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Abstract. This paper presents a coarse to fine approach of on-road
vehicles detection and distance estimation based on the disparity map
segmentation supervised by stereo vision. Scene segmentation is first per-
formed relying on the robustness of the UV-disparity maps to generate
free space and obstacles space. This last is investigated for on-road ve-
hicles detection. The detection process starts with off-road objects sub-
straction based on the connected component labeling algorithm which
is also used for on-road segments extraction instead of the traditional
hough transform for more robust, precise and fast detection. Objects
classification is then applied to the on-road segments by using some cues
describing the geometry of vehicles like width, height. However, these
latter have been measured not in meter but rather in pixels in function
of the disparity. The whole approach is presented and the experimental
results of evaluation are shown.

1 Introduction

Stereo vision systems have recently emerged in the domain of robotics and au-
tonomous cars. These systems provide the 3D perception of the environment
which is employed in Advanced Driver Assistance Systems (ADAS) to support
a variety of functions including obstacles detection [1], lane departure warning
[2] and collision warning systems [3]. While the depth measurement precision of
stereo vision systems is not as high as with active sensors such as RADAR and
LIDAR, the stereo camera can compete with these active technologies due to its
low cost in one hand and the amount of traffic scence information it provides in
the other hand.

The litterature describes several works on stereo vision based vehicles detec-
tion. The majority of the proposed approaches rely on a depth map obtained
usually from a disparity map through stereo matching. The study of the state
of the art shows two major axes in this field. The first one includes motion
based approaches [4]. The idea is to perform features tracking in the monocular
image plane of one of the stereo cameras and 3-D localization in the disparity
and depth maps. The second axis deals with the transformation of the disparity
map in a more reprensentative and compact form including occupancy grid [5]



and ground surface modeling [6]. These different transformations aim mainly to
facilitate scene segmentation and reduce compution time.

The V-disparity [6] is a popular approach for ground plane estimation and
road scene analysis [7]. It is a compact representation of the disparity map in
a new space more robust and more representative for obstacles detection. This
transformation models the road surface as a slanted line and vertical obstacles as
vertical lines. Using curve fitting techniques such as Hough transform [8], lines
can be detected. The same principle has been used to generate the U-disparity
map which has been used for free space estimation [9] as well as for obstacles
detection [7].
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Fig. 1: Algorithm’s Functional Diagram

In this paper, we propose a coarse to fine approach for vehicles detection
and distance estimation based on stereo vision. The approach can be divided
into three processing levels as shown in Fig. 1(for better lisibility of the different
images in this article, readers are encouraged to view them on a computer). The
first level deals with the generation of a dense disparity map , the approach
proposed in [10] has been used for this purpose. The second level performs scene
segmentation relying on the V-disparity map and a set of post processings. Fi-
nally, vehicles detection is processed in the third level based on the U-disparity
map generated from the obstacles disparity map and a set of post processings.

One of the common issues in on-road obstacles detection are the off-road



information such as high walls, buildings and trees along the road which may
affect the precision of the detection and increase the false alarms. The important
contribution of this paper is the approach proposed to remove the off-road ob-
jects based on the connected segments labeling algorithm. While this approach
has been used in some articles [11] mainly for on-road obstacles detection, we
propose to use it also for off-road objects substraction. The second contribution
of the paper is the proposed approach for obstacles classification. We rely on a
set of tests based on the geometry of the obsatcles like the width and height
which are not measured in meters but in pixels as functions of disparity. The
idea is based on the fact that close objects are projected with many pixels and
far objects with few pixels. This solution reduces the errors of disparity quan-
tification and allows more accurate detection.

In the remainder of this paper, the next section describes the complete on-
road vehicles detection algorithm. Section 3 presents the experimental results.
Finally, the last section sums up the contributions and concludes with future
works.

2 Vehicles Detection Algorithm

The proposed algorithm performs vehicles detection as well as distance esti-
mation based on stereo vision. The disparity map is first processed for scene
segmentation to get a confident map of obstacles that simplifies the process of
vehicles detection. Then, on-road vehicles detection is performed starting from
removing off-road objects belonging to the static obstacles space like trees and
sidewalks panels. For this purpose, a recursive connected labeling algorithm is
applied to the U-disparity map. Finally, a set of post processings is applied for
selecting vehicles and identifying their corresponding distances.

2.1 Level 1: Disparity Map Generation

In this paper, we used the Efficient LArge scale Stereo matching (ELAS) algo-
rithm [10]. It is a Bayesian approach for dense stereo matching (Fig. 2(b)). It
starts by selecting a set of supporting points and identifying their corresponding
disparity. These support points are then used to build a 2D mesh via Delaunay
triangulation which is processed to find the disparity of the remaining pixels
based on a generative probabilistic model.

2.2 Level 2 : Scene Segmentation

The dense disparity map is segmented into two distinctive spaces; free space and
obstacles space (Fig. 2). The former one includes road, sidewalks and sky, the
later one covers static obstales (trees, building, panels) and dynamic ones (mov-
ing vehicles and pedestrians). The obstacles map can be viewed as a confident
map since the probability of detecting vehicles is higher in this map compared
to the complete dense disparity map.
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Fig. 2: Scene Segmentation Approach

Road Detection The detection of the road profile is based on the V-disparity
space [6] where the x axis plots the disparity d and the y axis plots the image
row number. The intensity value of a pixel pvdisp(d, v) on this map is identified
According to Eq. (1).

pvdisp(d, v) =

cols∑
u=0

λ, λ =

{
1 if pdisp(u, v) = d .

0 otherwise .
(1)

The ground plane is projected as a slanted line under the hypothesis that the
road’s surface is plane and horizontal. The hough transform [8] has been used to
detect this line and to identify its equation ad+b. Then, for each pixel pdisp(u, v)
in the disparity map, we calculate its distance dist (Eq. (2)) with respect to the
road’s line which should be less than a threshold ε (few pixels) to classify this
pixel as as road’s pixel. Through this process, road’s pixels are substracted from
the disparity map. Fig. 2(b, c, d) shows results of road segmentation (d) based
on the dense disparity map (b) and the V-disparity map (c).

pdisp(u, v) =

{
0 if dist < ε

pdisp(u, v) otherwise
, dist =

|au− vb|√
1 + a2

. (2)

Pixels Classification The classification phase aims to recover the non-road free
space pixels by using the U-disparity map. The intensity of a pixel pudisp(u, d)
in the U-disparity map is determined according to Eq. (3)).

pudisp(u, d) =

rows∑
v=0

λ, λ =

{
1 if pdisp(u, v) = d .

0 otherwise .
(3)



If the intensity of a pixel on the U-disparity map is higher than a certain thresh-
old τ , this means that in a certain column u of the disparity map, there are
too many pixels with the same distance to the camera and these points belong
to potential obstacles. Based on this observation, pixels with high intensity are
kept and the others are set to 0 (Eq. (4)). The threshold τ refers to the height of
obstacles measured in pixels, in our case, it has been set to 40 pixels. Fig. 2(d,
e, f) shows results of pixels classification (f) based on the disparity map after
road substraction (d) and by using the U-disparity map (e).

pdisp(u, v) =

{
pdisp(u, v) if pudisp(u, d) > τ, d = pdisp(u, v) .

0 otherwise .
(4)

Propagation of Free Space Pixels classification has been performed to get
two sets of pixels candidates belonging to free space and obstacles space. The
neighbour of these initial seed pixels is then examined to determine the class of
the non-classified pixels. The idea is to count the contribution of classified free
space and obstacles space pixels on the neighbour of each pixel. An accumulator
accum has been used to count this contribution. If the neighbour’s pixel be-
longs to free space, accum is decremented, otherwise it is incremented (Eq. (5)).
Fig. 2(g) shows the results of free space propagation.

d(u, v) =

{
d(u, v) (free space pixel) if accum < 0 .

0 (obstacles space pixel) otherwise .
(5)

Sky Substraction While many free space pixels have been recovered through
free space propagation, wrong classification may happen concerning the sky’s
pixels classified as obstacles pixels (Fig. 2(g)). The reason is that, the propagation
task relies on the analysis of the surrounding pixels, since the sky’s pixels are on
the top part of the image far from the free space and close to obstacles space,
the contribution of obstacles pixels is higher. To remove sky from disparity map,
the saturation (S) channel (Fig. 2(h)) of the HSL color space is used and applied
as a mask on the last segmented disparity map by using Eq. (6).

d(u, v) =

{
0 if s(u, v) is (black(0) ∨ white(255)) ∧ (v < b− ε) .
d(u, v) otherwise .

(6)

The saturation channel has been used because the sky’s pixel s(u, v) on this
channel is either white or black. It is white in case the sky is blue or grey on
the RGB color space and it is black when the sky is white. We may then apply
the S channel as a mask to each pixel d(u, v). However, to avoid removing pixels
belonging to potential vehicles, the mask is applied only for the part above the
horizon line b identified previously (see section. 2.2) with a tolerance range ε (30
pixels). The result is shown on Fig. 2(i).



2.3 Level 3: Vehicles Detection Approach

Vehicles detection task relies on the U-disparity map which is less noisy compared
to the the V-disparity map. This choice is based on the fact that, in the U-
disparity map, obstacles in general are represented by separate horizontal lines
even side to side vehicles which is not the case on the V-disparity map where
obstacles at the same distance are ovelayed and represented by the same line.
However, the crucial point with the U-disparity map is how to remove the off-
road features. To cope with this issue, connected segments labeling algorithm
has been used. Finally, on-road vehicles are detected and recognised based on
their geometry. The whole process can be divided into two phases: an off-road
features substraction phase and an on-road vehicles detection phase.

Phase 1: O -road Features Substraction
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Fig. 3: Vehicles Detection Algorithm: Phase 1 Off-road Features Substraction

Fig. 3 shows an example of the complete off-road substraction phase. First, the
U-disparity map is generated from the obstacles disparity map. Then, connected
segments algorithm is applied based on the 4-connected neighborhood approach
(Fig. 5) as follows:

1. Scan the U-disparity map from left to right and from top to bottom
2. The first non zero pixel is taken as the seed point
3. check for the horizontal (left and right) and the vertical (top and bottom)

neighbours
4. Join each non-zero neighbour to the seed point
5. Apply recursively the 4-connected neighborhood for each new joined pixel

(steps 3 and 4)

Once the whole U-disparity map is processed, a list of segments is recovered and
each one is treated according to its width. To take into consideration the fact
that an obstacle looks smaller when it is far and bigger when it is close, the
width is measured in function of the disparity. Fig. 4 illustrates the principle.
Let the pixel Pi(u, v) be a projection on the image plane of a point Pw(X,Y, Z)



in the real world plane. To recover X based on the image coordinate system we
rely on Eq. (7). Cu is the projection of the x coordinate of the camera’s optical
center in the image plane, Z is the distance and f is the focal distance.

X = (u− Cu)× Z/f . (7)
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Fig. 4: Vehicle’s Width Variation in Pixels with Distance for a 1.5 m Vehicle’s
Width

Let suppose umin and umax are the minimum and maximum vertical limits of
a vehicle in the image plane. By using Eq. (7), we can determine the width W
in meter as shown in Eq.(8). Fig. 4 shows the variation of the width in pixels
(umax − umin) with distance for a fixed vehicle’s width of 1.5 m.{
Xmin = (umin − Cu)× Z/f
Xmax = (umax − Cu)× Z/f

⇒W = (Xmax−Xmin) = (umax−umin)×Z/f.

(8)
To remove off-road segments represented by long segments, we have fixed the
width interval from 1.5m to 3m and the detection distance from 30m to 70m.
Based on this, we have determined the variation interval of the width in pixel
to take into consideration. Fig. 3 shows the result of applying this to substract
the off-road features.

Phase 2 : On-road Vehicles Detection

Hypothesis Generation To detect on-road vehicles, the list of on-road segments
generated is investigated. To distinguish between on-road vehicles and other on-
road objects we rely on the geometry features of vehicles. From the previous
phase, the vertical position of each segment on the image plane (umin, umax)
is recovered (Fig. 5) and hence the width in meter is deduced according to
Eq. (8). Also, the disparity range is determined (Fig. 5). Then, for each on-
road segment, in the disparity map region limited by umin and umax, we recover
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all pixels having disparity in the disparity range [dispmin, dispmax] (Fig. 5). The
horizontal position is then determined (vmin, vmax) and the height is found. Also
we refine the vertical position (U

′

min, U
′

max) as shown in Fig. 6. Fig. 8 shows these
different steps at the hypothesis generation level.
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Fig. 8: Vehicles Detection Algorithm: Phase 2 On-Road Vehicles Detection

Hypothesis Verification To select vehicles among other on-road obstacles, two
tests are applied (Fig. 8). First,the height in pixels is checked (Eq. 8). Vehicles
have height between 1.5m and 3.5m, any obstacle with height outside this range
is rejected. If the test is verified, the ratio between the 2D box area and the
external contour is computed. The external contour is limited by the pixels
which have been recovered (Fig. 6). The reason of using this ratio as a metric



is that, for vehicles, this ration is supposed to be high which is not the case for
panels as shown in Fig. 7.

3 Experimental results

The algorithm has been evaluated on KITTI datasets. For each dataset, a list
of tracklets is available as the ground truth representing the different objects
available on each frame. Each tracklet is presented in velodyne coordinates as a
3D box with its corresponding width, height and length.
The algorithm is implemented on a standard PC with an Intel CPU (i5) of 1.8
GHz. The operating system is Ubuntu 14.04. The disparity map as mentionned
previously is generated from LibELAS library based on the approach explained
on section 2.1.

3.1 Experimental Design

Before using the tracklets for evaluation, there are some points to take into
consideration. The first one deals with the obstacles type; since our algorithm
deals only with vehicles, we need first to filter all non-vehicles tracklets. The
second point concerns the off-road objects which are not taken into consideration
in our algorithm like parked vehicles. Finally, the detection distance range of our
algorithm is set up from 30m to 70m, hence, we have to take into consideration
only tracklets having distance within this range. To cope with these issues the
position and motion history data of the tracklets have been used, for instance, to
remove non-vehicles objects, the object’s type has been employed. For evaluation,
we determine the rate of correct detections or missed ones and false alarms. For
better evaluation, these criteria are checked manually when the data provided by
the tracklets is not sufficient. To test, we need first to perform a 2D projection
of the 3D boxes representing the tracklets. Then, we determine the percentage
of intersection between the 2D box of each tracklet taken as a ground truth and
the 2D box generated by our algorithm. A detection is then validated once the
percentage of intersection is higher than 70%. For evaluation we have selected
3 datasets; Dataset 1: High way, Dataset 2: Urban road and Dataset 3: Rural
road .

3.2 On-Road Vehicles Detection Results

Table 1 shows the evaluation results of the algorithm whitout the aid of a track-
ing module on the 3 different datasets. Two hundreds frames have been selected
for each dataset. Dataset 1 contains 270 on-road detections, 241 of them have
been well detected. In dataset 2 there exists 236 detections, 211 have been well
detected, while the rest have been missed. Dataset 3 contains 128 on-road vehi-
cles associated with tracklets, 211 have been correctely detected.
For evaluation, the three criteria previously presented have been determined for



Table 1: On-road Vehicles Detection Evaluation
Dataset Correct detections Missed detections False alarms

Dataset 1 89.26% 10.74% 8.88%
Dataset 2 89.40% 10.59% 2.96%
Dataset 3 92.19% 7.81% 11.71%

each dataset. During the evaluation, we noticed the absence of redundant detec-
tions due to the use of connected component algorithm to recover the segments
on the U-disparity map. This solution also increases the accuracy of distance
estimation. The results show that high successful detection rate can be achieved
as shown in the top left image in Fig. 9 and the estimated distance reaches 70m.
Also the classification task works well since different types of vehicles have been
detected like cars and trucks, the bottom left image in Fig. 9 illustrates this
situation.

Fig. 9: Some Detections Results Obtained from KITTI Datasets

Although the algorithm gives sufficient results, it has still some deficiencies. The
first point concerns the use of the connected component algorithm to remove
off-road features, although this techniques works well it fails when we deal with
on-road vehicles close to high off-road features, in this case, we will loose the
vehicles, also this approach is highly sensitive to the stereo matching errors
since it is related to the U-disparity map generated from the projection of the
disparity map which may increase the false alarms and the rate of missed detec-
tions as shown in the top right image of Fig. 9. The false alarms are generally
sidewalks panels and road markers as illustrated on the top and bottom right
images in Fig. 9. They are usually generated because of the stereo matching
errors that affect directely the scene segmentation task and hence the on-road
vehicles detection phase. This can be solved by merging the proposed algorithm
with a lane marking detection module. We have compared the performances of
our algorithm with some contributions cited in Table 2 in terms of the Farthest
Detection Distance (FDD), the Correct Detections Rate (CDR) and the False
Detections FD).



Table 2: Comparaison of our Algorithm with other on-road Vehicles Detection
Algorithms

Article FDD CDR FD Detection Type

Sun et al. [12] 32× 32 image region 98.5% 2% Rear
Alonso et al. [13] 92.63% 3.63% Rear and front
Bergmiler et al. [14] 83.12% 16.7% Rear
Southall et al. [15] 40m 99% 1.7% Single lane rear
Chang et Cho [16] 32× 32 image region 99% 12% Rear
Kowsari et al. [17] 120m 98.6% 13% Multi view
Our algorithm 70m 90.28% 7.85% Multi view

4 Conclusion

In this paper, a stereo vision based scene segmentation and on-road vehicles de-
tection algorithm has been proposed. While a variety of vehicles detection algo-
rithms exist in the litterature, the proposed algorithm provides improuvements
to cope with some crucial issues. The first one concerns the off-road features
substraction. It is an important point to deal with when on-road objects are
targeted for detection. We proposed to use the connected segments labeling al-
gorithm which has been also used to recover the on-road segments instead of
the traditional hough transform for better and fast obstacles detection. For the
second improuvement, width and height of objects are not measured in meter
but rather in pixels in funtion of the disparity. This solution increases the de-
tection precision and distance estimation. Also, some cues have been presented
for objects classification like the ratio between the 2D box area and the external
contour of the object. The algorithm has been evaluated on the KITTI vision
dataset and the experimental results show that it can detect the most on-road
vehicles and determine their distance up to 70m.

For futur works and to improve the current algorithm, a tracking component
will be added to increase the rate of correct detections while decreasing the rate
of false and missed detections. Also, since ADAS applications are real time, we
intend to integrate this algorithm in a dedicated hardware architecture.
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