1=2ðtÞ ¼ _WE0

n ðtÞ þ
1

k0

ðF̂E0

nþ1=2ðtÞ2 FE0

n ðtÞÞ:

This approach has been introduced in a 3D finite element

code DYGITA3D, which uses an object oriented method of

programming. CASTEM2000 is used to create the mesh and

to post-treat the results. An user interface has also been

developed to simplify the problem description. We present

here two examples: a very simple one to validate and to

bring out the characteristics of our approach. The results

have been compared with the LS-DYNA3D solutions. The

second example quite representative of a real structure

assembly (even if the number of d.o.f. is not large) is

performed to show the capacity of our approach to solve

complex problems.

Fig. 6. Influence of sliding coefficient value.

Fig. 7. Axial displacement versus time for two points in contact.
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5. Example one: two specimens crushing

This example demonstrates both the capacity of the

method in treating friction problems and validates our

results in terms of solution quality and computational costs.

Two specimens, whose mechanical characteristics are

very different, are in contact with a wall. The only non-zero

sliding coefficient is between the two sub-structures.

Because of the symmetry, only a quarter of the structure

needs to be studied. This problem and its corresponding

meso-model are shown in Fig. 4.

Since this problem has no analytical solution, the

reference then becomes our solution based on a large

number of iterations (30 iterations). This solution has been

shown in Fig. 5. The central displacement of the interface is

plotted for both specimens.

The solid lines represent the hard specimen and the

dashed lines represent the soft specimen. The evolution of

these curves throughout the method’s iterations is also

plotted. The method’s classical behaviour appears. The

plotted quantities are relevant to the sub-structures; thus,

they satisfy the contact condition only at convergence,

therefore the contact states can be corrected in space as well

as in time.

Fig. 6 shows the solution for different values of the

sliding coefficient, for the maximum right displaced

configuration. From the frictionless to the non-sliding

case, several solutions are represented. One can observe

from the value of the convergence indicator that the

algorithm is very stable for all theses values of friction

coefficients. This demonstrates the capacity of the method to

solve complex problems with the same ease as the simple

frictionless case.

We are now testing the same structure with a new

Fig. 8. Structure with an interface of plasticity.

Fig. 9. Uniaxial stress at convergence.

7



loading, associated with a small wavelength compared to

the structure size in order to treat a complex dynamic

problem. The results are given for different meshes (regular)

shown in Fig. 7.

Many time histories of displacement are given from both

codes LS-DYNA3D and DYGITA3D. It appears that the

solution of this problem is greatly dependent on the contact

satisfaction quality. Using penalty formulation to treat

contact conditions means that an idea of the solution has to

be known in order to choose a good space–time discretisa-

tion. Using our approach, even with a poor mesh we obtain a

good solution quality and there is no need to have an

extremely refined mesh near the interfaces.

Moreover, if the solution quality is not good enough, it

can be improved iterating. With classical codes, improving

a solution means to make another calculation. To reach the

same solution quality the computation times become

comparable.

6. Example two: beam with interface of plasticity

In order to show the capacity of the method in

representing plasticity problems, a simple example is

presented.

Fig. 10. szz plotted on the deformed mesh.

Fig. 11. Simple bolting assembly.
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The structure is shown in Fig. 8, its meso-modelisation is

composed of three sub-structures with a perfect interface

and an interface of plasticity. The elastic limit of 120 MPa is

depicted on the time loading in Fig. 8.

It is important to notice that an interface of plasticity is used

because it fits well the description of the non-linearities, all

taken into account at the interfaces. This description is an

approximation of the real structure behaviour, but it is

sufficient to represent the major phenomena occurring during

the two-stages separation of a launcher.

The solution is shown in Fig. 9. It shows the rebound of

the wave when its level reach the elastic limit. In fact this

interface acts like a perfect interface when the elastic limit is

not reached and as a free interface beyond this limit. It is

important to notice here that convergence results for this

computation are the same as those obtained in the case of

frictional contact. It means that taking into account bolt’s

plasticity does not involve much more difficulties in the

computation.

7. Example three: bolted structure

The studied structure is composed of two flanges bolted

together. This structure and its meso-modelisation are

shown in Fig. 10.

Two different loadings are applied. The first one is used

to pre-stress the bolt and the second one is a dynamic

loading pulling the top interface. The time scale of the two

loadings is very different, even though the same code

DYGITA3D is used for both. This is permitted because of

the use of an implicit time integration scheme.

The solution of the first computation is shown in Fig. 11.

The pre-stress of the bold is applied using the interface that

links the rod and the top head of the bolt and by prescribing

a negative displacement of 0.06 mm. Only two time steps

are used to obtain this solution. Furthermore, the compu-

tational time associated with this calculation is negligible

compared to the dynamic one and using the same code to

prescribe the pre-stress bolt is a big advantage.

Fig. 12. Comparison of deformed mesh from LS-DYNA3D and DYGITA3D computations.

Fig. 13. Comparison, taking into account pre-stress and/or plasticity.
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We now compare the LS-DYNA3D and the DYGITA3D

computations by taking into account only the dynamic

loading.

It is obvious that the solutions are similar and that a very

fine mesh is necessary for LS-DYNA3D to obtain the

solution. Therefore, the computational times associated with

a solution quality are comparable (about 30 min CPU for

6500 d.o.f. and 200 time steps on a standard workstation).

However, for very large scale problems, the computational

time for LS-DYNA3D seems to be much larger.

All the ingredients needed to represent a real shock

propagation through an assembly are integrated in our code

DYGITA3D. We finally group them in a computation in

order to show the feasibility of studying the influence of the

pre-stress of the bolts and the introduction of the bolt rod’s

plasticity (Fig. 12).

These behaviours are plotted in Fig. 13 and demonstrate

the capacity of our approach by treating real propagation of

a shock through an assembly.

The CPU time associated with these computations is

about 30 min which is very encouraging for studying large

number of freedom problems.

8. Conclusion

A new approach for solving dynamic problems in three-

dimensional complex structures of assembly, submitted to

shocks has been presented herein. It is the continuation of

previous works [1–3,7] and all ingredients are now

introduced to represent the effect on a shock response

spectrum of a real shock passing by a assembly (contact,

friction, plasticity). Our approach is based on two

components: a mixed decomposition of the structure

which provides significant modularity to the problem

description; and an iterative solution scheme that is well-

adapted to the problem.

The numerical results in the case of elastic problems

have demonstrated its capability in solving frictional-

contact problems and plasticity problems with the same

degree of difficulty.

Moreover, the special treatment of contact conditions

and plasticity, and the resolution technique used here,

involving constant operators throughout the iterations make

this approach suitable for 3D computations on complex

structures.

These results will help to establish shock response

spectrum of real pyro-impacts or condensed constitutive law

of an assembly, and by doing so will help to explain real

effects of these shocks on the structure. Furthermore, new

studies using in particular the natural parallel characteristic

of the method are forthcoming to reduce the computational

costs in order to treat real structure of complex assemblies.
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