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ABSTRACT

The leading voice is an important feature of musical piece and
can often be considered as the dominant harmonic source. We pro-
pose in this paper a new scheme for the purpose of efficient dom-
inant harmonic source separation. This is achieved by considering
a new harmonicity cue which is first compared with state-of-the-art
cues using a generic evaluation methodology. The proposed sepa-
ration scheme is then compared to a generic Computational Audi-
tory Scene Analysis framework. Computational speed-up and per-
formance comparison is done using source separation and music in-
formation retrieval tasks.

Index Terms— Audio Source Separation, Auditory Scene Anal-
ysis, Harmonicity, Sinusoidal Modeling

1. INTRODUCTION

In videos analysis, spatial and temporal continuity can be consid-
ered to define similarities among some elements of a given represen-
tation. In the case of auditory scene analysis [1], only the tempo-
ral continuity of auditory events can be directly considered to track
time/frequency components across time [2, 3]. By contrast, the spec-
tral content is discontinuous in frequency. Fortunately, most auditory
events have the property that the frequencies of their spectral com-
ponents are harmonically related. Indeed, as Alain de Cheveigné
states : “Harmonicity is the most powerful among Auditory Scene
Analysis (ASA) cues. It is also the cue most often exploited in com-
putational ASA systems and voice-separation systems” [4, 5, 6, 7],
and by extension to various Music Information Retrieval (MIR) sys-
tems [8, 9].

Most of the source separation algorithms [10] iteratively esti-
mate the dominant fundamental frequency (f0), and then remove the
spectral components that are most likely to belong to the source at-
tached to the corresponding f0. By contrast, we focus here on the
definition of a similarity function between time/frequency compo-
nents, that considers the harmonicity cue without relying on the prior
estimation or knowledge of the f0’s. Although not required this prior
knowledge can be embedded easily and improve the grouping capa-
bility of the proposed similarity.

Many of the existing similarities that consider the harmonicity
cue only make use of the mathematical relationship between the fre-
quencies of the considered components [11, 12, 13]. This approach

This work was funded by the National Science and Engineering Re-
search Council (NSERC), the Social Sciences and Humanities Research
Council (SSHRC) of Canada, and the Portuguese Foundation for Science
and Technology (FCT).

has several pitfalls. First, the fact that two components have har-
monic frequencies is not directly linked to the fact that an audible
pitch is perceived. And inversely, the fact that there is an audible
pitch does not imply that all of the frequencies of the spectral com-
ponents of the pitched source will be in perfect harmonic relation.

In this paper, we describe a new way of considering the har-
monicity cue by assigning to each time/frequency components a spec-
tral pattern. The correlation of those patterns in a wrapped harmonic
space defines the similarity of the two considered components as de-
tailed in Section 3. This similarity called Harmonically Wrapped
Peak Similarity (HWPS) is then compared in Section 4 to state-of-
the-art harmonic cues previously described in Section 2.

We proposed in [14] to consider the Normalized cuts algorithm
to design a Computational Auditory Scene Analysis framework that
allows many auditory cues such as the HWPS to be combined in or-
der to express physical or perceptual constraints. This framework
has been applied to dominant harmonic source separation in [15].
The main drawback of the approach is that even with the use of effi-
cient computational techniques [16] and careful implementation, the
algorithm is computationally demanding. We therefore propose in
this paper an efficient algorithm that considers only the HPWS cue.
The computational speed-up and performance comparison with the
Normalized Cuts approach is studied in Section 5.

2. EXISTING HARMONICITY CUES

A wide variety of sounds produced by humans are harmonic, from
singing voice and speech vowels, to musical sounds. As a result the
harmonicity cue has been widely studied. However, only few stud-
ies have focused on the identification of harmonic relations between
peaks without any prior fundamental frequency estimation.

The goal is to define a similarity measure between two frequency
components (i.e. peaks) that should be high for harmonically re-
lated peaks and low for peaks that are not harmonically related.
Many existing approaches [12, 11] use the mathematical properties
of the harmonically related frequencies to build such a similarity
measure. Srinivasan [11] considers an harmonicity map that can be
pre-computed to calculate an harmonic similarity between two spec-
tral bins, independently of their amplitudes. The map is computed
as:

hmap(i, j) = 1 if i|j or j|i (1)

where i, j are bin indices of the Fourier transform. The map is then
smoothed to allow increasing level of inharmonicity using a Gaus-
sian function. It is also normalized so that the sum of its elements
is unity. The standard deviation of the Gaussian function is set to



be 10% of its center frequency, as detailed in [11]. The similar-
ity Ws(pl, pm) between two sinusoidal peaks of indexes l,m in the
analysis frame is then defined as:

Ws(pl, pm) = shmap(Ml, Mm) (2)

where Ml, Mm are the corresponding bin indices of the two peaks
and shmap is the smoothed harmonicity map.

Virtanen estimates for each spectral peak precise floating-point
frequency parameters [12]. These parameters can be estimated using
phase-based estimators [17]. If two peaks pl and pm are harmoni-
cally related, the ratio of their frequencies fl and fm is a ratio of two
small positive integers a and b (which correspond to the harmonic
rank of each peak, respectively).

By assuming that the fundamental frequency cannot be below
the minimum frequency found by the sinusoidal modeling front-end
(i.e. fmin = 50 Hz), it is possible to obtain an upper limit for a

and b, respectively a <
j

fl
fmin

k
and b <

j
fm
fmin

k
. Calculating all the

ratios for possible a and b and choosing the closest to the ratio of the
frequencies, Virtanen uses this error to define a harmonic similarity
measure:

Wv(pl, pm) = 1−mina,b

˛̨̨̨
log

„
fl/fm

a/b

«˛̨̨̨
(3)

3. THE HARMONICALLY WRAPPED PEAK SIMILARITY
(HWPS)

Unlike most existing methods that only consider each peak in iso-
lation the HWPS takes into account spectral information in a global
manner to calculate harmonicity. The basic mechanism behind the
HWPS measure is to assign each peak a spectral pattern. A harmon-
ically wrapped frequency space is used to make the spectral patterns
pitch invariant and the degree of matching between them is used as
a similarity measure between the peaks.

Shifted Spectral Pattern

Our approach relies on a description of the spectral content using
estimates of the frequency and amplitude of local maxima in the
power spectrum, i.e. the peaks. We therefore propose to assign to
each peak, pl, a given spectral pattern, F̃l, defined as the set of fre-
quencies (in Hz) Fl = {fi} within the analysis frame k and shifted
as follows:

F̃l = {f̃i|f̃i = fi − fl}∀i ∈ [1, Lk] (4)

where Lk is the highest peak index of frame k. The spectral pattern
is essentially a shift of the set of peak frequencies such that the fre-
quency of the peak corresponding to the pattern maps to 0 (when i
is equal to l).

Wrapped Frequency Space

This shifting allows some components of the spectral patterns of
peaks belonging to the same harmonic source to be aligned. This
alignment would be perfect in a wrapped frequency axis with mod-
ulus the fundamental frequency of the harmonic source.

To estimate whether two peaks pl and pm are in the same har-
monic source, we propose to measure the correlation between the
two spectral patterns in such a wrapped frequency space. The fre-
quencies of each spectral pattern are then wrapped as follows:

f̂i = mod
„

f̃i

h(fl, fm)
, 1

«
(5)
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Fig. 1. Fisher (a) and Density (b) criteria versus the f0 of the second
source for the Srinivasan cue (dotted line), the Virtanen cue (dashed
line) and the HPWS cue (solid line). The f0 of the first source is set
to 440 Hz.

where h is the wrapping frequency parameter and mod is the real
modulo function. As stated before, this wrapping operation would
be perfect with the prior knowledge of the fundamental frequency.
Without such prior, we consider a conservative approach which tends
to under estimate the fundamental frequency with:

h(fl, fm) = min(fl, fm) (6)

Discrete Cosine Similarity

These two harmonically wrapped spectral patterns (F̂l and F̂m) are
then quantized using an amplitude weighted histograms of 20 bins,
where the contribution of each peak in the histogram is equal to its
amplitude. The spectral pattern is also folded into an octave to form
a pitch-invariant chroma profile. The HWPS measure between the
peaks pl and pm is then defined as the cosine distance between those
two corresponding histograms.

4. EVALUATION OF THE HWPS

In this section, we study the properties of the HWPS cue and con-
trast it with existing state-of-the art harmonicity cues using a generic
evaluation methodology.

A good similarity metric between two peaks is a metric which is
high for peaks of the same harmonic source and low for peaks that



Ws Wv Wh Wh(f0)
F 1.44 (0.31) 1.00 (0.01) 1.22 (0.05) 2.27 (0.37)
D 0.50 (0.01) 0.55 (0.11) 0.80 (0.12) 0.94 (0.16)

Table 1. Results for the separation of two harmonics sets of peaks.
Mean and standard deviation values of the Fisher and Density criteria
are computed for the Srinivasan, Virtanen, HWPS, and HWPS with
prior knowledge of the two f0’s.

do not belong to the same source. We can define the Fisher criterion
F (loosely based on the Fisher discriminant commonly used in sta-
tistical analysis) as the sum of all the inter-class similarities divided
by the sum of all the intra-class similarities. Since the Fisher crite-
rion is not scale invariant, it may not be the best choice to compare
the performance of distinct cues. Nevertheless, it is still an interest-
ing way of evaluating the performance of a metric with respect to
different scenarios.

Given so, we also define a Density criterion D, computed as the
number of peaks that have the closest neighboring peak in the feature
space belonging to the same set. This criterion is scale invariant and
closer to the one considered by clustering algorithms. We represent
the partitioning of a set of elements X using an indicator function:

E: X → N
x 7→ i

where i is the partition index in which x belongs, we can define:

D(X) =
1

(# X)2
# {(a, b) | d(a, b) = minc∈X d(a, c)

∧E(a) = E(b)} (7)

To evaluate the capabilities of the harmonic cues, we consider
two synthetic sets of peaks with harmonically related frequencies
and exponentially decaying amplitude envelope. The first set of
peaks has a fundamental frequency of 440 Hz whereas the f0 of the
second set is iteratively changed to values from 10 to 5000 Hz, using
a 10 Hz step. Table 1 presents the performance of the evaluated har-
monic cues in the [100, 5000] Hz range, using the Fisher and Density
criteria. The last column shows the performance of the HWPS with
prior knowledge of the f0’s of the two sets of peaks.

Figure 1(a) shows the evolution of the Fischer criterion with re-
spect to the f0 of the second set for the three harmonic cues. The
Srinivasan cue shows the expected behavior, with minimal perfor-
mance when the two sources have close f0’s (around 440 Hz). An-
other local minima is found around 880 Hz and the performance
globally increases with the second f0. Since the Virtanen and HPWS
cues consider more precise frequency estimates, a finer behavior can
be noticed around frequencies multiple of the first peak f0. Differ-
ently from the cue proposed by Virtanen, the HWPS performance
increases with the frequency difference between the two f0’s, as de-
sired. As shown in Figure 1(b), the HWPS performs well as far
as the Density criterion is concerned, except at frequency locations
multiple of 440 Hz, the f0 of the reference set.

5. PROPOSED ALGORITHM

The HWPS estimates the degree of harmonic relationship between
two frequency components and more precisely the likelihood that
those two components belong to a dominant harmonic source. This
cue can be combined with other CASA cues as proposed in [15].

Focusing on the task of dominant harmonic source separation
using the HWPS cue only, we can substantially reduce the computa-
tional effort by considering the following algorithm: for each frame
the precise frequencies and magnitudes of spectral peaks are esti-
mated [17]. An harmonicity factor computed as follows:

hl =
X
i 6=l

aiWh(pl, pi) (8)

is assigned to each selected peak pl. This factor indicates the like-
lihood that the considered peak belongs to a dominant harmonic
source, therefore only the peaks with the highest factor value are
considered for resynthesis.

We evaluate the performance of this method, termed Harmon-
ically Enhanced Spectral Representation (HESR), against the Ncut
approach using the different tasks considered in [15], namely singing
voice separation, dominant pitch estimation, and voice detection.

The Ncut algorithm is based on a graph representation of the
set of peaks. The global normalized cut criterion is used to parti-
tion the graph. Within this framework, a perceptual grouping can
be achieved by appropriately defining the similarity between peaks.
We consider here a combination of the HWPS criterion together with
amplitude and frequency proximity’s as described in [15]. Among
a texture window of 10 analysis frames, the set of peaks is divided
between 5 clusters and the peaks of the 2 clusters that are the more
dense in the feature space are considered for resynthesis. The HESR
algorithm, per frame, resynthetizes the 10 peaks with the higest har-
monicity factor hl among the 20 extracted ones.

A 2.2 GHz intel machine was used for the experiments and both
algorithms are implemented in C++ using the Marsyas framework 1.
The computation times are calculated for the processing of the 10
songs. The Ncut algorithm is roughly 2 times real-time and could
therefore be close to real-time with a parallel implementation of the
Singular-Value Decomposition algorithm considered for the cluster-
ing step. Even though, when considered as a front-end for MIR
tasks, one would like to save computation time for further process-
ing. The proposed approach is 8 times faster, making it a more prac-
tical option.

For the separation experiment, we use a dataset consisting of 10
polyphonic music signals of different genres for which we have the
original vocal and music accompaniment tracks before mixing, as
well as the final mix. The signal-to-distortion ratio (SDR) is consid-
ered as a simple measure of the distortion caused by the separation
algorithm [9] and the mean value of the segmental SDR’s achieved
using all the signals is computed. The proposed algorithm only con-
siders the HWPS cue and selects the frequency components of inter-
est in a straightforward fashion. Consequently, the separation per-
formance drops by approximately 3 dB, see Table 2.

For the melody extraction experiment, we use single channel
polyphonic music signals from the MIREX audio melody extrac-
tion dataset 2. It consists of 23 clips of various styles including in-
strumental and MIDI tracks. We estimate the pitch contour from
the dominant melodic voice using using the Praat pitch estimation
[18] on the resynthetized signals using both methods. The HESR
achieved better results for this experiments, which confirms that the
proposed harmonicity criterion is able to select some components of
the dominant harmonic source.

We then conducted a Voicing Detection evaluation, where we
tried to identify whether a given time frame contains a “melody”

1http://marsyas.sourceforge.net
2http://www.music-ir.org/mirex2005/index.php/
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Ncut HESR
Separation Performance (dB) 4.25 1.07
Pitch Estimation Accuracy (%) 46 64
Voice Detection Accuracy (%) 86 83
Computational Cost (× real-time) 1.91 0.23

Table 2. Performance comparison of the Normalized Cut approach
and the HESR one. Computational cost is expressed in terms of real-
time and separation performance in terms of SDR.

pitch or not. The goal of this experiment was to determine whether
the proposed algorithm can be used to achieve a good voicing detec-
tion accuracy in monaural polyphonic recordings. The same dataset
of the 10 polyphonic music pieces for which we have the original
separate vocal track was used for this experiment. The voicing re-
gions were manually labeled from the original vocal track and were
used as the ground truth. A supervised learning approach was used
to train voicing/no-voicing classifiers for two configurations, as pre-
sented in table 2: Ncut refers to using Mel-Frequency Cepstral Co-
efficients (MFCC) [19] calculated over the automatically separated
voice signal, and HESR refers to MFCC calculated over the HESR
mixed voice and music signal. The experiments were performed
using the Weka machine learning framework, where a support vec-
tor machine was trained using the sequential minimal optimization
(SMO) [20]. As shown, the HESR MFCC accuracy compares well to
the slightly superior value achieved when using the Ncut and MFCC
approach. Not presented in the table, but also interesting to com-
pare, is the accuracy of the MFCC feature using the same classifier
but when applied directly to the original mixed signal (i.e. without
any Ncut separation or HESR processing). For this case we get 69%
accuracy, a quite inferior value in comparison to the two values dis-
cussed above.

Those experiments show that the proposed approach, even though
not capable of achieving comparable results for the source separa-
tion task, is able to achieve convincing results as a front-end for
MIR tasks such as pitch estimation and voicing detection at a low
computational cost.

6. DISCUSSION

In this paper we proposed a computationally efficient algorithm for
dominant source separation that considers a harmonicity criterion
for selecting relevant frequency component in the mixture. This har-
monicity criterion is based on a harmonic similarity which is shown
to have good statistical properties.

The efficiency of the proposed algorithm is well suited for being
integrated in feature extraction algorithms for very large datasets or
with real-time constraints as a pre-processing step allowing to focus
on the dominant harmonic content. More specifically, we believe
that the harmonicity factor could be useful for enhancing spectral
representations used for chords or key estimation [8] and plan to
investigate further in this direction.
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