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Abstract—Dynamical reconfiguration of is receiving attention
from the scientific community because of the advantages it can
ensure with respect to module-dedicated electronics when partial
shadowing of the photovoltaic field occurs. Indeed, lower cost and
conversion losses as well as improved diagnostic capabilities make
this solution of high interest for industrialization in a near future.
Some stochastic algorithms have been proposed recently for
determining the best electrical connection among the panels that
ensures the highest power production for the actual shadowing
pattern. In this paper, any novel reconfiguration algorithm is
proposed, but the optimized implementation of recently proposed
approach is described. The advantages achieved by using a
system-on-chip platform, through a suitable exploitation of the
features it offers, are highlighted. The experimental results
confirm that the use of a system-on-chip platform gives significant
benefits for the proposed application, because the parallelization
of the algorithm allows to achieve great execution time reduction
with respect to what can be achieved through its standard
software implementation.

I. INTRODUCTION

System-on-chip (SoC) architectures address many process-
ing needs, by integrating microprocessors and reconfigurable
logic into a single chip, by offering a wide bandwidth that
is not achievable by each one of the two chip solutions and
low power compared to an equivalent solution built on the
two chips (software modules and high-performance hardware).
This technology has gained benefits from the advantages of
FPGA such as flexibility, small circuit size and IP reusability.
Application examples can be found in differentiated areas such
as data processing [1], artificial vision [2], ambient intelligence
[3], motion planning [4], indoor localization [5], learning
algorithms [6], speech recognition [7], power converter [8],
ac drives [9].

A further application that can benefit from SoC features
is the dynamical reconfiguration of photovoltaic (PV) arrays.
This means that the electrical connection among the panels is
not fixed once for all, but the PV panels terminals arrive to
a switching box, which is equipped with a processor running
a suitable control algorithm, so that the connection thereof
is changed a number of time per day, depending on the
actual operating conditions of the PV panels. The advantages
offered by this technique are widely described in [10]. Very
recently a preliminary version of a deterministic approach,
which is aimed at determining the electrical connection among
the panels for a given shadowing pattern, has been presented
[11]. Instead, more consolidated methods in literature rely on

stochastic methods; for instance, in [12] the best configuration
of the PV panels in a two paralleled strings PV array is
searched for. In [13], the same approach was improved and
a preliminary validation was obtained by using a classical
digital platform. In [13] the effort was done in improving
the algorithm ability of exploring the space of the solutions,
without a special attention to the reduction of the computation
time. Indeed, no special care was given to the calculation
of the objective function, which requires the evaluation of
the Maximum Power Point (MPP) power delivered by each
candidate electrical configuration of the PV panels in the
field. Indeed, the algorithm [13] takes as input the sampled
current vs. voltage (I-V) curves of all the panels of the PV
field: it is assumed that all the panels, one at one time,
are disconnected for some milliseconds for acquiring the I-
V curve, thus with a small impact on the power production.
It is also reasonably assumed that the load is constant or, at
least, an energy buffer decouples the PV field from the load
during such operation. Afterwards, for each possible electrical
configuration, the evolutionary algorithm has to compute the
I-V curve of the candidate solution, which corresponds to a
possible electrical connection of the available PV panels. For
a real application, e.g. consisting of 24 PV panels distributed
into 2 parallel connected strings, if each PV panel I-V curve
has been digitally acquired and consists in 100 points, it is
evident that a high number of complex operations has to be
performed.

The objective of this paper is not the introduction of a
novel reconfiguration algorithm, but to address the problem
of reducing the computation time of the algorithm presented
in [13]. Thus it is firstly assumed that the I-V curves of all the
PV panels in the field, which are supposed to be 24, have been
experimentally acquired with a given number of samples. This
assumption is reasonable, because the reconfiguration system
needs a periodical information about the working conditions
of the panels in order to take a decision concerning the need of
reconfiguring the electrical connection or not. On the basis of
the curves samples, the evolutionary algorithm computes the
power vs. voltage (P-V) curve and its MPP of each candidate
configuration, so that the best one is determined and the
PV panels electrical interconnections are settled according
to it. Because of the high computational effort required by
the P-V curve computation for each candidate solution, the
adoption of a SoC platform is helpful: the processor takes



care of the algorithm core and the FPGA fabric is used for
running in parallel the evaluation of the P-V curve of a number
of candidate solutions. Indeed, each P-V curve evaluation
is independent from the others, because it corresponds to a
unique combination of the 24 panels in the two available
strings. The number of instances to run in parallel would be
dependent on the available resources.

In the following sections a description of the used SoC plat-
form is given. The main implementation features are described
in section III. Then, implementation results are presented and
discussed in section IV. Finally, conclusions are drawn in
section V.

II. ZYNQ-7000 ALL PROGRAMMABLE SOC PLATFORM

The target platform is a Zedboard [14] (Zynq Evaluation
and Development), development board based on the Xilinx
Zynq-7000 all programmable SoC [15]. This class of SoCs
integrates a processing system (PS) based on a dual-core ARM
Cortex-A9 and a Xilinx programmable logic (PL) based on a
the Artix-7 logic embedded into a single device.

The Zynq processing system has four functional blocks,
comprising the Application Processor Unit (APU), I/O periph-
erals, memory interfaces, and a multilayered ARM AMBA
AXI interconnect. APU includes dual ARM Cortex-A9 MP-
Core CPUs with ARMv7 and includes level-1 and level-2
caches. This dual processor approach supports various soft-
ware implementation allowing the use of a single operating
system running in SMP (Symmetric Multiprocessing) mode,
the use a couple of operating system in AMP (Asymmetric
Multiprocessing) mode and the use of one operating system
in BMP (Bound Multiprocessing). Each core can work with
a frequency maximum of 667 MHz with a speed of 2.5
DMIPS/MHz (Millions Instructions per Second with Dhry-
stone benchmark). Moreover, each core has a FPU (Float-
ing Point Unit) engine with a computing capacity of 2.0
MFLOPS/MHz (Million Floating Point Operations Per Sec-
ond) and a NEON media processing engine.

The size of resources of the the Z7020 are summarised in
Table I.

Table I: PL resources

Logic slices LUTs FFs BRAMs DSPs
13300 53200 106400 140 220

The Zynq board provides communication between pro-
grammable logic and processing system through the standard
ARM AMBA AXI bus, which is capable of handling Master-
Slave multiple connections and offers high bandwidth coupling
between the two parts. The programmable logic is connected
to the processing system through multiple AXI interfaces: two
32-bit AXI master (GP master) ports, two 32-bit AXI slave
(GP slave) ports, and four 64-bit high-performance AXI slave
(HP) ports. Figure 1 shows a block diagram of the Zynq-7000
architecture.

Figure 1: Zynq 7000 architecture

Zynq is based on a centric processor architecture, thus
the processing system does not require the configuration of
the programmable logic and the PL does not need to be
powered on. The board supports booting from NOR, NAND,
Quad-SPI, SD, or JTAG. A single processor core copies the
first stage boot loader (FSBL) from primary boot device,
selected through the jumpers that are positioned at the top
of the board, to the internal on chip memory and executes the
code. The configuration bit stream which contains optional
programmable logic programming data is downloaded from a
memory location into the PL.

III. EVOLUTIONARY ALGORITHM IMPLEMENTATION

The evolutionary algorithm considered in this paper is
exactly that one described in detail in [13]. In brief, the gene
represents one of the 24 panels in the PV field and it is an
integer number assuming the values {0, 1, 2}, stating that the
panel is not connected to any strings, thus it is excluded from
the resulting PV field and in 0 status, or it is in the first
string and in 1 status, or it is in the second string and in
the 2 status. The individual is then an array of 24 integer
numbers, each one describing the status of one panel in the
PV field. Thus, the individual is a tentative solution of the
problem: it describes the electrical configuration of the 24
panels in two parallel connected strings, or disconnected. As
said above, it is assumed that the I-V curves of each panel have
been experimentally acquired and consist of a given number
of samples. Given an individual and the panels’ I-V curves,
the I-V curve of the PV field described by that individual is
calculated by simply applying Kirchhoff current and voltage
laws: PV panels in series have the same current and strings in
parallel share the voltage. Thus, three computation loops are
needed: one for determining the voltages of the first string for
any current value of each panel belonging to it. Another for
the same operation concerning the second string. The third
computation loop is requested for calculating the whole PV
field current values for each voltage value of the two strings in
parallel. This short description explains why the computation
of the objective function, which is the MPP, for each individual



is so heavy if even few tens of samples describe the I-V curve
of each PV panel. The evolutionary algorithm characteristic
functions, thus the selection, crossover, mutation operators,
have a computational load that is incommensurably lower
than the one of the objective function. Thus, the latter needs
some specific approach if the algorithm running time has to
be shortened in order to make the reconfiguration approach
more appealing for practical applications. Indeed, after the
PV panels I-V curves have been acquired, during the time
needed for computing the new best electrical configuration to
be settled the old configuration runs, this meaning that some
energy is missed. The more the new best configuration is
different from the old one, the higher the amount of power
that is not produced during the calculation time needed by the
processor.

In Zynq architecture the programmable logic allows to
extend the capabilities of the processing system by hosting
additional hardware accelerators, which can take advantage of
the hardware parallelism offered by the FPGA. Thus, this type
of SoC platform gives the greatest advantages when PS and
PL cooperate. A preliminary analysis has been conducted in
order to achieve an efficient sharing of the PV reconfiguration
process through software and hardware resources. The com-
putational task having the greatest impact on the performance
metric and that is more suitable for the implementation on
PL has been evaluated as first. The execution time has been
chosen as the metric to measure the performance gain. This
is motivated by the fact that the execution time is relatively
easy to measure and also because response time is the most
important factor for the application, since the decrease of the
system response time allows to identify the best connection
among the PV panels in the shortest possible time, thus
increasing the power produced by the PV field. In order to
analyze potential benefit of hardware accelerators the full
PV reconfiguration algorithm has been firstly implemented in
software in one of the ARM processor (C code). Thus, the
resulting execution time is serving as reference for the wholes
forthcoming Hw/Sw implementations.

The evolutionary algorithm, which is a Genetic Algorithm
(GA), has two main parameters whose values greatly affect
the algorithm performances: the population size and number
of digital samples describing the experimentally acquired I-V
curves of the panels. Population size is one of the parameters
affecting the convergence of the algorithm towards the optimal
solution. The number of samples acquired in the panel I-
V curve affects the capability of detecting all the MPPs,
appearing when the panel is subjected to mismatching effects,
with a suitable accuracy. The higher the number of samples in
the panel curves, the higher the computation time needed for
calculating the I-V curve of a candidate array configuration. In
[16] a method for downsampling the panels I-V curve without
affecting the accuracy in the MPPs detection was introduced.
This was used in [13] and it is adopted for achieving the
results shown in this paper as well. In the following sections,
case A will indicate when the panel I-V curve is described by
100 points and case B when the panel I-V curve includes 25

Table II: Execution time by using the software approach

Number of clock cycles %
Operation case A case B case A case B
Selection 52681 52314 0.02 0.118
Crossover 16735 16662 0.006 0.038
Mutation 33506 32975 0.012 0.074

Fitness eval 260077208 44364006 99.96 99.77
Total 260180130 44465957 100 100

points. Table II summarizes, for both cases A and B, the fully
software implementation performance by showing the required
amount of clock cycles and the percentage of time spent by
each operation of the stochastic algorithm with regard to the
total execution time.

Table II shows that case B execution time is significantly
lower than case A, but the table also shows that in both cases
the execution time of the fitness evaluation is greater than
99% of the total execution time of the algorithm. Operations
as selection, crossover and mutation affect only the 0.2%
of the overall processing. This confirms that the function
deserving to be implemented within Hw accelerators is the
fitness function, which includes the computation of the I-
V curve of the candidate configuration. Figure 2 shows the
architecture of the proposed SoC-based parallel algorithm.
The main part of the algorithm (called Master), which is
implemented in the PS, stores and manages the population
by making selection, crossover and mutation operations. As
for the fitness evaluation modules (called Slaves), they are
implemented in the PL.

Initial Population 
Creation

Selection

Crossover

Mutation

Fitness Evaluation 1 Fitness Evaluation 2 Fitness Evaluation N...

PS

PL

Population

Individual or 
part of 

population

New Population Creation

Test for convergence of 
best solution

GA complete

Figure 2: Master / Slave architecture for the proposed SoC-
based parallel GA



C code has been used to generate the fitness evaluation IP
module, by means of the high level synthesis tool Vivado
HLS. Its main functionality is to accelerate the process of
transforming an algorithm written in C, C++ or System C into
an IP core inside FPGA. The fitness evaluation IP module is
verified as an independent entity in Vivado HLS by using test
benches written in C language. The first accelerator has been
created by a direct synthesis of the Vivado HLS tool based
on the original C code used in the fully software version
of the algorithm. This basic accelerator does not provide
an improvement if compared with the the fully software
version implemented in the ARM processor: the maximum
number of fitness evaluation blocks in parallel can be only
two and communications between the two IP modules and the
processor are very slow. This is shown in Figure 3.

Figure 3: Resource utilization in the case of floating point
accelerators

A key limitation of this basic accelerator is in the cost of
implementing the floating point arithmetic operations required
by the evaluation of the candidate solutions I-V curves. An
efficient representation of real values is required and a fixed
point representation allows to decrease hardware area and
execution time. An analysis has thus been performed to choose
the optimal number of bits to represent the fractional part
of the variables of the algorithm in order to minimize the
consumed resources while maintaining a sufficient level of
accuracy. The first factor that has been considered is the
data format error, which is calculated as the average distance
between the fixed and the floating point representation of
the fitness value in percent. The consumed resource and the
precision is calculated for each fixed-point representation. It
can be seen from Figure 4 that a data format higher than 12
bits allows keeping the precision of the calculation below 1%
which is enough for this application.

The consumed resources and the percentage of clock cycles
needed to complete the fitness evaluation execution of one
individual, by varying fixed point precision have been also
evaluated. Figure 5 shows that the resources used with fixed
point representation with the fractional part in the range
comprised between 12 and 16 bits are almost the same. Figure
6 shows that there is a difference of 400 thousands clock cycles

Figure 4: Error increase by varying fixed point precision

in case A and 100 thousand in case B when the number of
bits is increased from 12 to 13. Thus, it appears that a 12 bits
representation is the best compromise in terms of accuracy,
rapidity and consumed resources.
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Figure 5: Resource utilization increase vs fixed point precision
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Figure 6: Clock cycles increase vs fixed point precision

Figure 7 shows that the transition from a floating point
representation to a 12 bits fixed point representation has
significantly decreased the consumed resources. For the two
considered examples, the number of FFs, LUTs and DSPs
is reduced by more than 70%. Moreover, the execution time
needed to complete the fitness evaluation of one individual is
reduced by more than 40% with respect to the case of the
floating point representation (see Table III).



Figure 7: Resource utilization for a 12 bits fixed point accel-
erators

Table III: Number of clock cycles needed to execute the fitness
IP module

Case A Case B
Floating point 16581278 6116079

Fixed point 9058506 3514506

IV. IMPLEMENTATION RESULTS

A case study including 24 panels to be reconfigured in two
strings connected in parallel is considered. It is assumed that
12 panels have the experimentally acquired I-V curves shown
in Figure 8 (a) and other 12 panels have the ones depicted in
Figure 8 (b). It is worth to note that the approach proposed
in this paper has the aim of accelerating the process of
determining the best configuration of the PV panels regardless
of the particular shadowing condition affecting the array,
thus of the shape of the I-V curves representing the actual
operating conditions of the PV panels. The time needed for the
calculation of a single objective function value depends on the
number of samples of the I-V curves and not on the operating
conditions of the PV panels. Indeed, the objective function
associated to a GA individual gives the value of the maximum
power delivered by the PV field configuration described by that
individual. Because of the fact that the PV field is supposed to
be organized in two parallel connected strings of PV panels,
the objective function calculation requires, as first step, the
computation of the I-V curves of the both strings. For each
one the algorithm scans the I-V samples of the panels, on
a current basis, thus summing the panels voltages for each
current value. Afterwords, the resulting I-V samples of the
two strings are scanned, on a voltage basis, for calculating
the total current as a sum of the currents delivered by each
string for that voltage value. Finally, the voltage and current
vectors referring to the whole PV field I-V curve have to
be multiplied, one by one, in order to obtain the maximum
PV field power value. Because of the fact that the panel
and string I-V curves were not be sampled with the same
current and voltage values, the interpolation between adjacent
samples is necessary. This explains the high computation time

requested for the evaluation of the objective function of each
GA genotype.
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Figure 8: Experimental I-V curves of the PV panels of the
array

In the proposed SoC controller architecture the software
part performs the control of the whole system with several
specific tasks, namely, GA operations, signal conditioning,
system monitoring, while each accelerator in the hardware
part performs fitness evaluation of each individual. Some
implementations, differing in the number of parallel fitness
evaluation IP modules, have been run.

Vivado IDE is used to create the SoC architecture, to
perform the whole hardware development flow, to generate
the bitstream and the report files containing the resources
consumed by varying the number of the fitness evaluation
blocks that are implemented in parallel. Vivado supports
easy IP integration into the Zynq by offering the graphical
environment IP Integrator. This tool is able to connect blocks
of Vivado IP catalog with end user IP modules, provided that
they meet the IP-XACT standard. The fitness evaluation block,
created with Vivado HLS, is imported into Vivado IP catalog
and it is integrated into the Vivado project since Vivado HLS
packages IP, using IP-XACT standard. Xilinx SDK tool is used
to generate the software that implements the master operations
running on the ARM cortex A9 processor in order to evaluate
the acceleration factor, which is calculated as the ratio between
the execution time of a full software implementation and the
execution time an architecture which includes hardware accel-
erators implemented via the HLS design tool. The execution
time is measured by accessing to the global timer processor
register.

The tests were conducted for both cases A and B. For each
case and for all different hardware implementations, the used
GA parameters, shown in Table IV were applied.

Table V shows the percentage of consumed resources in
terms of DSP, slice and BRAM for case A. It puts in evidence
that the maximum number of blocks that can be put in parallel
is 3 since a higher number of blocks would saturate the
available number of BRAMs. In this case the amount of data
to be stored is significant and each fitness evaluation block
requires 30% of the total BRAM resources.



Table IV: GA parameters

Parameter Value
Number of panels 24

Population size 48
Maximum generation number 100

Stall generation number 25
Crossover probability 0.7
Mutation probability 0.2

Table V: Resource Utilization case A

# of accelerators DSP % Slice % BRAM %
1 10.45 17.45 30
2 20.91 32.87 58.57
3 31.36 47.78 87.85

As for the execution time and the accelerating factor of
the SoC implementation, Figure 9 shows that the accelerating
factor follows a linear trend. By reaching the maximum
allowable number of hardware fitness evaluation modules, an
acceleration factor of 7.1 times compared to the performance
of the basic processor implementation is obtained. The total
execution time is 64 s.
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Figure 9: Accelerating factor case A

Table VI shows the percentage of consumed resources
for case B, where it is obvious that the reduced resource
consumption of each evaluation block allows implementing
more hardware accelerators in parallel compared to case A,
up to a number of 8.

Table VI: Resource Utilization case B

Number of accelerators DSP % Slice % BRAM %
1 3.63 13.35 7.14
2 7.27 25.53 14.29
4 14.54 45.73 28.57
6 21.82 69.54 42.86
8 29.09 87.59 57.14

Figure 10 shows that the accelerating factor is comparable
to case A, but the execution times are significantly smaller.
The system speed increases by a factor of approximately 10
by reducing the number of input samples by a factor of 4.
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Figure 10: Accelerating factor case B

Figure 10 also shows that the overall accelerating factor
follows a linear trend but the greater the number of hardware
accelerators the worse the efficiency of the master slave
architecture. Indeed, if by using only one hardware accelerator
the computation time reduces by a factor of 2.7, the expected
computation time with eight parallel blocks, with a linear
trend, would be 21.6. Instead, it is 16, so that the linear trend
is missed because of the additional communication overhead.

V. CONCLUSIONS

In this paper a system-on-chip implementation of an evolu-
tionary algorithm for photovoltaic dynamical reconfiguration
is presented. The hardware implementation of the objective
function has allowed to accelerate the execution time signifi-
cantly compared to a full software implementation, which is
beneficial for the extraction of the maximum power from the
photovoltaic array. Implementation results obtained on a Zynq
show that the objective has been fully achieved leading to a
significant reduction of the execution time. The execution time
of the whole GA algorithm for case A and B is, respectively,
65.8 s and 2.7 s with the maximum parallelization achieved,
while the one obtained using a full software implementation
is 468.6 s in case A and 43.4 s in case B. Further work
is in progress for achieving a further level of parallelization
also inside the routine which computes the single objective
function. This operation would lead to a further reduction
of the computation time and exploitation of the hardware
resources.
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