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Abstract

Low Power Wide Area Networks (LPWANs) have been recently deployed for long
range Machine-to-Machine (M2M) communications. These networks have been
proposed for many applications and in particular for the communications of the
Advanced Metering Infrastructure (AMI) backhaul of the smart grid. However,
they rely on simple access schemes that may suffer from important latency, which
is one of the main performance indicators in smart grid communications. In this
article, we apply Reinforcement Learning (RL) algorithms to reduce the latency of
AMI communications in LPWANs. For that purpose, we first study the collision
probability in an unslotted ALOHA-based LPWAN AMI backhaul which uses the
LoRaWAN acknowledgement procedure. Then, we analyze the effect of collisions
on the latency for different frequency access schemes. We finally show that RL
algorithms can be used for the purpose of frequency selection in these networks
and reduce the latency of the AMI backhaul in LPWANs. Numerical results show
that non-coordinated algorithms featuring a very low complexity reduce the
collision probability by 14%, and the mean latency by 40%.

Keywords: Advanced Metering Infrastructure (AMI); Low Power Wide Area
Networks (LPWANs); Internet of Things (IoT); LoRaWAN; ALOHA; Smart Grid
Communications

1 Introduction
The increasing development of renewable energy production and the high cost as-

sociated with power failures have been driving electricity operators towards the

development of new functions enabling the real-time management of the electri-

cal grid. Thanks to these improvements, traditional electrical grids have morphed

progressively into the so-called smart grids.

The transformation of the electrical grid into the smart grid mainly impacts the

distribution grid. Three functions are necessary to manage the smart distribution

grid: the Advanced Metering Infrastructure (AMI), the Distribution Automation

(DA) and the management of Distributed Energy Resources (DER) [1]. Further-

more, the management of a smart grid relies on a network of smart sensors and

actuators deployed all along the grid. One of the main roles of these devices is to

provide an overall view of the state of the grid, in a way that must be as continuous

as possible. This cannot be done without an efficient communication system. Each

of the functions developed for the management of the grid has its own constraints

in term of throughput, latency, security and reliability [2]. As a consequence, the
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design of an efficient smart grid communication infrastructure is one of the key

challenges in the smart grid deployment.

In AMI, smart meters measure and report the electricity consumption to a control

center. The information received by the control center is then used to manage both

the electricity production and consumption. In particular, the control center is in

charge of computing the new electricity price which is applied to consumers.

Many communication standards and protocols are envisioned for the smart grid

and in particular for AMI communications [3], and the use of both wired and wire-

less technologies have been investigated. AMI communications are done through

two networks: the neighbourhood network, which links smart meters and local ag-

gregators, and the AMI backhaul linking aggregators and the control center [4].

As an example, in France, Power Line Communications (PLCs) are used for the

neighbourhood network and the General Packet Radio Service (GPRS) network is

used for the AMI backhaul [5].

Besides, LPWANs rely on wireless telecommunication standards recently designed

to handle a large number of long range uplink communications, and have been

identifed as potential networks for AMI communications [6, 7]. In these networks,

a large number of low power end-devices send short packets to a base station or

gateway. Moreover, in LPWANs, the band is divided in narrowband channels, which

are continuously monitored by the base station in order to collect all the uplink

packets sent by end-devices.

A wide range of LPWAN standards have recently been proposed [8]. These stan-

dards can be sorted in two categories. On the one hand, there are slotted protocols

such as the NarrowBand IoT (NB-IoT) standard [9], designed by the 3rd Generation

Partnership Project (3GPP), and the Weightless standard [10]. On the other hand,

there are unslotted (or pure) ALOHA-based protocols [11] such as the LoRaWAN

standard [12] and the protocol used by Sigfox[1], which is based on Ultra Narrow

Band (UNB) [13] communications. In these unslotted protocols, the signalling is re-

duced so as to mitigate the end-device energy consumption, and transmissions are

asynchronous and event-driven. Moreover, in some of these LPWANs, an acknowl-

edgement is used to avoid unnecessary retransmissions. Furthermore, in order to

limit the impact of the acknowledgement on the end-device’s energy consumption,

the receive window, during which the end-device waits for an acknowledgement, is

shortened. In order to do that, the acknowledgement is always sent at the same

time. In other words, the receive delay between the end of the uplink packet, and

the transmission of the acknowledgement in the downlink is constant. Thanks to

this simple mechanism, the end-device is able to sense the channel during a very

short time and detect the preamble of the downlink packet. This solution is used in

the LoRaWAN standard [14, 12]. More precisely, in this standard, and that is the

case in several regions (e.g. Europe, China, etc.) [15], an acknowledgement is sent

into the channel being used for the uplink transmission one second after the end of

the reception of the uplink packet by the base station [12].

In [16], the authors analyze the capacity limits of LoRaWAN in an AMI scenario.

In the present article, we also consider a LoRaWAN AMI backhaul but we focus

[1]Sigfox is a French LPWAN operator whose network covers a large part of western

Europe and is under deployment in the US. – www.sigfox.com.
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our analysis on latency. LPWANs operate in unlicensed bands which are shared by

many end-devices which use different standards and have different behaviours or

capabilities, which depend on their manufacturers and on the requirements of their

applications (temperature sensing, smart grid monitoring, etc.). These heteroge-

neous devices can create a heavy traffic which is unevenly distributed in channels.

This causes packet collisions and improves, consequently, the latency which is one

of the key performance indicators of AMI communications [2]. In this article, we

show that reinforcement learning algorithms and more precisely Multi-Armed Ban-

dit (MAB) learning reduce the latency of the AMI backhaul in LPWANs.

In a first part, we propose to analyze the collision probability in a LPWAN which

uses the acknowledgement mechanism of the LoRaWAN standard, and the effect

of collisions on the latency for several access schemes.The analysis of collisions in

ALOHA networks is an old topic [11, 17]. However, recent LPWAN standards im-

plement new solutions which have not been previously considered. As an example,

the protocol used by Sigfox is the first time/frequency unslotted standard and its

performance has been recently evaluated in [13, 18]. Moreover, one of the specifici-

ties of the LoRaWAN standard is its acknowledgement mechanism. Indeed, in this

standard, an acknowledgement can be sent into the channel used for the purpose

of uplink communications after a fixed received delay. The probability of collisions

and other performance indicators of the LoRaWAN standard can be evaluated using

either numerical simulations or analytical derivations. Numerical simulations have

been used in [19, 20] to evaluate the capacity and coverage of the LoRaWAN stan-

dard. Moreover, analytical derivations of the thoughput in a LoRaWAN network

have been conducted in [21, 22]. However, in these two papers, the acknowledgement

is not considered. In the present article, we derive a closed-form expression for the

probability of collision in a LoRaWAN-like network, in which uplink packets are

acknowledged. To the best of the authors’ knowledge, the collision probability in a

pure ALOHA-based protocol, in which the acknowledgement is sent after a fixed

receive delay in the same channel, as in the LoRaWAN standard, has never been

analyzed in the literature.

In a second part, we will show that the channel selection in LPWANs can be

modeled as a MAB problem [23] and that this problem can be solved using simple

learning algorithms such as the Upper Confidence Bound algorithm (UCB) [24] or

the Thompson Sampling (TS)[25]. These algorithms have already been proposed for

Dynamic Spectrum Access (DSA) [26, 27] in a Cognitive Radio (CR) [28] context.

In [29, 30], the authors propose to use MAB learning algorithms in a time slotted

IoT network and in [31] these algorithms have been proposed for Wifi networks.

In the present article, we introduce MAB learning algorithms for LPWANs and in

particular for unslotted LPWANs in unlicensed bands.

The main contributions of this article are summarized as follows:

• We first derive closed-form expressions for the probability of a successful trans-

mission into one channel, in an LPWAN featuring a simple acknowledgement,

which is similar to the one used by the LoRaWAN standard in Europe.

• Then, we use these probabilities to derive the expression of the latency of AMI

communications for different frequency access schemes.
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Figure 1 The AMI backhaul is divided in two parts: the neighbourhood network and the AMI
Backhaul. In this paper, we focus on the AMI backhaul and more precisely on the communication
between aggregators and LPWAN base stations.

• Finally, we show that the channel selection in an LPWAN can be modeled

as a MAB problem and that learning algorithms such as the UCB and TS

algorithms can be used by aggregators and provide an efficient channel access

scheme and reduce the collision probability and the latency in ALOHA-based

LPWANs.

The rest of this paper is organized as follows. The system model is introduced

in section 2. The probability of a successful transmission in a channel is calculated

in section 3. The average latency of the AMI backhaul for different access schemes

is analyzed in section 4. The multi-armed bandit theory and various learning algo-

rithms are introduced in section 5. In section 6, numerical simulations are used to

assess the performance of the UCB algorithm in the proposed LPWAN and section

7 concludes this paper.

2 System Model
In this article, as illustrated in figure 1, we suppose a LoRaWAN-like network

composed of one base station which is shared by many end-devices. This base sta-

tion is used by aggregators for the AMI backhaul. In this network, the available

bandwidth is divided into Nc channels that feature a large number of end-devices,

which have different RF capabilities and send packets to a base station. We assume

that the number of devices that use each channel is large enough to allow us to

consider that a transmission in a channel does not affect the probability that a

second transmission occurs. In this case, we can suppose that the uplink traffic in

each channel follows a Poisson distribution [11, 32]. We denote λjT the intensity of

the uplink traffic in channel j. Furthermore, we suppose that the traffic generated

by end-devices is unevenly distributed in channels and does not vary in time.

For the analysis of collisions between packets, we assume that all uplink packets

have the same duration denoted Tm. Furthermore, as illustrated in Figure 2, we
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Figure 2 Collision between two packets in the same frequency channel.

assume that a collision occurs in a channel when, at one given moment, at least two

packets (uplink or downlink) superpose on each other even partially in time in the

channel. Moreover, we suppose that the received power is almost the same for all

packets and consequently that there is no capture effect [33].

This hypothesis is valid in a LoRaWAN network, indeed, in this standard, end-

devices can use several spreading factors (SF) depending on their path loss [19].

Furthermore, two packets that use different SF are orthogonal [22] and cannot

collide. Consequently, if all the devices use the LoRaWAN standard, a packet sent

by an end-device only interferes with packets that use the same spreading factor.

These packets have consequently the same length and a comparable received power.

Please, note that, in the LoRaWAN standard, only 6 SF are available (the value

of the SF is an integer between 7 and 12). As a consequence, a large number of

end-devices use the same SF. This can cause a large number of collisions in the

network.

As we focus on the problem of collisions in LPWAN, the fading of wireless channel

is not considered in this article. In unlicensed bands, the interfering traffic of the

AMI backhaul (set of packets for which collisions may occur) can be generated by

devices that use the same base station, use the same standard but transmit their

data to another base station or use another standard. In all this article except

section 6.3, we only consider interferers which use the same standard. In section

6.3, we extend the use of learning algorithms in case where the interfering traffic is

generated by different packet sizes. Besides, as in the LoRaWAN specifications [12],

after sending a packet, an end-device waits for an acknowledgement in the channel

used for the purpose of uplink communications. As illustrated in figure 3, this

acknowledgement is sent, by the base station, after a fixed receive delay denoted Td.

We denote Ta the duration of the acknowledgement. This duration is shorter than

the message duration Tm. When a packet does not receive an acknowledgement, the

packet is retransmitted. This occurs either if the uplink packet collided with another

packet or with an acknowledgement, or if the acknowledgement collided with an

uplink packet. Please note that, in the LoRaWAN standard case, if the base station
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Figure 3 In this paper, we suppose that the acknowledgement is sent, by the base station, in the
channel used for the last uplink communication. This acknowledgement is sent after a time
interval denoted Td

Figure 4 End-devices operation.

cannot send the acknowledgement after the first receive delay, an acknowledgement

can be sent after a second receive delay into another channel reserved for downlink

communications. This second receive window is not considered in this article.

To resend a packet, as in a LoRaWAN network, a device computes a random

retransmission time Tr uniformly distributed during a fixed backoff interval Tbo.

Then, the RF chain of the device switches to sleep mode and is turned on for the

retransmission. The replica can either be sent in the same channel or into another

channel. The selection of this channel is done by the end-device. Each packet is

sent no more than M times. If an acknowledgement has not been received after

M transmissions, the end-device stops the retransmission process and the packet is

lost. Figure 4 shows the operation of an end-device. We suppose that the number

of devices in the network is large and that end-devices retransmit their packets

after a long back-off interval. In this case, we can consider that the probability of a

successful transmission does not depend on the index of retransmission.

When a base station successfully receives a packet, it waits for Td and, if the

channel is free, sends the acknowledgement to the end-device. Since the base station

can analyze the presence of a packet in the channel, we can suppose that the base
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Table 1 Description of the events considered for the computation of the probability of successful
transmission

Notation Event
su Successful Uplink: there is no collision between the uplink packet and another packet.

The packet has been received by the base station.
sd Successful Downlink: the end-device receives the acknowledgement
sa Successful Acknowledgement: the downlink transmission is successful, the acknowl-

edgement is sent and does not collide with another packet.
ca Collision After: the uplink packet has a collision with another uplink packet sent after

it.
cb Colision Before: the uplink packet has a collision with an uplink packet sent before it

or with an acknowledgement.
cub Collision Uplink Before: the uplink packet has a collision with an uplink packet sent

before it.
cd Collision Downlink: the uplink packet has a collision with an acknowledgement.
pss Packet Successfully Sent: a packet is successfully sent in the interval [−Td − Tm −

Ta;−Td − Tm].
pb Packet Between: there are packets between the considered packet and its acknowl-

edgement. These packets do not collide with the considered packet or prevent the
transmission of the acknowledgement.

station has a perfect knowledge of the state of the channel (busy or free) and we

can thus neglect the sensing time.

3 Probability of successful transmission
In this section, we derive two probabilities, which allow to assess the performance

of a LoRaWAN-like LPWAN. The first one is the probability of a successful uplink

transmission. It is the probability that a packet sent by an end-device into a channel

is received by the base station, i.e. the sent packet did not collide with another

packet. This probability is denoted P (su) in this section. The second probability is

the probability of a successful transmission, which is the probability that the end-

device receives the acknowledgement. We denote P (sd) this probability. Please,

note that, when a packet is sent by an end-device, it can collide either with an

acknowledgement sent by the base station or with an uplink packet sent by another

end-device.

In order to compute these two probabilities, we assume that a packet is sent into

a channel by an end-device (e.g. by an aggregator), we denote packet 1 this packet

and we analyze the probability of a successful transmission. In this section, we make

our analysis channel by channel. We denote λT the intensity of the uplink traffic in

a channel. Moreover, all the events used in this section for the computation of the

two probabilities are described in table 1.

As a first step, a successful downlink transmission happens if the acknowledgement

is successfully received after a successful uplink. The following formula makes the

link between P (su) and P (sd):

P (sd) = P (su)P (sa|su). (1)

Where P (sa) is the probability of having a successful transmission of the ac-

knowledgement. Furthermore, P (su) and P (sd) depend on the value of Td and Tm.

Indeed, these two probabilities do not have the same expression if Td ≤ Tm, or

where Td ≥ Tm.

Moreover, in order to compute the probabilities of a successful transmission, we

have to note that the base station sends an acknowledgement only if the channel
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Figure 5 Example of collision between an uplink packet and an acknowledgement sent by the
base station.

is free. As a consequence, an uplink packet can collide with a downlink packet

(acknowledgement) only if the acknowledgement is sent before the packet. This

occurs if another packet has been successfully sent in the interval Ia = [−Td −
Tm − Ta;−Td − Tm] and if the channel is free at the end of the receive delay Td as

illustrated in Figure 5.

3.1 Case 1: Td ≤ Tm
We start by calculating P (su). Which is the probability of having no collision with

other packets:

P (su) = P (cb ∩ ca) = P (cb)P (ca). (2)

Where P (cb) and P (ca) are respectively the probabilities of having a collision

with a packet sent before and after packet 1. As the uplink traffic follows a Poisson

process, the events cb and ca are independent.

In order to compute P (cb), we use the law of total probability to decompose it in

two terms. The first one is the probability of having a collision with an uplink packet

sent before packet 1 and is denoted P (cub). The second one, is the probability of

having a collision with a downlink packet sent before packet 1 knowing that we do

not have a collision with an uplink packet:

P (cb) = P (cb|cub)P (cub) + P (cb|cub)P (cub)

= P (cub) + P (cd, cub). (3)

Where, P (cd) is the probability of having a collision with an acknowledgement.

If Td ≤ Tm, there exists a collision with a downlink packet, without collision

with an uplink packet sent before packet 1 (cd ∩ cub), if and only if the last packet

transmitted before packet 1 is sent in Ia and does not collide with a packet sent

before it. Indeed, if there is another packet between packet 1 and a packet sent

in Ia, then this packet will either collide with one of the two packets or hinder

the transmission of the acknowledgement by the base station. Moreover, the inter-

arrival time between two packets follows an exponential distribution with a rate
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Figure 6 Collision between packet 1 and a packet sent after it by another user.

parameter λT . This allows to compute P (cd, cub), which is the probability that the

inter-arrival time is between Tm +Td and Tm +Td +Ta and that the packet sent in

Ia does not collide with a packet sent before it:

P (cd, cub) =
(
e−λT (Td+Tm) − e−λT (Td+Tm+Ta)

)
︸ ︷︷ ︸
Probability that the time interval between
two packets is in [Tm + Td;Tm + Td + Ta]

× P (cb)︸ ︷︷ ︸
Probability that the packet sent
in the interval Ia did not collide

with a packet sent before it

. (4)

Furthermore, the probability to have a collision with an uplink packet sent before

packet 1 is the probability that at least one packet is sent in the interval [−Tm; 0]:

P (cub) = 1− e−λTTm . (5)

By replacing, P (cub) and P (cd, cub) by their expressions in (3), we can compute

the probability of having no collision with a packet sent before packet 1:

P (cb) = 1− P (cb)

=
e−λTTm

1 + e−λT (Td+Tm) − e−λT (Td+Tm+Ta)
. (6)

We, now, express the probability of having no collision with a packet sent after

packet 1. As illustrated in figure 6, packet 1 collides with a packet sent after it,

if the interval between its transmission and the transmission of the next packet is

shorter than Tm. We can deduce the expression of P (ca) from this observation:

P (ca) = e−λTTm . (7)

We can finally compute the probability of having no-collision:

Proposition 1 If Td ≤ Tm, the probability of a successful uplink transmission is

given by:

P (su) = P (cb)P (ca)

=
e−2λTTm

1 + e−λT (Td+Tm) − e−λT (Td+Tm+Ta)
. (8)



Bonnefoi et al. Page 10 of 27

0.02 0.04 0.06 0.08 0.1

TTm

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

Analytical T a = 0.8s

Simulation T a = 0.8s

Analytical T a = 1s

Simulation T a = 1s

Analytical T a = 1.5s

Simulation T a = 1.5s

(a) Tm = 1.6s

0.02 0.04 0.06 0.08 0.1

TTm

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
ro

ba
bi

lit
y 

of
 s

uc
ce

ss

Analytical T a = 1.3s

Simulation T a = 1.3s

Analytical T a = 1.8s

Simulation T a = 1.8s

Analytical T a = 2.5s

Simulation T a = 2.5s

(b) Tm = 2.5s

Figure 7 Probability of success P (sd) versus λTTm. These results are obtained with Td = 1s and
with various values of Ta and Tm which are compliant with the LoRaWAN standard.

Furthermore, since Ta < Tm, if an uplink packet is sent just after the end of packet

1, in the interval [Tm;Tm + Td + Ta], then either the acknowledgement of packet 1

will not be sent, or it will collide with the uplink packet. Consequently, Td ≤ Tm,

the probability P (sa|su) that the acknowledgement is received is the probability of

having no uplink packet in an interval of length Td + Ta. Consequently:

P (sa|su) = e−λT (Td+Ta). (9)

And, P (sd) can be computed with equation (1):

Proposition 2 If Td ≤ Tm, the probability of a successful transmission (uplink

and downlink) is given by:

P (sd) = P (su)P (sa|su)

=
e−λT (2Tm+Td+Ta)

1 + e−λT (Td+Tm) − e−λT (Td+Tm+Ta)
. (10)

We use numerical simulations to verify the proposed formula. We suppose that Nd

devices transmit packets into a channel following a Poisson distribution of parameter

λ = 10−4

Tm
s−1. With this assumption the intensity of the traffic in the channel is

λT = Ndλ. As in the LoRaWAN standard, we suppose that Td = 1s, we consider

two different values for Tm: Tm = 1.6s and Tm = 2.8s which are the maximum

uplink packet length respectively for SF 11 and 12 in the LoRaWAN standard

[19]. We display our results for different values of Ta which are compliant with the

LoRaWAN standard. Figure 7 shows the evolution of the probability of a successful

transmission P (sd) versus λTTm (the channel load). As expected, the probability

of success decreases as the load increases and the proposed analytical formula and

our simulations give the same results.

3.2 Case 2: Td ≥ Tm
We also base the computation of P (su) in case where Td ≥ Tm on equation (2)

and (3). We begin with the computation of P (cd, cub), the probability of having a
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Figure 8 The two incompatible cases which lead to a collision with a downlink packet without
collison with an uplink packet.

collision with a downlink packet without any collision with an uplink packet. The

event cd ∩ cub occurs only if a packet has been successfully sent in the interval Ia.

In the following, in order to ease the understanding, we denote packet 2 this packet.

As illustrated in figure 8, we have to consider two incompatible situations for the

calculation of P (cd, cub):

• Packet 2 is the last uplink packet sent before packet 1 and does not collide

with a packet sent before it (this is the situation studied where Td ≤ Tm).

• Packet 2 is successfully sent in Ia and other uplink packets are transmitted

between this packet and its acknowledgement but do not prevent the trans-

mission of the acknowledgement.

In other words, we have to consider two different cases depending on the presence

of absence of packets between packet 2 and its acknowledgement. As these two

cases are incompatible, we can rewrite the probability P (cd, cub) as the sum of the

probabilities of these two events:

P (cd, cub) = P (cd, cub, pb) + P (cd, cub, pb). (11)

Where P (pb) is the probability to have at least one packet between a given packet

(e.g. packet 2) and its acknowledgement. The first term of this expression has been

previously computed. If we do not have any packet between packet 2 and its ac-

knowledgement, this packet is the last uplink packet transmitted before packet 1.

We are, consequently, in the case previously studied. Strictly speaking, the expres-

sion of P (cd, cub, pb) if Td ≥ Tm is equal to the expression of P (cd, cub) if Td ≤ Tm.

As a consequence, the expression of P (cd, cub, pb) is given in equation (4).
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Figure 9 T1 is the interval between packet 1 and the packet sent just before it (packet 3) and Tc
is the interval between packet 1 and the transmission of the acknowledgement of packet 2 and the
transmission of packet 1.

We now consider the second term of equation (11). To ease the understanding, in

the following, we denote packet 3 the last packet sent before packet 1. Furthermore,

the event cd ∩ cub ∩ pb occurs if and only if:

• A packet is successfully sent in Ia (packet 2 is successfully sent).

• The last packet transmitted before packet 1 is sent between the packet suc-

cessfully sent in Ia and its acknowledgement. In other words, packet 3 is sent

between packet 2 and its acknowledgement.

These two events are independent. As a consequence, P (cd, cub, pb) is the product

of two probabilities. The first one is the probability that packet 2 is successfully

sent in the interval Ia. This probability is denoted P (pss) and can be expressed as:

P (pss) = (1− e−λTTa)︸ ︷︷ ︸
Proba. that a packet

is sent in Ia

× e−λTTm︸ ︷︷ ︸
Proba. of having no
collision with a packet

sent after it

× (1− P (cb))︸ ︷︷ ︸
Proba. of having no
collision with a packet

sent before it

=(e−λTTm − e−λT (Tm+Ta))(1− P (cb)). (12)

In order to compute the second probability, we have to analyze the interval T1

between packet 1 and packet 3 and the interval Tc and the acknowledgement of

packet 2. As illustrated in Figure 9 the probability that packet 3 is sent between

packet 2 and its acknowledgement is P (Tc + Tm ≤ T1 ≤ Tc + Td) = P (Tm ≤
T1 − Tc ≤ Td).

Since packet 2 has been successfully received, we know that there is only one

packet in Ia. As a consequence, Tc follows a uniform distribution on [0;Ta] [34].

Moreover, T1 follows an exponential distribution. In order to compute the probabil-

ity density function (pdf) fT1−Tc of T1−Tc, we have to compute the convolution of

the probability density functions of T1 and −Tc. After some mathematical deriva-

tions:

fT1−Tc(τ) =


0 if τ < −Ta
1
Ta

(1− e−λT (τ+Ta)) if τ ∈ [−Ta; 0]
1
Ta

(e−λT τ − e−λT (τ+Ta)) if 0 < τ

(13)
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This allows to conclude that:

P (Tm ≤ T1 − Tc ≤ Td) =
1

λTTa
×(

e−λTTm − e−λT (Tm+Ta) − e−λTTd + e−λT (Td+Ta)
)
. (14)

Then, we can calculate P (cd, cub, pb) as:

P (cd, cub, pb) = P (pss)P (Tm ≤ T1 − Tc ≤ Td). (15)

Moreover, we can rewrite the expression of P (cb), the probability of having a

collision with a packet sent before packet 1, thanks to equation (3), (11) and (15):

P (cb) = P (cub) + P (cd, cub, pb) + P (pss)P (Tm ≤ T1 − Tc ≤ Td). (16)

All the terms of equation (16) can be expressed as functions of P (cb), λT , Td, Tm

and Ta. We can consequently derive P (cb):

P (cb) = 1− P (cb) =
e−λTTm

1 + f(λT , Tm, Td, Ta)
. (17)

Where f(λT , Tm, Td, Ta) denotes:

f(λT , Tm, Td, Ta) =
(
e−λTTm − e−λT (Tm+Ta)

)
×[

e−λTTd +
1

λTTa

(
e−λTTm − e−λT (Tm+Ta) − e−λTTd + e−λT (Td+Ta)

)]
. (18)

We finally derive P (su) from equation (7).

Proposition 3 If Td ≥ Tm, the probability of a successful uplink transmission is

given by:

P (su) =
e−2λTTm

1 + f(λT , Tm, Td, Ta)
. (19)

Where f(λT , Tm, Td, Ta) is defined in equation (18).

Moreover, if Td ≥ Tm,

P (sa|su) = e−λT (Tm+Ta). (20)

Equation (20) allows to derive the expression of P (sd).

Proposition 4 For Td ≥ Tm, the expression of the probability of successful trans-

mission (uplink and downlink) is given by:

P (sd) =
e−λT (3Tm+Ta)

1 + f(λT , Tm, Td, Ta)
. (21)
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Figure 10 Probability of success P (sd) versus λTTm. These results are obtained with Td = 1s
and with various values of Ta and Tm which are compliant with the LoRaWAN standard.
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Figure 11 Probability of successful transmission for λT = 0.2s−1, and for different values of Tm
and Ta.

Where f(λT , Tm, Td, Ta) is defined in equation (18).

For numerical simulations, as in the LoRaWAN standard, we set Td = 1s. We

suppose two uplink packet lengths: Tm = 0.4s and Tm = 0.7s, these values re-

spectively correspond to the longest uplink frames for SF 7 and 8. Moreover, we

consider different values for Ta which are compliant with the LoRaWAN standard.

The evolution of the probability of collision versus the load λTTm is displayed in

Figure 10. As expected, the proposed formula fits numerical simulation.

3.3 Analysis of the probability of success

We now analyze the evolution of P (sd) as a function of Td. An analysis of the

sign of the derivative of equations (21) and (10) shows that P (sd) decreases if

Td ≤ Tm and increases if Td ≥ Tm. The evolution of P (sd) versus Td is displayed in

Figure 11 for different values of Tm and Ta which are compliant with the LoRaWAN

standard. In each pair (Tm, Ta), Tm is the maximum uplink packet length for the
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corresponding SF and Ta is compliant with the standard [19]. As expected, we can

see in this figure that the longer is Tm, the lower is the probability of success.

The probability of a successful transmission decreases over [0;Tm] and, if Td is

longer than Tm, P (sd) is almost constant and only slightly increases with Td. As a

consequence, if Td ≥ Tm, the probabilities P (sd) and P (su) can be approximated

by their values on Td = Tm and Td → +∞.

Proposition 5 For Td ≥ Tm, the expression of the probability of a successful

transmission can be approximated by:

P (sd) ≈ e−λT (3Tm+Ta)

1 + e−2λTTm − e−λT (2Tm+Ta)

≈ e−λT (3Tm+Ta)

1 +
(e−λT Tm−e−λT (Tm+Ta))

2

λTTa

. (22)

Proof For this proof, we denote respectively PTm(sd) and P∞(sd) the first and the

second proposed approximations. First of all,

e−λTTm − e−λT (Tm+Ta)

λTTa
= e−λTTm

(
1− e−λTTa

)
λTTa

. (23)

Moreover, in the studied network, we can assume that λTTa << 1. As a conse-

quence,

1− e−λTTa ≈ λTTa. (24)

And therefore,

e−λTTm − e−λT (Tm+Ta)

λTTa
≈ e−λTTm . (25)

Equation (25) allows us to prove that PTm(sd) ≈ P∞(sd). Furthermore, P (sd) is

an increasing function of Td over [Tm; +∞]. As a consequence,

PTm(sd) ≤ P (sd) ≤ P∞(sd). (26)

Which proves that P (sd) ≈ PTm(sd) ≈ P∞(sd). This finally proves proposition 5.

We have computed the expression of the probability of a successful transmission

in a LoRaWAN-like LPWAN. In the following, we analyze the latency of AMI

communications in this network for different access schemes as a function of the

probability of successful transmission P (su).

4 Latency in an LPWAN
We now consider an aggregator that wants to send a packet to a LPWAN base

station. In order to send this packet, this aggregator can use one of the Nc avail-

able channels. In each channel, the uplink communication can be successful, or the
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transmitted packet can collide with the interfering traffic. The probability of having

a successful uplink transmission in channel j is denoted P j(su). As detailed in the

previous section, this probability depends on λjT the intensity of the traffic in the

channel. In this section, we analyze the latency of the communications of the AMI

backhaul as being a function of P j(su) ∀j ∈ J1;NcK for the two following different

frequency access schemes:

1 The aggregator randomly selects the channel for each transmission.

2 The aggregator uses the channel with the highest probability of successful

transmission for all its transmissions. Please, note that, this policy requires

the aggregator to have perfect knowledge of the probability of success in the

channels. We present some learning algorithms which allow to acquire this

knowledge in section 5.

4.1 Case 1: Random Channel Selection

The expected latency E[L] is defined as the mean time between the first transmission

of a packet and the first reception of the packet by the base station. According to

the law of total expectation, the average latency is:

E[L] =

M∑
i=1

P (Nret = i)E[L|Nret = i]. (27)

Where Nret is the number of retransmissions. Please note that, the expression

of E[L|Nret = i] does not depend on the frequency access scheme. Actually, in

equation (27), only P (Nret = i) is dependent on the access scheme. Moreover,

given the specific studied acknowledgement mechanism, the expected latency for

Nret retransmissions is:

E[L|Nret = i] = (i− 1) (Tm + Td + Ts + E[Tr]) + Tm (28)

= (i− 1)

(
Tm + Ts + Td +

Tbo
2

)
+ Tm. (29)

Where Ts is the time during which the end-device senses the channel, so as to

detect the preamble of the acknowledgement.This time is short in the LoRaWAN

standard. Please, note that, after a failed transmission, the acknowledgement is

not transmitted by the base station. In that case, in the LoRaWAN standard, the

device does not wait for the acknowledgement during Ta but during Ts, a shorter

time which is long enough to detect the presence or absence of acknowledgement in

the channel [14]. In the following, we will denote Tl = Tm + Td + Ts ≈ Tm + Td.

We now have to compute the expression of P (Nret = i) which can be expressed

as:

P (Nret = i) = P (su trans. i)

i−1∏
k=1

(1− P (su trans. k)) . (30)

Where P (su trans. i) is the probability of having a successful ith transmission of

the packet. As the probability of success is the same for all retransmissions, the

expression of P (su trans. k) is:
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P (su trans. k) =
1

Nc

Nc∑
l=1

P l(su) = Pm(su) (31)

Where Pm(su) is the average probability of a successful transmission in the net-

work. We finally derive the expression of the average latency:

E[L] = Pm(su)Tm

M∑
i=1

(1− Pm(su))i−1

+ Pm(su)

(
Tl +

Tbo
2

) M∑
i=2

(i− 1)(1− Pm(su))i−1. (32)

We now employ the expression of the derivative of the geometric series, so as to

obtain the expression of the latency for an infinite number of repetitions:

E[L] −→
M→∞

(
Tl +

Tbo
2

)
1− Pm(su)

Pm(su)
+ Tm. (33)

4.2 Case 2: Best Channel Selection

In this section, we denote P j∗(su) the probability of having a successful transmission

in the best channel. In case, where the aggregator uses the least loaded channel for

all its transmission, P (su trans.k) = P j∗(su) and we can derive the expression of

the latency with this access scheme:

E[L] = P j∗(su)Tm

M∑
i=1

(1− P j∗(su))i−1

+ P j∗(su)

(
Tl +

Tbo
2

) M∑
i=2

(i− 1)(1− P j∗(su))i−1. (34)

As for the random channel selection, we use the derivative of a geometric series

to get the expression of E[L] for an infinite number of retransmissions:

E[L] −→
M→∞

(
Tl +

Tbo
2

)
1− P j∗(su)

P j∗(su)
+ Tm. (35)

4.3 Comparison of the two strategies

When comparing equations (33) and (35), we can see that the latency always de-

creases as the best channel is chosen for the first transmission. Furthermore, if we

compute the difference between the latency of equations (33) and (35):

E[L]rand − E[L]BC =

(
Tl +

Tbo
2

)(
1

Pm(su)
− 1

P j∗(su)

)
(36)

Where E[L]rand is the expected latency with a random channel selection and

E[L]BC is the expected latency with a best channel selection. Equation (36) shows
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that the gain in latency provided by the selection of the best channel, only depends

on the difference between the inverse of the average probability of a successful

transmission in the random channel selection case, and the inverse of this probability

in the best channel case.

The selection of the best channel requires the knowledge of the probability of

collision in the channels. In the following, we introduce two reinforcement learning

algorithms to acquire this knowledge.

5 Reinforcement Learning Algorithms in LPWAN
5.1 MAB learning

The equations derived in the previous section show that the selection of the best

channel can significantly reduce the latency of AMI communications when the traf-

fic is unevenly distributed in the channels. This can occur either if some devices use

another LPWAN or base station, or if all the devices do not use the same set of

channels. In this section, we will show that the channel selection can be viewed as

a multi-armed bandit (MAB) problem [23], which can be solved thanks to simple

reinforcement learning algorithms. This modelling has already been used in dy-

namic spectrum access (DSA) [26, 27]. In such a scenario, spectrum sensing is used

as a feedback for channel selection. However, spectrum sensing has a poor perfor-

mance in LPWANs [6]. That is why we use the acknowledgement as a reward for

learning. With this acknowledgement, machine learning algorithms can be used by

end-devices for the purpose of channel selection.

Please, note that, with the proposed MAB learning algorithms, each end-device

optimizes its own energy consumption without exchanging information with other

end-devices. This solution is, consequently, a non-coordinated solution. One of the

main advantages of such a solution is its energy consumption. Indeed, the algorithms

proposed here have a low complexity. They consume, consequently, few energy. This

energy is negligible compared to the energy that would be consumed to exchange

information between end-devices.

If we now consider the problem as a MAB problem, each channel is viewed as

a gambling machine (bandit). All bandits lead to the same reward (a successful

transmission) but with different probabilities. Indeed, P j(su) and P j(sd) change

from one channel to another. We denote t the number of transmissions realized by

the aggregator, where Tj(t) denotes the number of selections of channel j.

In order to select the best channel, which features the highest probability of a

successful transmission, aggregators have to learn about the quality of the channels.

This learning is based on the reward obtained after the previous transmissions. We

define the reward of the data transmission in channel j at time t as:

rt(j) =

{
1 if the transmission is successful,

0 else.
(37)

In LPWAN, the reward can be provided by the acknowledgement, and an end-

device considers that the reward is 1 if the acknowledgement is received, and 0

otherwise. With this solution, the proposed algorithms do not require any extra

signalling. In the studied problem, an aggregator that uses a reinforcement learn-

ing algorithm begins without any information about the probabilities of successful



Bonnefoi et al. Page 19 of 27

transmission in the Nc channels. The device first explores all the channels and uses

the reward to learn about the channels’ probability of successful transmission. On

the basis of the acquired knowledge, the device uses more and more the channels

that provided the highest reward. It improves consequently its probability of having

a successful transmission. After several transmissions, the end-device has enough

knowledge to send almost all its packets into the channel featuring the highest

probability of successful transmission, and consequently the lowest latency.

Furthermore, two types of reinforcement learning algorithms have been proposed

to solve MAB problems: frequentist algorithms where the channel is deterministi-

cally chosen on the basis of past experience, and Bayesian algorithms where the

decision is drawn from a prior distribution [35]. In this paper, with no loss of gener-

ality, we analyze the performance of two algorithms, the Upper Confidence Bound

(UCB) algorithm [26] which is frequentist and the Thompson Sampling (TS) al-

gorithms [25] which is Bayesian. The main advantages of these two algorithms are

their low computational complexity and their low memory requirements, which al-

low them to be implemented in any end-device and in particular in aggregators.

5.2 UCB1 Algorithm

The UCB1 algorithm is proven to be asymptotically order optimal where the inter-

fering traffic generated by other end-devices follows a Bernoulli distribution [24].

Moreover, it requires little processing resources and memory. In the UCB algorithm

case, we use the sample mean of the reward to assess the probability of collision in

channel j:

Xj(t) =
1

Tj(t)

t−1∑
l=0

rl(j)1(al = j). (38)

Where 1(al = j)denotes the indicator function. This function is equal to 1 if the

device made its lth transmission in channel j and 0 elsewhere. We define the upper

confidence bound algorithm indexes in each channel as [24]:

Bj(t) = Xj(t) +Aj(t). (39)

Where Aj(t) is an upper confidence bias. In the UCB algorithm case, the selected

channel features the highest upper confidence bound:

at = argmax
j

(Bj(t)). (40)

The bias of the UCB1 algorithm is [24]:

Aj(t) =

√
α ln t

Tj(t)
. (41)

In equation (41), α is the exploration coefficient. The UCB1 is proven to be or-

der optimal for α > 0.5 [24] and has good performance for lower values of α > 0
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[36]. The larger this coefficient is, the longer the exploration is. During the initial

transmissions, the empirical mean is low compared to the bias and the aggrega-

tor explores all the channels. Progressively, the value of the bias decreases and the

empirical mean becomes predominant. With this algorithm, the aggregator learns

at each transmission. Once it has learned enough, it starts mostly using a single

channel, the one that guarantees the higher empirical mean for the reward. Con-

sequently, in the UCB1 algorithm case, and after exploration, the latency of AMI

communications will be equal to the one studied in section 4.2.

In the UCB1 algorithm, the computation of indexes is deterministic. It is, con-

sequently, a frequentist algorithm. In the following, we introduce the Thompson-

Sampling algorithm which is a Bayesian algorithm. With this algorithm, the indexes

are sampled from a random distribution.

5.3 Thompson Sampling

In the case of the Thompson Sampling algorithm [25], the channel index is computed

thanks to a beta distribution whose parameters depend on prior experience. In the

following, we denote:

Sj(t) =

t−1∑
l=0

rl(j)1{al=j}, (42)

the sum of the reward in channel j at instant t, and:

Fj(t) = Tj(t)− Sj(t). (43)

The number of unsuccessful transmissions in channel j. For each of its transmis-

sions, the channel index in channel j at a given time t is sampled from the beta

distribution:

Bj(t) ∼ β(1 + Sj(t), 1 + Fj(t)). (44)

As for the UCB1 the channel featuring the higher index is chosen for the tth

transmission. With this algorithm, at the beginning, all the indexes are uniformly

distributed in [0; 1] (i.e. flat prior β(1, 1)). When the algorithm learns about chan-

nel j, the distribution becomes squeezed and centered around Pj(sd). As for UCB1,

after a sufficient learning period, when the distributions are squeezed and the expec-

tations have been well estimated, the end-device will use the most vacant channel

for most of its transmissions. In order to better understand the behaviour of the

algorithm, we compute the expectation of the index Bj(t):

E{Bj(t)} =
1 + Sj(t)

2 + Tj(t)
∼

Tj(t)→∞

Sj(t)

Tj(t)
= Xj(t). (45)

V {Bj(t)} =
(1 + Sj(t))(1 + Fj(t))

(2 + Tj(t))2(3 + Tj(t))
(46)
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We can see in equation (46) that: the higher Tj(t) is, the lower the variance of

the distribution of Bj(t). Furthermore, as shown in equation (45), the expectation

of the index Bj(t) tends towards Pj(sd) when Tj(t) tends to infinity.

Please note that, for each transmission, the TS algorithm only requires to compute

Nc values from beta distributions.

6 Numerical Evaluation of MAB Learning in LPWANs
In this section, we use numerical simulations to assess the performance of the MAB-

learning algorithms, introduced in the previous section, in an pure ALOHA-based

LPWAN.

6.1 Simulation scenario

For simulations, we consider an LPWAN comprising Nc = 10 channels. All the

devices in the network use the same SF and transmit an uplink packet during

Tm = 0.7s (this corresponds to SF 8 in a LoRaWAN network [19]). Moreover, we

suppose that Td = 1s and Ta = 0.1s. We suppose that Ts is short enough to be

neglected. When a device does not receive an acknowledgment, it selects a random

time Tr between 0 and Tbo = 10s. Then it waits for Tr and resends the packet. The

maximum number of repetitions is equal to 5 in all this section.

In order to generate the interfering traffic, we consider a set of non-intelligent

devices that use the network. Each of these devices (e.g. temperature sensors, hu-

midity sensors, or smart appliances) uses only one channel. The traffic generated

by these non-intelligent devices is an interfering traffic for the AMI backhaul. In

this article we suppose that interfering end-devices and aggregators use the same

standard, however, similar performance can be obtained when the interfering traf-

fic is generated by devices using different standards. Each of these devices sends a

packet following a Poisson distribution. The intensity of the Poisson process veri-

fies λsTm = 10−4 for all non-intelligent devices. This intensity does not take into

account the traffic generated by retransmissions. With this intensity, each device

sends approximately one packet every 2 hours.

We suppose that there are 1000 non-intelligent end-devices in the first channel, 900

in the second one, 800 in the third one, and so on until 100 in the tenth channel.

We simulate the network made of non-intelligent devices, so as to estimate the

probabilities of a successful transmission in each channel. With this distribution of

non-intelligent devices, these probabilities are equal to (0.45, 0.53, 0.57, 0.64, 0.70,

0.77, 0.82, 0.87, 0.92, 0.96).

We suppose that 50 aggregators that have learning capabilities begin to use

the LPWAN. These aggregators have the same characteristics than those of other

devices, but can use channel selection algorithms. We suppose that each aggre-

gator transmits its packets following a Poisson process whose intensity verifies

λaTm = 4 × 10−4 (on average an aggregator sends a packet every 30 minutes).

We simulate the network during 14 days, and we analyze the evolution of the prob-

ability of a successful transmission P (sd) and that of the mean latency.

6.2 Simulation results in a LoRaWAN network

In the studied network, we evaluate the performance of several learning algorithms,

we consider that either UCB1 or Thompson Sampling algorithms are implemented

in aggregators.
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Figure 13 Evolution of the number of successful transmissions with time for different learning
schemes.

We first analyze the number of transmissions in each channel after 14 days of

learning with the UCB1 algorithm. On average, during these 14 days, each aggre-

gator transmits 672 times. As we ranked channels by vacancy rate probability, with

no loss of generality, we can see in Figure 12 that aggregators mostly transmit in

channels with the lowest probability of collision. Moreover, aggregators transmit

more than 25% of their packets in the less loaded channel and around 20% in the

second one. Furthermore, after 14 days, less than 20% of the packets transmitted

by aggregators are transmitted in the five most loaded channels.

We now analyze the evolution of the probability of successful transmissions P (sd)

for aggregators featuring intelligent capabilities. We then compare the results ob-

tained in this case with those of a scenario in which aggregators randomly select

the channel for each of their transmissions. This random selection is currently em-

ployed in the LoRaWAN standard. The results are displayed in Figure 13, as for

the probability of successful transmissions and Figure 14 as for the evolution of
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Figure 14 Evolution of latency with time for different learning schemes.

the latency. At the beginning, aggregators explore all the channels. The probabil-

ity of a successful transmission and the latency of AMI communications featuring

learning algorithms are only slightly better than those experienced where using a

random allocation. However, after some transmissions, aggregators learn about the

occupancy in channels and the probability of successful transmission increases. This

probability is of 76.5% for a random allocation and reaches 90% after a few days

of exploration. This represents an increase of 14% in the probability of successful

transmission (uplink and downlink).

An increase in the probability of successful transmission is beneficial for the la-

tency of AMI communications. As seen in Figure 14, learning algorithms reduce

by 0.8s the latency of aggregators’ communications. This represent a 40% gain

compared to the random channel selection.

We now compare the performance of the studied learning algorithms. We can see

in Figure 14 that, the Thompson Sampling algorithm reduces latency more quickly.

This result is in line with the theoretical studies. Indeed, the Thompson Sampling

has been proven to converge more quickly than the UCB algorithm in case where

the interfering traffic follows a Bernoulli process [35]. However, the computation

of the TS indexes requires a little bit more computation than the UCB ones. It is

important to note that, in the present article, the interfering traffic is generated by

both the static interfering traffic and by the traffic generated by other aggreators.

The static interfering traffic follows a Bernoulli process. However, other aggregators

also use learning algorithms and the traffic they generate is not stochastic [30]. In

the simulated scenarios, the traffic generated by other aggregators is small compared

to the traffic generated by static devices. The interfering traffic can, consequently,

be approximated by a Bernoulli process.

Furthermore, the TS and the UCB1 algorithm with α = 0.3 provide similar results

after 14 days of exploration. For such low value of α (i.e. below α = 0.5), we do

not have any theoretical proof of convergence. However, the algorithm has good

performance in our simulation scenarios. On the basis of the comparison of the

performances of the UCB1 algorithm for different values of α, we can see that the

reduction of the latency is faster with a small α (e.g. α = 0.3). Figure 14 shows
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Figure 15 Evolution of the number of successful transmissions with time for different learning
schemes.

that, in the proposed scenario, the reduction of the latency is increasingly slowly as

the α coefficient increases. The analysis of the α coefficient is done here empirically.

A comprehensive empirical study of the impact of the α coefficient in the MAB

problem has been conducted in [37].

6.3 Extension to different packet sizes

In the previous section, we analyzed the performance of MAB learning algorithms

in a network in which all devices use the same standard, and in particular the

same SF in a LoRaWAN network. In this section, we confirm the ability of MAB

algorithms to reduce the latency of communications and we highlight the ability of

the proposed algorithms to cope with different packet sizes.

For that purpose, we consider that the 50 aggregators previously introduced co-

municate with the same LoRaWAN base station. In this section, the interfering

traffic is generated by end-devices which transmit packets of different sizes. Each of

these static end-devices transmits following a Poisson process with, on average, one

packet every two hours. Moreover, the packet size is a multiple of 100ms uniformly

distributed between 0.1 and 2s. The packets transmitted by static devices are nei-

ther acknowledged nor retransmitted. We suppose that, the number of devices in

each channel is the following: [750, 1000, 650, 600, 450, 300, 500, 700, 850, 1050].

With this distribution of static end-devices, we have the following probability of

a successful transmission in channels: (0.59, 0.51, 0.64, 0.65, 0.74, 0.78, 0.72, 0.59,

0.54, 0.50). In this second scenario, we have less difference between the channels.

As a consequence, according to equation (36), the gain that learning can bring is

less important in this scenario. We display the obtained simulation results in figure

15 and 16.

In this second scenario, after fourteen days of transmission, reinforcement learning

algorithms provide a gain of 8 to 11% in probability of successful transmission. This

reduction in the probability of successful transmission allows to reduce the average

latency from 1.95s to around 1.65s, i.e. a decrease in latency of 15%. These results

show that learning algorithms can reduce the latency of communications even when
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Figure 16 Evolution of latency with time for different learning schemes.

the interfering traffic is generated by devices which use dissimilar packet sizes, i.e.

different standards.

7 Conclusion
Unslotted ALOHA based LPWAN standards such as LoRaWAN are perfect candi-

dates for AMI backhaul. In this paper, we first derive closed-form and analyze the

probability of successful transmission in a LoRaWAN-like LPWAN with acknowl-

edgement in a channel. Then, we use these probabilities to analyze the latency in

the network. Furthermore, we propose to use MAB learning algorithms as simple

and efficient solutions to tackle the spectrum contention issue in unlicensed bands.

We use the acknowledgement as a reward for on-line learning algorithms. The UCB1

and TS algorithms have a low cost in processing and energy consumption and do

not require any extra signalling. Furthermore, in the studied scenario, these algo-

rithms allow to increase by 14% the probability of successful transmission and to

reduce by 40% the latency in the network. In our future work, we will either analyze

other learning algorithms to tackle spectrum contention issues in IoT networks or

consider a more realistic model e.g. by considering the fading of wireless communi-

cations. We can also analyze the potential of MAB learning algorithms in different

standards.
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List of abbreviation

Table 2 List of abbreviation

Abbreviation Description
3GPP 3rd Generation Partnership Project
AMI Advanced Metering Infrastructure
CR Cognitive Radio
DA Distribution Automation
DER Distributed Energy Resources
DSA Dynamic Spectrum Acces
GPRS General Packet Radio Service
IoT Internet of Things
LPWAN Low Power Wide Area Network
M2M Machine-to-Machine
MAB Multi-armed Bandit
NB-IoT narrowBand-Internet of Things
PLC Power Line Communications
RL Reinforcement Learning
SF Spreading Factor
TS Thompson Sampling
UCB Upper Confidence Bound
UNB Ultra Narrow Band
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