
HAL Id: hal-01697609
https://hal.science/hal-01697609

Submitted on 23 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coherent buildup of high-order harmonic radiation: The
classical perspective

Simon A. Berman, Jonathan Dubois, Cristel Chandre, Maxime Perin, Turgay
Uzer

To cite this version:
Simon A. Berman, Jonathan Dubois, Cristel Chandre, Maxime Perin, Turgay Uzer. Coherent buildup
of high-order harmonic radiation: The classical perspective. Physical Review A : Atomic, molecu-
lar, and optical physics [1990-2015], 2018, 97, pp.061402(R). �10.1103/PhysRevA.97.061402�. �hal-
01697609�

https://hal.science/hal-01697609
https://hal.archives-ouvertes.fr


ar
X

iv
:1

80
1.

09
72

7v
2 

 [
ph

ys
ic

s.
at

om
-p

h]
  2

 M
ay

 2
01

8
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We present a classical model for high harmonic generation during the propagation of an intense
laser pulse through an atomic gas. Numerical simulations of the model show excellent quantitative
agreement with the corresponding quantum model for the blueshift and intensity reduction of the
propagating laser pulse over experimentally realistic propagation distances. We observe a significant
extension of the high-harmonic cutoff due to propagation effects. Phase-space analysis of our classical
model uncovers the mechanism behind this extension.

High harmonic generation (HHG) is the production of
coherent high-frequency radiation observed during the
ionization of gases by intense laser pulses. The high-
frequency part of the spectrum typically consists of a
plateau region, where the harmonics are produced with
comparable intensity, followed by a cutoff region, which
is often harnessed to generate attosecond pulses. To in-
crease the flux of the highest harmonics for more intense
attosecond pulses, experiments may be performed un-
der conditions of increased driving laser intensity [1], gas
length [2], or gas density [3–5]. Under such conditions,
the driving laser field undergoes tremendous reshaping
while propagating through the gas due to the radiation
emitted by the ionizing atoms, leading for example to a
blueshift and intensity reduction [6–8] throughout prop-
agation. In this case, the high harmonic spectrum mea-
sured after propagation crucially depends on which high
harmonic frequencies were produced at sufficient inten-
sity all along the gas with just the right phase such that
the radiation produced by the many atoms making up
the gas adds up coherently, a collective effect referred to
as phase-matching [9, 10]. Thus, the self-consistent in-
teraction between the ionizing atoms and the laser field
plays a decisive role in shaping the high harmonic spec-
trum [3, 4, 10].

Ideally, a theoretical or numerical treatment of HHG
must bridge the gap between the microscopic response
of the atoms to the electromagnetic field and the macro-
scopic propagation of the field through a gas of billions of
atoms. The most rigorous calculation would require the
self-consistent solution of Maxwell’s equations in three
dimensions coupled to time-dependent Schrödinger equa-
tions (TDSEs) for the atoms [11, 12]. Even today, the
computational cost associated with this approach can be
prohibitive, precluding the simulation of experimentally
relevant sample lengths on the order of mms. Further,
solutions of the TDSE provide limited intuition into the
electron dynamics behind the single-atom response to the
laser field. Alternatively, one can simplify the description
of the atomic response, splitting it into a low-frequency
part dominated by ionization [7] and a high-frequency
part [13, 14] comprised of the radiation emitted during
repeated encounters between the ionized electrons with

their parent ions [15, 16]. The latter may be computed ef-
ficiently [9] using a semiclassical approach [17, 18] under
the assumption that the ionic core potential has a negli-
gible effect on the ionized electron dynamics. This frame-
work allows the simulation of experimental gas lengths,
and the semiclassical description of the atomic response
in terms of quantum orbits [17, 18] facilitates the devel-
opment of control strategies based on the trajectories of
electrons after ionization [1, 19, 20]. However, these sim-
plifications are inappropriate for the description of the
harmonics near and below the atomic ionization thresh-
old Ip [21–23], which in certain situations can strongly
influence the yield of higher harmonics [20, 24]. Addition-
ally, they leave out key elements of HHG in elliptically
and circularly polarized fields [25, 26]. Therefore, a the-
oretical formulation is needed which simultaneously ac-
counts for the full complexity of the self-consistent atom-
field interaction, includes the influence of the core poten-
tial on the ionized electrons, and allows for the under-
standing of the electron dynamics in phase space as the
pulse propagates through the gas. Here, we propose a
purely classical model which meets these requirements,
and we demonstrate its validity and utility by compar-
ing its behavior with a quantum model. In particular,
we use it to identify the mechanism behind an intrigu-
ing phenomenon –the extension of the cutoff– observed
in quantum simulations.

Our model describes the coupled evolution of the time-
dependent electric field E(τ, z) and the response of the
atoms of the gas to the field throughout the laser pulse
propagation. The evolution parameter in our model is z,
the position along the laser propagation direction. For
the atoms located at z, τ is the time relative to the ar-
rival of the laser pulse to their position, i.e. τ = t− z/c.
We may specify an arbitrary initial state for the atoms
at τ = 0, which is uniform throughout the gas, and
we may calculate the response of the atoms to the field
in a classical or quantum manner. In what follows, we
consider a linearly-polarized laser pulse interacting with
single-active-electron (SAE) atoms. As an example, we
present simulations of the model for a laser pulse with
initial condition E(τ, z = 0) = E0 cos(ωLτ) propagating
through 1 mm of a gas with density ρ = 5 × 1017 cm−3.
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The atomic initial condition, i.e. at τ = 0, is that of
Refs. [27, 28] - a fully ionized state with the electron de-
scribed by a Gaussian wavepacket at rest at a distance
of the quiver radius E0/ω

2

L from the ion, expressed in
atomic units which are used unless stated otherwise. In
Fig. 1, we compare the power spectra of the electric field
at z = 0.37 mm, using a classical description of the atoms
on the one hand and a quantum-mechanical one on the
other. The spectra coincide at low frequencies, espe-
cially near the laser fundamental ωL, which is the fre-
quency range where the dominant propagation effects on
the electric field –the blueshift and intensity reduction–
are encoded. In the upper inset of Fig. 1, these effects
are clearly seen on the time-dependent electric field after
propagation through 1 mm of gas: the blueshift is evi-
dent from the shift of the field extrema to the left of their
initial positions (indicated by dotted lines), while the in-
tensity reduction is seen on the leading edge of the pulse,
where the absolute value of the field amplitude relative
to the incident amplitude is less than one. These effects
are captured equally well by the classical and quantum
atomic models: their respective time-dependent electric
fields are indistinguishable in the upper inset of Fig. 1
and differ by less than 10−2E0 for all considered times
τ and propagation distances z. On the other hand, the
classical description does not capture the high-harmonic
plateau and cutoff radiation, which is present in the quan-
tum model. There, we also observe a significant exten-
sion of the high-harmonic cutoff past the 3.17Up + Ip
cutoff law, where Up = E2

0
/4ω2

L is the ponderomotive en-
ergy. This is unexpected, given that the incident laser
field is monochromatic and each atom only has a sin-
gle active electron. Radiation at these anomalously high
frequencies only begins to emerge clearly about 0.2 mm
into the gas, shown in the lower inset of Fig. 1, indicat-
ing that it is truly a propagation effect. In the following,
we will show that the purely classical model actually al-
lows us to understand the mechanism of this anomalous
high-harmonic radiation, despite its failing to capture the
high-harmonic part of the spectrum on a quantitative
level.

To begin, we consider the physics behind the classi-
cal model. We derived the model from first principles,
starting from Maxwell’s equations and the Lorentz force
law for classical charged particles. The SAE atoms are
assumed to have a static ionic core, and the electrons
are assumed to be nonrelativistic and moving only in
the direction transverse to the laser propagation direc-
tion z. Meanwhile, the electric field is assumed to lie
in the polarization plane, with no longitudinal compo-
nent, and its only spatial dependence is assumed to be
the propagation coordinate z. Thus, our model neglects
three dimensional effects, in particular the focusing of the
laser beam and thus the Gouy phase shift. If desired, a
z-dependent phase and intensity may be imposed exter-
nally to partially account for these effects [29], though
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Figure 1. Filtered electric field spectra of a 3.5 laser cycle
(l.c.) pulse at z = 0.37 mm of a singly ionized 1 mm gas with
density ρ = 5×1017 cm−3. The incident field is E(τ, z = 0) =
E0 cos(ωLτ ), with the field amplitude E0 and frequency ωL

corresponding to an intensity I = 3.5 × 1014 W · cm−2 and
wavelength λ = 1.2 µm. The softening parameter a2 = 2 is
chosen to correspond to an ionization potential Ip = 0.5 a.u.
The electron wavepacket is initialized at the quiver radius.
For the blue curve the dipole velocity is computed classi-
cally, while for the orange curve it is computed quantum-
mechanically. The dashed black lines correspond to 2Up + Ip
and 3.17Up + Ip. Upper inset: The time-dependent elec-
tric fields from each model at z = 1 mm. The black dotted
lines indicate the locations of the extrema of the initial field.
Lower inset: Energy (in arbitrary units) in the electric field
frequency band between 175ωL and 200ωL, as a function of
propagation distance z.

we choose not to do this here in order to emphasize the
self-consistent interaction between the radiation and the
particles. Lastly, we assume that backward-propagating
waves may be neglected, i.e. the field propagates solely
in the positive z direction. Under these assumptions, the
evolution equation for the electric field may be written in
a frame moving at the speed of light c with the incident
laser pulse as

∂E

∂z
=

2πρ

c
〈v(τ, z)〉, (1)

where ρ is the atomic density and 〈v(τ, z)〉 is the
ensemble-averaged dipole velocity at time τ of the atoms
located at z driven by the field E(τ, z). For simplic-
ity, we consider E to be linearly polarized along the x-
direction as it is at z = 0 and take one-dimensional
models for the atoms, but the two dimensional gener-
alization is straightforward. For the classical model,
〈v(τ, z)〉 =

∫

vf(x, v, τ ; z)dxdv, where f is the probabil-
ity distribution function to find an electron with position
x relative to the ionic core and velocity v. At every z, f
satisfies the Liouville equation

∂f

∂τ
= −v

∂f

∂x
+

(

∂V

∂x
+ E(τ, z)

)

∂f

∂v
, (2)
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Figure 2. Electron dynamics along different points of the
propagation. Left panels: z = 0 mm, at the gas entrance.
Right panels: z = 0.37 mm. Top panels: Kinetic energy dis-
tribution of recolliding electrons as a function of time, with
the density indicated by a logarithmic color scale, from the
classical model. Bottom panels: Time-frequency maps of the
dipole acceleration −〈∂V/∂x(τ, z)〉, computed with a time
window of T = 0.35 laser cycles, from the quantum model.
The intensity of radiation at a given time and frequency is
indicated by a logarithmic color scale. In all panels, the red
dashed lines indicate the kinetic energies and corresponding
frequencies of 2Up + Ip and 3.17Up + Ip.

corresponding to the single-atom Hamiltonian

H(x, v, τ ; z) =
v2

2
+ V (x) + E(τ, z)x. (3)

We use the soft-Coulomb potential V (x) = −(x2 +
a2)−1/2 to describe the electron-ion interaction. For the
quantum model, 〈v(τ, z)〉 is obtained from the solution of
the TDSE with Hamiltonian (3) at every z [30]. Details
on the numerical schemes employed to solve our model
equations are provided in the Supplemental Material [31].

On a single-atom level, the classical model does not
capture the high-harmonic plateau and cutoff because it
lacks quantum interference effects [28]. While it may do a
fair job for the low order harmonics originating from the
nonlinear response of the bounded part of the wavepacket
[32, 33], its spectrum is not accurate when the harmonics
are driven by ionized, recolliding trajectories [27, 28, 34].
Evidently, this situation is unchanged when the classical
single atoms are allowed to interact via the electromag-
netic field, as shown in the spectrum of Fig. 1. At the
same time, the quantitative agreement between the clas-
sical and the quantum models for low frequencies per-
sists during propagation. Because these frequencies are
the dominant constituents of the field (see Fig. 1), this
suggests that the classical model provides a faithful rep-
resentation of the true electron dynamics underlying the
quantum model all along the propagation.

This expectation is indeed borne out by the excellent
correspondence between statistics of electron encounters
with the core, or recollisions, obtained from the clas-
sical model and the dipole radiation spectra obtained
from the quantum model, displayed in Fig. 2. Accord-
ing to the semiclassical model [15, 16], an electron which
is driven to the ionic core with a kinetic energy κUp

may recombine into the atomic ground state with en-
ergy −Ip and radiate its excess energy as a photon with
frequency ω = κUp + Ip. This implies that a specific
frequency ω is only emitted when an electron trajectory
with the appropriate kinetic energy κUp enters the core
region [17], a behavior which can be revealed by perform-
ing a time-frequency analysis of the dipole acceleration
−〈∂V/∂x(τ, z)〉 from the quantum model [35, 36]. In
the lower panels of Fig. 2, the dipole acceleration time-
frequency maps are displayed, showing which frequencies
ω are generated at times τ . On the other hand, the top
panels show the probability of an electron recollision with
a given kinetic energy κUp at time τ , obtained from the
classical model. A strong correspondence between these
two figures is expected on the left panels at z = 0, when
the classical and quantum atoms are driven by the exact
same incident field, E(τ, z = 0) = E0 cos(ωLτ). How-
ever, after propagating to z = 0.37 mm, the laser fields
in each model have been driven by different dipole veloc-
ities. Therefore, it is remarkable that the level of agree-
ment between the two fields is so high that the dynamics
of the electrons in both the classical and quantum cases
continues to be very similar throughout propagation, ev-
idenced by the continuing close correspondence between
the two figures in the right panels.

The close correspondence of the two figures does not
hold for all τ , however. For example, comparing the up-
per and lower left panels of Fig. 2, we see that at z = 0,
there are recollisions which occur with κ ≈ 2 during the
first laser cycle in the classical model without emission of
the corresponding high harmonics in the quantum model
[27]. The reason is the total depopulation of the ground
state [36] at the beginning of the pulse, or more generally
speaking the complete lack of an electron wavepacket at
least transiently bounded to the ion. Because the high-
est harmonic frequencies are generated by the quantum
interference between a bounded wavepacket and a rec-
olliding wavepacket [28], a complete lack of a bounded
wavepacket means very high harmonics cannot be emit-
ted. On the other hand, by comparing the upper and
lower right panels of Fig. 2, we see that by z = 0.37 mm,
there is high-harmonic recollision-driven radiation emit-
ted during the first laser cycle. This suggests the creation
of a bound state earlier in the laser pulse as the propa-
gation proceeds. Here, we exploit the main advantage
of the classical model: its ability to confirm and ana-
lyze this scenario by visualizing the electron dynamics in
phase space.

In Fig. 3, we show snapshots of the classical electron
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Figure 3. Snapshots of the distribution function f(x, v, τ ; z) in
a logarithmic scale. Left panels: f(x, v, τm; z), where τm > 0
is the first field intensity maximum after the start of the pulse.
Right panels: f(x, v, τ0; z), where τ0 > τm is the first zero of
the field following τm. The upper panels are at z = 0, while
the lower panels are at z = 0.37 mm.

distribution function f(x, v, τ ; z) at particular times τ
and propagation positions z. With the initial conditions
we have chosen, the electron wavepacket always begins at
rest far on the right side of the core, and the field is posi-
tive and at a maximum. Therefore, the electron is always
initially driven to the left, towards the core. At z = 0,
the electron wavepacket is predominantly on the left of
the ion by time τm when the laser field has reversed direc-
tion once and is again at an extremum. When the field
subsequently goes to zero at time τ0, the wavepacket has
almost completely vacated the core region. However, as
propagation proceeds, the blueshift causes the laser field
to reverse direction earlier in the pulse, and this causes
the center of the wavepacket at time τm to be displaced
to the right. By z = 0.37 mm, the wavepacket is thus
nearly centered over the ion, with the electron velocities
distributed about zero. When part of the wavepacket ar-
rives to the core with a low kinetic energy like this, it has
a high probability of becoming trapped there [37], and in-
deed a trapped part of the wavepacket is clearly observed
in the subsequent snapshot of the distribution function
at τ0 (lower right panel of Fig. 3). This confirms that a
bound state is created earlier in the pulse after propaga-
tion through part of the gas. Furthermore, this explains
the emergence of recollision-driven high-harmonic radia-
tion for τ < 1 l.c. at longer propagation distances, despite
this radiation being absent in this time interval at z = 0.

In addition to providing an explanation of the electron
trapping, the classical model also allows us to explain
the anomalous high harmonic radiation in excess of the
3.17Up + Ip cutoff law that we observed in the quantum
calculation. At z = 0, the left panels of Fig. 2 indicate
that both the recollision kinetic energy and dipole radi-

ation cutoffs are in the expected place, with the cutoff
frequency being ωc = 160ωL in this case. Thus, for small
z, there is no coherent growth of frequencies ω > ωc, as
shown in the lower inset of Fig. 1. However, as propaga-
tion proceeds, a family of recollisions appears, the first
blue arc in the upper right panel of Fig. 2, that returns
in the approximate range 0.75 < τ < 1.25 l.c. and has a
maximum kinetic energy of about 4.1Up or 190ωL. A tra-
jectory analysis reveals that this new family of recollisions
also has a low kinetic energy encounter with the core near
τm, just like the early trapped trajectories. Rather than
becoming trapped, however, these trajectories escape the
core once more, returning with a range of kinetic ener-
gies up to about 4.1Up. This energy agrees well with a
calculation of the maximum return kinetic energy of a
free electron in the field E(τ, z) ionized at τ ∼ τm, with
the effect of the Coulomb potential treated as a pertur-
bation [38]. Because this calculation predicts a cutoff
of 3.17Up + Ip for a monochromatic laser field, we con-
clude that the increase in kinetic energy above the usual
high-harmonic cutoff is due to the departure of the field
from a monochromatic wave throughout propagation. It
is these recollisions’ radiation which drives the evolution
in energy of the macroscopic electric field in the frequency
band of 175ωL to 200ωL starting at z = 0.2 mm, shown
in the lower inset of Fig. 1. The circumstances permit-
ting the anomalous high harmonic radiation are main-
tained over a substantial propagation length, leading first
to the coherent growth of the energy in these frequencies,
followed by the coherent absorption beginning at about
z = 0.5 mm.

In summary, we have presented a purely classical
model for HHG during the propagation of intense laser
pulses through atomic gases. The model agrees quan-
titatively with a quantum model for the low frequency
components of the laser field in the case of an ini-
tially monochromatic pulse propagating through a singly
ionized gas, and the phase-space analysis permitted
by the classical model explains the extension of the
high-harmonic cutoff observed in the quantum simu-
lation. Our model may be useful in the analysis of
experimentally-observed excessively high harmonic radi-
ation, though it is rare in gases [39], as well as the analysis
and further refinement of trajectory-based semiclassical
computational schemes [37, 40] and control strategies for
HHG [1, 20]. Other possible applications of our model
include the study of terahertz emission from field-ionized
gases, where a classical description of the electron mo-
tion is also germane [41], and the study of filamentation,
where first-principles descriptions of the atom-field inter-
action are increasingly sought [42].
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A. Jaron-Becker, M. Murnane, and H. Kapteyn,
Science 336, 1287 (2012).

[5] D. Popmintchev, C. Hernández-Garćıa, F. Dollar,
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stant, E. Cormier, D. Descamps, E. Mével,
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I. NUMERICAL SOLUTION OF THE MODEL

EQUATIONS

In this section, we describe the numerical methods we
employ to solve our model equations. Equation (1) in the
paper is a partial differential equation for the electric field
E(τ, z), where z is the evolution parameter. The right-
hand side of the equation contains the ensemble-averaged
dipole velocity 〈v(τ, z)〉, which represents the response
of the atoms to the field at each z. As illustrated in
Fig. 1, 〈v(τ, z)〉 must be obtained for a given z, whether
classically or quantum-mechanically, and this allows the
electric field to be advanced one step ∆z in space to z +
∆z. This space-stepping is performed over the entire
length of the gas, from z = 0 to z = 1 mm, using a
third-order implicit multistep method.
To obtain 〈v(τ, z)〉 classically, we must first solve

Eq. (2) in the paper, which is the Liouville equation

∂f

∂τ
= −v

∂f

∂x
+

(

∂V

∂x
+ E(τ, z)

)

∂f

∂v
. (1)

This may also be written as

∂f

∂τ
= −{f,H} (2)

where H(x, v, τ ; z) is Hamiltonian (3) in the paper and
{·, ·} is the Poisson bracket for canonically conjugate vari-
ables (x, v),

{F,G} =
∂F

∂x

∂G

∂v
−
∂F

∂v

∂G

∂x
. (3)

We solve Eq. (1) using the scheme developed in Ref. [1]:
we express f as

f(x, v, τ ; z) =

N
∑

α=1

wαδ(x− xα(τ ; z))δ(v − vα(τ ; z)),

Figure 1. Schematic of the model, Eq. (1) in the paper.

where δ is the Dirac delta function and the wα are
constant weighting factors satisfying

∑

α wα = 1. The
(xα(τ ; z), vα(τ ; z)) are classical trajectories obtained by
numerically solving the equations of motion associated
with H(x, v, τ ; z), using a third-order explicit symplectic
scheme [2]. Having thus solved Eq. (1) for a given z, the
ensemble-averaged dipole velocity is obtained as

〈v(τ, z)〉 =

∫

vf(x, v, τ ; z)dxdv. (4)

This approach is very similar to the classical trajec-
tory Monte Carlo approach [3–6]. The main differ-
ence is that the initial conditions (xα(0; z), vα(0; z)) are
chosen on a uniform grid, improving convergence with
increasing N compared to the Monte Carlo case [7],
and they are weighted such that the weights wα ∝
f0(xα(0; z), vα(0; z)) correspond to a given distribution
function f0 representing the initial state of the atom.
For the simulations presented in the paper, we used
N ∼ 4× 106 trajectories.
To obtain 〈v(τ, z)〉 quantum-mechanically, the follow-

ing time-dependent Schrödinger equation must first be
solved for the wavefunction ψ(x, τ ; z):

i
∂ψ

∂τ
= −

1

2

∂2ψ

∂x2
+
(

V (x) + E(τ, z)x
)

ψ. (5)

We use a split-operator method to numerically solve
Eq. (5). The dipole velocity is then obtained from ψ
as the integral of the dipole acceleration,

〈v(τ, z)〉 = 〈v(0, z)〉

−

∫ τ

0

{

E(τ ′, z) +

∫

∂V

∂x
|ψ(x, τ ′; z)|2 dx

}

dτ ′.

(6)

II. COMPUTATION OF THE OBSERVABLES

To perform the time-frequency analysis of an observ-
able O(τ ; z), we compute

Õ(τ, ω; z) =

∣

∣

∣

∣

∫

WT (τ
′ − τ)O(τ ′; z) exp(−iωτ ′)dτ ′

∣

∣

∣

∣

2

.

(7)
We take the window function to be WT (τ) = cos4(πτ/T )
for the range −T/2 < τ < T/2 and zero elsewhere. This
is done in Fig. 2 in the paper for the dipole accelera-
tion −〈∂V/∂x(τ, z)〉 computed from the quantum model,

http://arxiv.org/abs/1801.09727v2
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with T = 0.35 l.c. To obtain the time-dependent kinetic
energy distributions of recolliding electrons from the clas-
sical model, we compute

R(κ, τ ; z) =

∫

f(x, v, τ ; z)Θ(xc − |x|)

×Θ(κcUp − |v2/2− κUp|) dxdv, (8)

where Θ is the Heaviside step function and xc = 5 a.u.
and κc = 0.014 are thresholds.

Because our distribution function f(x, v, τ ; z) is ex-
pressed as a sum over Dirac delta functions, it must be
coarse-grained in order to make the plots in Fig. 3 of the
paper. Thus, what is actually plotted in this figure is

f̃(xg, vg,τ ; z) = (∆x∆v)−1

∫

f(x, v, τ ; z)

×Θ(∆x/2− |x− xg|)Θ(∆v/2− |v − vg|)dxdv
(9)

for xg and vg on a fine grid of spacing ∆x and ∆v in the
x and v directions, respectively.
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and J. Cooper, Phys. Rev. A 46, 380 (1992).

[5] P. Botheron and B. Pons, Phys. Rev. A 80, 023402 (2009).
[6] J. Higuet, H. Ruf, N. Thiré, R. Cireasa, E. Con-
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