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ABSTRACT
Modal synthesis is a practical and efficient way to model sound-

ing structures with strong resonances. In order to create realistic
sounds, one has to be able to extract the parameters of this model
from recorded sounds produced by the physical system of interest.
Many methods are available to achieve this goal, and most of them
require a careful parametrization and a post-selection of the modes
to guarantee a good quality/complexity trade-off.

This paper introduces a two step analysis method aiming at
an automatic and reliable identification of the modes. The first
step is performed at a global level with few assumptions about
the spectro/temporal content of the considered signal. From the
knowledge gained with this global analysis, one can focus on spe-
cific frequency regions and perform a local analysis with strong
assumptions. The gains of such a two step approach are a better
estimation of the number of modal components as well as a better
estimate of their parameters.

1. INTRODUCTION

The analysis of percussive sounds is of interest for a broad range
of applications, from musical instruments modeling [1] to the au-
dio rendering of interactions between physical objects in virtual
environments [2]. The modal approach is commonly considered
due to its physical motivations, generality and efficiency.

Several approaches are available for estimating the parameters
of the models from recorded sounds. Such analysis methods are
numerous, and most of them can be casted in two different classes:
the ones based on the classical Discrete Fourier Transform (DFT)
and the parametric approaches [3] rooted in linear prediction mod-
els.

Most state-of-the-art modeling methods [1, 2] consider a me-
thod based on the DFT and most of the time require a manual
selection of the components of interest. Despite their interesting
theoretical motivations, parametric methods have until recently
suffered from instability while considering realistic signals, i.e.
recorded sounds. Badeau proposed in [4, 5] several improvements
of a High-Resolution parametric method which enable us to con-
sider this method for the analysis of recorded sounds. Again, a
careful selection of the components of interest is needed in order
to obtain a relevant model of the sound.

In this paper, we propose a two-step analysis method whose
block-diagram is shown on Figure 1. The first step is a global
analysis which provides insight about the spectro/temporal struc-
ture of the analyzed sound. A second step allows us to identify
relevant components by better modeling the energy within the fre-
quency region of the modal tracks identified during the first step.

This second step is implemented using two different approaches:
one based on Auto Regressive Moving Average (ARMA) analysis
and the other on High-Resolution (HR) analysis.

The paper is structured as follows: the underlying sound model
and some motivations are presented in Section 2. The first analysis
step is then presented in Section 3, as well as the details about the
two different implementations considered, based on the DFT and
a High Resolution approach respectively. From the results of this
analysis step, some high level knowledge is obtained by identify-
ing and tracking some modes as explained in Section 4. In turn,
from this high level knowledge, we select some frequency regions
likely to contain some modes of interest. As explained in Section
5 a focused analysis is performed over those regions to better es-
timate their modal content. In particular, the number of modes is
much better estimated. This step is implemented using two differ-
ent methods, one relying on an Auto Regressive approach and the
other on High Resolution techniques. Section 6 demonstrates the
gain of using this two-step analysis scheme by performing an eval-
uation over a set of synthetic modal data, and finally show-cases
the approach on real data.

2. SOUND MODEL

In modal analysis of percussive sounds, the sounding structure is
described in terms of its natural modes. These modes are them-
selves characterized by their frequencies and quality factor. These
parameters are closely related to the geometrical shape of the ob-
ject under study, its physical properties (e.g. stiffness, Young mod-
ulus) and on the boundary conditions (e.g. hinged or clamped ends
for example) [6]. The amplitude and phase of each mode strongly
depends on the excitation provided to the physical structure.

Thus in order to extract all parameters necessary for modal
analysis, we can use a model of the form of:

x(t) =

KX
k=1

Akeδktej(2πfkt+φk) + w(t) (1)

where x(t) is a sample of the observation at time t ∈ Z, K is
the number of exponentially damped cisoids (a.k.a. the order of the
model), (Ak, φk, fk, δk) are the amplitude, phase, frequency and
damping factor of the kth component. The model also includes a
white noise w(t) to account for the part of the sound that does not
exactly fit the model. In order to model a real signal x(t) ∈ R,
with Ns sinusoids, we need a model of order K = 2.Ns with
cisoids going in complex conjugate pairs.
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Figure 1: Block diagram of the proposed analysis methods.

3. BROAD-BAND ANALYSIS STEP

With this first analysis step, one would like to gain insight about
the time/frequency distribution of the energy of the analyzed sig-
nal. To achieve this goal, the signal is segmented in several over-
lapping frames. A time/frequency analysis is performed over each
of these frames to identify some sinusoidal components, see Fig-
ure 2.

3.1. Fourier-Based Analysis

The most common approach is to perform a DFT on each of these
frames. Some peaks in the magnitude spectrum are identified and
their parameters are considered for a first approximation of the pa-
rameters of the components. In other words, Ak, fk, and φk from
Equation 1 are respectively approximated using |S(mk)|, mk/N ,
and ∠S(mk), where mk is the bin index of the selected peak and
N is the size of S(m), the DFT of the signal s(t). The amplitude
and frequency parameters can be improved by numerous methods,
from quadratic interpolation [1] to phase-based methods [7].

The damping parameter has to be estimated by other means.
Indeed, the Fourier theory assumes a signal that is periodic over the
interval of observation. Because the shape of the vibrating object is
fixed, the frequency of the modes is assumed to be approximately
constant during the overall duration of the signal. The damping pa-
rameter can be estimated by fitting an exponential to the evolution
of the amplitude of a given frequency bin over several frames. A
more stable estimate can be obtained using a smoothed version of
this amplitude evolution by using the Energy-Decay Rate (EDR)
method [1].

In Equation 1, the phase and amplitude are initial parameters,
i.e. valid at the first sample of the frame. However the amplitude –
and also the phase if the window has been zero-phased prior to the
DFT calculation – are valid at the middle of the frame. In order to
have a valid set of parameters, those parameters have to be adjusted
using respectively the damping and the frequency estimate.

3.2. High-Resolution Analysis

The other option we use for the estimation of the parameters of the
model at different times relies on an adaptive implementation [4]
of the ESPRIT algorithm [8].

This algorithm belongs to the family of subspace-based high-
resolution (HR) spectral estimation techniques. This means that,
for each frame of data, an eigenanalysis of the autocorrelation ma-
trix is performed. With the assumption that the observed signal
is of the type of Equation 1, it can be shown that the K highest
eigenvalues will correspond to the powers of the components of the
model plus the power of the noise w(t). The eigenvectors associ-
ated to the K highest eigenvalues then form a base of the so-called
"signal subspace". Based on a property of this signal subspace [8],
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Figure 2: Sinusoidal components estimated from a recording of an
impact between a metallic plate and a ceramic hammer. The size
of the dots indicates the amplitude of the components.

ESPRIT allows the estimation of the frequencies and damping fac-
tors of the modes. The amplitude and phase of each component is
then obtained via a projection of the frame on the estimated signal
model. For the next frame, the signal subspace is updated and the
parameters estimated once again. It is important to note that an ex-
tensive pre-processing is performed on each frame before it is fed
into the ESPRIT algorithm: the signal is first split into subbands,
down-sampled in each of these bands, and whitened. All these
steps are used in order to ensure efficient computation and a bet-
ter conformance of the data to the model [5]. This method is thus
far more computationally costly than the Fourier-based analysis.
On the other hand, HR methods provide a much greater frequency
resolution than Fourier-based method for small data records [5].
Also, one of the advantages of ESPRIT over the standard Fourier
analysis is that all the parameters of the model of Equation 1 are
estimated at the same time.

4. MODE IDENTIFICATION AND TRACKING

The broad-band analysis, even though computed with few assump-
tions, allows us to gain insight about the parameters of the model,
i.e. the number of modes, their distribution in frequency and time.

The data obtained in the first analysis step is "flattened" in time
to form a frequency histogram, where the contribution of each of
the identified component is its cumulative amplitude over the dura-
tion of the sound. The frequency of the modes are then determined
by locating the peaks in this histogram. To account for the global
shape of the spectrum, the median filtered version of the histogram
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Figure 3: Frequency Histogram (solid line) used to identify the
modes. The median filtered version (dashed line) is removed prior
to thresholding.

is subtracted prior to peak picking. The number of modes can be
set by the user or estimated using a threshold value, see Figure 3.

For each mode, some peaks whose frequencies are close to
the frequency of the mode are tracked over time using standard
frequency proximity criterion [9] to form modal tracks. Figure 4
shows the evolution of the amplitude of two modal tracks through
time. For a given track, the amplitude is expressed as the evolution
of the amplitudes estimated during the broad-band analysis (solid
line), as a function of the damping values measured (dotted line),
or as a function of the median value of the damping values over
the entire duration of the modal track (dashed line).

Depending on the cases, the fit obtained after the initial mod-
eling can be as good as on top of Figure 4(a) or as bad as on Fig-
ure 4(b), where the beating clearly indicates the presence of more
than one mode at this frequency. In cases similar to the latter, fur-
ther analysis is then required to achieve a better estimation of the
model.

5. FOCUSED ANALYSIS STEP

Before starting the second analysis we perform a selection of the
partial tracks to process. First of all, the modal tracks with too low
an amplitude (< −60dB) and that are too short (≈ less than 10
frames) are discarded from the focused analysis. Then, we com-
pute the mean error between the amplitude of the modal track and
the estimated amplitude profile (computed using the median es-
timated damping value). If this error is above a given threshold,
we decide to perform the second step of the modal analysis: a
preprocessing step followed by either ARMA modeling, or a non-
adaptive ESPRIT analysis.

5.1. Pre-Processing

In order to focus the analysis on the selected modal track, the sig-
nal is bandpass filtered with a complex FIR filter centered around
the median of the estimated frequencies over the whole track. Then
this signal is modulated and down-sampled before being fed to
the parametric spectral estimation method. One of the main in-
terests of this step is to restrict the possible value of the order of

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (frames)

A
m

pl
itu

de

 

 

(a)

0 50 100 150 200 250 300
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (frames)

A
m

pl
itu

de

 

 

(b)

Figure 4: Evolution of the Amplitude over time. A strong correla-
tion between the measured amplitude and the one computed using
the damping parameter can be observed on (a) and not on (b).

the model. Indeed, by using a complex filter, we make sure only
to consider positive frequencies, thus dividing the necessary order
by two. Moreover, by only considering a narrow sub-band of the
spectrum we limit the number of potential components to identify.

5.2. Auto-Regressive Analysis

Here we use the Steiglitz-McBride ARMA estimation method [10]
to identify the frequencies and damping factors of the model. Us-
ing an AR order K and a MA order p, we analyze the pre-processed
signal. The K poles, zk of the sound are computed by finding the
roots of the AR part of the signal model. The frequency and damp-
ing factor of the mode associated to one of these poles is obtained
as follows:

fk =
=(log (zk))

2π
and δk = <(log (zk)) (2)

where M is the down-sampling factor and fc is the frequency of
the modulating signal from the pre-processing stage.
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5.3. High-Resolution Analysis

The other option we chose for the second pass of analysis is to
use the ESPRIT algorithm on the pre-processed signal. Here we
use a non-adaptative version of ESPRIT and thus treat the modal
track on its entire duration. The pre-processing guarantees that
the signal to process has a reasonable size (not more than 1000
samples [11]). The analysis parameters are the model order K and
the “pencil parameter", i.e. the number of data vectors used to
construct the approximation of the autocorrelation matrix. Based
on the theoretical analysis presented in [12], we set p to the optimal
value of N+1

3
where N is the size of the down-sampled, modulated

modal track.

5.4. Sorting the results

Once the frequencies and damping factors are estimated for all the
components of the model, the amplitudes and phases are estimated
via least squares estimation based on the input signal.

The last part of this analysis consists in discarding the irrele-
vant components. This is done by discarding components which
would diverge (δk > 0) and those with frequencies too far from
the median of the modal track frequencies. Finally, we only keep
components with amplitudes within a given threshold of the max-
imum amplitude of the modal track, see Figure 5.

6. EXPERIMENTS

The proposed scheme for modal analysis was implemented in Mat-
lab. The implementation details of this framework are presented.
The performance of different configurations of the two steps is
evaluated over synthetic data. Finally, we show how this new tool
can be applied to real life scenarios.

6.1. Modal Analysis Framework

As detailed in the previous sections, the proposed analysis scheme
has two main steps: the broad-band analysis step and the focused
analysis step. The first one is implemented using whether a Fourier
based analysis or the High Resolution analysis method1.

The Fourier based analysis is implemented using the phase
vocoder approach for the estimation of the frequency and the am-
plitude is further refined using this frequency estimate [7]. A win-
dow size of ≈ 0.1s and a hop size of ≈ 1.5ms is considered.
A maximum of 180 sinusoidal components can be detected per
frame. The HR analysis is parametrized equally except for the
window size which is twice the hop size.

Once the modes are identified and tracked as described in Sec-
tion 4 with an identification threshold at 10 dB, the focused analy-
sis is performed in the frequency region of the identified modes.

The ARMA analysis was performed using K = 8 and p = 4
as was suggested in [13]. For the HR analysis, the order of the
model was K = 8. The frequency range was set to 0.001 normal-
ized frequency wide and the amplitude threshold was set to 0.1.

6.2. Performance over Synthetic Data

In order to illustrate the behaviors of the different possible analysis
scenarios, the following methodology is considered. One thousand
synthetically generated sets of modes are used to each synthesize

1The Matlab code is available upon request to R. Badeau
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Figure 5: Normalized amplitude of the components estimated us-
ing the ARMA (square) and the HR (circle) focused analysis meth-
ods in the case of a test signal consisting of two closely spaced
modes. Only the components with amplitude higher than the
threshold (solid line) are considered.

one second of sound. The amplitudes are randomly chosen in the
(0.9, 1) range, the damping factors in the (0.0001, 0.001) range.

Two different frequency distributions are considered in two
different experiments. In the first one, only two modes are consid-
ered within a small frequency range (0.2499, 0.2501) in normal-
ized frequency. In the second distribution, 20 modes are generated
within the (0.2, 0.3) normalized frequency range.

The different combinations of broad-band and focused analy-
sis methods are then considered to estimate modes from the syn-
thetic sound file. The original set of modes and the estimated one
are then compared to evaluate the performance of a given analysis
scheme using the following criterion:

c = 10 log10

„ P
sori(n)2P

(sori(n)− sest(n))2

«
(3)

where sori(n) and sest(n) are respectively the signal generated from
the original set of modes and the estimated one, using Equation 1
over 1 second, with initial phases equal to 0.

The first experiment shows the behavior of the proposed ap-
proaches when facing closely spaced sinusoids. The sole use of the
broad-band analysis step is not sufficient to distinguish between
very close partials leading to an equivalent result for the Fourier
and HR approaches, see Table 1. The use of the focused analy-
sis allows us to distinguish the two modes leading to a significant
improvement. The ARMA approach tends to consistently over es-
timate the number of components due to a difficult thresholding of
the amplitude of the detected components, see Figure 5, leading to
inferior performance compared to the HR focused analysis.

The second experiment considers a modal distribution closer
to the one of percussive sounds. The sole use of the first step gives
consistent results. The overestimation of the number of modes
within a focused analysis makes the ARMA perform badly, whereas
the use of the HR focused analysis provides a significant improve-
ment. A similar performance is achieved whether we use the HR or
Fourier broad-band analysis followed by the HR focused analysis.
This leads us to the conclusion that, for our purpose, an efficient
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broad-band HR Fourier
focused no ARMA HR no ARMA HR

2 1.07 (2.27) 21.19 (5.54) 55.74 (16.12) 0.73 (1.43) 27.47 (9.22) 55.71 (13.51)
20 1.45 (0.75) -24.12 (1.76) 5.92 (4.66) 0.86 (0.61) -24.27 (1.60) 6.69 (4.45)

Table 1: Performance of the different analysis schemes. Mean and (standard deviation) of c are computed over 1000 realizations.

Fourier-based broad-band analysis followed by a HR focused anal-
ysis over some frequency regions is the most appropriate approach.

6.3. Application to the Estimation of Excitation Signals

One can perform a deconvolution of a sound with the impulse re-
sponse of a filter identified by modal analysis. In a Source/Filter
modeling paradigm this allows to estimate the source (a.k.a. exci-
tation).

We consider here two sounds, one from a plucked classical
guitar, and one from a metallic plate struck by a ceramic hammer.
The power spectral density (PSD) of the two sounds and the PSD
of the excitation signals with and without focused analysis are rep-
resented in Figures 6 and 7. For these examples, we applied the HR
based broad-band analysis only and the Fourier based broad-band
analysis followed by the two flavors of focused analysis. We then
used the standard inverse filtering approach presented in [1] to es-
timate the excitation based on the modal parameters estimated.

In general, we can see that the main modes of the original
sounds are more consistently absent of the excitation signal after
the focused analysis steps. We note the presence of some rela-
tively strong modes for example in Figure 6 (c) at frequency 0.05
or in Figure 7 (b) at frequency 0.65. These are actually artifacts
of the deconvolution process (see [14] for some solutions to that
problem). Comparing ARMA and HR focused analysis we ob-
serve that the excitation PSDs obtained using HR focused analysis
exhibit a generally flatter spectrum with more energy in the high
frequencies, consequence of a shorter duration of the actual ex-
citation signal and thus, would seem more adapted for efficient
parametrization of a percussive sound.
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8. CONCLUSION

A two-step analysis scheme for the estimation of modal parame-
ters from recorded sounds has been proposed. It aims at alleviat-
ing the tedious parametrization and manual post-processing usu-
ally needed when only one analysis step is considered.

A broad-band analysis is processed over the entire duration of
the signal allowing to gain some insight about the time/frequency
regions of interest. Focusing on those regions, the second step is
able to reliably identify modes and estimate their parameters even
in the case of closely-spaced components.

The interest of this two-step modal identification approach was
demonstrated for synthetic data as well as in the real scenario of
excitation signal estimation in source filter modeling.
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(a)

(b)

(c)

Figure 6: Normalized Power Spectral Density of a guitar sound
(a) and the corresponding estimated excitation using a HR broad-
band analysis only (dashed line) and in solid line, a Fourier broad-
band analysis followed by, respectively, the ARMA focused analy-
sis (b), and the HR focused analysis (c).

(a)

(b)

(c)

Figure 7: Normalized Power Spectral Density of a plate hit by a
hammer (a) and the corresponding estimated excitation using a
HR broad-band analysis only (dashed line) and in solid line, a
Fourier broad-band analysis followed by, respectively, the ARMA
focused analysis (b), and the HR focused analysis (c).
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