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ABSTRACT

Source-filter models are widely used in numerous audio pro-
cessing fields, from speech processing to percussive/contact sound
synthesis. The design of filters for these models—be it from scratch
or from spectral analysis—usually involves tuning frequency and
damping parameters and/or providing an all-pole model of the res-
onant part of the filter. In this context, and for the modelling of per-
cussive (non-sustained) sounds, a source signal can be estimated
from a filtered sound through a time-domain deconvolution pro-
cess. The result can be plagued with artifacts when resonances ex-
hibit very low bandwidth and lie very close in frequency. We pro-
pose in this paper a method that noticeably reduces the artifacts of
the deconvolution process through an inter-resonance phase syn-
chronization. Results show that the proposed method is able to
design filters inducing fewer artifacts at the expense of a higher
dynamic range.

1. INTRODUCTION

The source-filter model is widely used in numerous audio pro-
cessing fields, from speech processing to percussive/contact sound
synthesis. Consequently, estimation of the filter parameters has
received much attention in the literature [1]. These filters usually
model the body resonances of the sound generation system. They
are usually expressed in terms of central frequency and bandwidth
(or damping parameter).

The initial phase of the filter, though neglected in many syn-
thesis scenarios, also influences the synthesis quality [2]. As shown
in [3] and detailed in the remaining of the paper, controlling the
initial phase becomes very important to achieve a high quality es-
timation of the excitation signal from an actual recorded sound.

Indeed, this estimation can be performed by deconvolving a
recorded signal using the inverse of a model filter. Because decon-
volution is equivalent to multiplying the recorded signal’s spec-
trum by the inverse of the frequency response of the filter, it is crit-
ical that we control the valleys of the filter’s magnitude response.
Without explicit control of the initial phase, antiresonances in the
filter’s magnitude response could generate undesirable resonances
in the estimated excitation signal.

This issue has been previously identified and partially addressed
by Laroche and Meillier in [3]. Their study focused on modelling
the piano, the resonant modes of which are quasi-harmonically
spaced in the spectrum. Even though they use a cosine section
structure for the model filter, the authors notice in [4] that the es-
timated excitation signal still contains some pitched information.
Further analysis shows that this pitch information does not cor-
respond to any filter resonances. Rather, the pitch information is

actually due to artificially generated resonances resulting from the
inversion of the antiresonances. Since Laroche and Meillier con-
sider harmonic sounds, frequency locations of the antiresonances
of the filter are accordingly harmonically spaced but shifted by half
of the fundamental frequency, resulting in a distorted pitch percep-
tion. In order to tackle this issue, they propose in [3] a method
specifically tailored to the piano: joint estimation of the excitation
signal from recordings of several chords hit by the same type of
hammer at the same velocity.

When dealing with contact sounds such as a hammer hitting a
plate, one has to cope with filters of even more complex structure
[5]. The geometry of the plate will generate a set of inharmonic
resonances whose frequencies may be arbitrarily close. In this
case, the antiresonances are accordingly even more pronounced.

We propose in this paper to explicitly adjust the initial phases
of each mode of the resonant filter in order to smooth the shape
of the valleys of its magnitude response. As detailed in Section 3,
we consider the closed-form expression of a simple filter structure
consisting of two complex poles, derived in Section 4, to find the
phase difference between neighbouring poles. By assuming that
the influence of the non-adjacent poles is negligible, we will con-
sider an incremental algorithm to adjust the phases of the modes.

The performance of our proposed method of filter design is
compared to state-of-the-art filter structures such as those proposed
by Laroche and Meillier in Section 5. The comparisons consider
several criteria, such as the preservation of the dynamic range of
the filter, the preservation of the amplitude ratio between the dif-
ferent resonances, and the reduction of the antiresonances phe-
nomenon. Results show that the proposed method preserves the
ratio of modal amplitudes and achieves a much better reduction of
the antiresonances at the expense of a higher dynamic range.

2. THE SOURCE-FILTER MODEL

A percussive sound can be conveniently decomposed into two el-
ements: the excitation and the response. To model such a sound,
one can consider an additive scheme [6] where a highly damped
transient is superimposed over a slowly-decaying sound. The tran-
sient part models the interaction of the exciter and the resonator—
the attack of the sound. The slowly-decaying sound represents the
resonating structure vibrating according to its own modes.

As remarked in [4], the complete separation of excitation and
response may be convenient, but it neglects the coherence of the
interaction between the excitator and the resonances. Indeed, the
role of the exciter is to distribute energy over the different modes of
the vibrating structure. The source-filter model is therefore more
appropriate as it explicitly models the physical interaction between
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excitation and response, though it usually neglects the coupling of
the source and the filter.

Assuming that the excitation is short compared to the total du-
ration of the resulting sound (which is generally the case for per-
cussive sounds), we can model the response of the sound as a sum
of K damped sinusoids

h(n) = u(n)
K

∑
k=1

gkrn
k cos(θkn+φk), (1)

where gk, rk, θk, and φk, are respectively the gain, damping, angu-
lar frequency, and initial phase of sinusoid k; and u(n) denotes the
unit step function. Taking the Z-transform of h(n), we obtain

H(z) =
1
2

K

∑
k=1

gk

(
e jφk

1− rke jθk z−1 +
e− jφk

1− rke− jθk z−1

)
(2)

=
K

∑
k=1

Bk(z)
Ak(z)

=
∑

K
k=1 Bk(z)∏ 6̀=k A`(z)

∏
K
k=1 Ak(z)

=
B(z)
A(z)

, (3)

where

Bk(z) = gk[cos(φk)− rk cos(θk −φk)z−1] (4)

Ak(z) = 1−2rk cos(θk)z−1 + r2
k z−2. (5)

The denominator of the filter H(z) models the resonant part of
the percussive signal, while initial phases φk and gains gk, though
dependent on the excitation, may be set arbitrarily (as the initial
conditions in physics).

By setting φk = − π

2 for all k, we obtain a filter consisting of
parallel second-order sine sections [3]:

Hsine(z) =
1
2 j

K

∑
k=1

gk

(
1

1− rke jθk z−1 −
1

1− rke− jθk z−1

)
. (6)

The impulse response of Hsine(z) consists of a sum of K damped
sines. By setting φk = 0 for all k, we obtain a filter consisting of
parallel second-order cosine sections:

Hcosine(z) =
1
2

K

∑
k=1

gk

(
1

1− rke jθk z−1 +
1

1− rke− jθk z−1

)
(7)

Similarly, the impulse response of Hcosine(z) consists of a sum of
K damped cosines.

A different method is to use a simple all-pole structure to im-
plement the filter:

Hall-pole(z) =
1

A(z)
=

1

∏
K
k=1 Ak(z)

(8)

In this case, B(z) = 1 and the Bk(z) can be retrieved by partial
fraction expansion. This leads to a phase configuration strictly
determined by the parameters of the denominator.

For this study, we would like to design a filter with a mag-
nitude response that has a relatively modest dynamic range and
also minimizes the depth of the valleys between peaks. We will
make these notions more precise in Section 5.1, but let us qualita-
tively consider Figure 1, which shows the magnitude responses of
the three common filter structures modelling five equally-damped
modes.

The all-pole structure leads to a high dynamic range—more
than 100 dB over the entire spectrum and around 40 dB between
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Figure 1: Magnitude responses of all-pole (dash-dotted line), sine
section (dashed line) and cosine section (solid line) filter structures
modelling five equally-damped modes.

the first and last peak. Note also that, although the modes are
equally damped, the magnitudes of the peaks are not equal.

The parallel sine structure displays a much smaller dynamic
range, and also spreads energy equally over the modes. Unfortu-
nately, the valleys between the modes are very deep and sharp; this
will likely result in artifacts during inverse filtering.

The parallel cosine structure compares favourably by achiev-
ing the lowest dynamic range, smooth valleys between the poles,
and a good spread of energy over the modes. This structure has
been considered in [3]. The authors concluded that when consider-
ing real cases with closely-spaced modes, the antiresonances were
still too strong, leading to the presence of artifacts in the excitation
signal.

Noticing that the antiresonance properties of sine and cosine
section filters are determined by the global phase configuration,
this lead us to the conclusion that the antiresonance phenomenon
is created by the phase relationships between the second-order
structures Bk(z)

Ak(z)
. To mitigate the effects of antiresonances further,

we propose to control the zeros of Bk(z) by controlling the initial
phase φk of each mode k independently using equation (2).

3. PROPOSED APPROACH

In order to determine the φk’s such that the magnitude response
valleys are as smooth as possible, we ideally require the roots of
the numerator of (3). For anything but the simplest filters, numer-
ical issues make this computation impossible in practice. Conse-
quently, we propose to assume that only the poles immediately ad-
jacent to a valley in the magnitude response have any appreciable
effect on antiresonance properties.

Let us therefore consider one-pole filters Hk(z) of the form

Hk(z) =
gke jφk

1− rke jθk z−1 . (9)

To control the magnitude of the valley between two such poles, we
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Figure 2: Magnitude responses of cosine section filter (dashed
line) and IPA filter (solid line) modelling synthetic set of modes.

propose to find the phase difference between the two poles such
that the interference between the two poles over the bottom of the
valley is minimized. Assume that we know the angular frequency
ωmin that minimizes the magnitude response in the valley between
two poles Hk(z) and Hk+1(z) when φk = φk+1 = 0, that is

ωmin = argmin
ω∈(θk ,θk+1)

∣∣∣∣ gk

1− rke jθk e− jω +
gk+1

1− rk+1e jθk+1 e− jω

∣∣∣∣ . (10)

This frequency can be approximated using the derivation of Sec-
tion 4.

The phase response of Hk(z) is given by

∠Hk(e jω ) = φk − arctan
[

rk sin(ω −θk)
1− rk cos(ω −θk)

]
(11)

For a given value of φk, φk+1 can be set such that the relationship
between the poles is neither constructive nor destructive, i.e.:

∠Hk+1(e jωmin) = ∠Hk(e jωmin)+
π

2
(12)

The proposed method, which we call incremental phase adap-
tation (IPA), is used to incrementally set the phases of the poles.
The algorithm is initialized by arbitrarily setting φ1 = 0. The ini-
tial phase φ2 of the next pole is then computed using equation
(12). The poles are assumed to be sorted in order of increasing
frequency θk.

Figures 2 and 3 compare the magnitude responses of filters
designed using IPA to cosine section filters created using equation
(7).

4. FREQUENCY AT THE BOTTOM OF A VALLEY

A reasonable assumption to find an approximation of ωmin is to
solve ∣∣∣∣ gk

1− rke jθk e− jωmin

∣∣∣∣ =
∣∣∣∣ gk+1

1− rk+1e jθk+1 e− jωmin

∣∣∣∣ . (13)
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Figure 3: Magnitude responses of cosine section filter (dashed
line) and IPA filter (solid line) modelling a set modes extracted
from a percussive sound. The frequency axis is constrained to 0.3
to 1.1 radians.

After some algebra, we have

ωmin = arctan(bk,ak)± arccos

g2
k+1(1+ r2

k )−g2
k(1+ r2

k+1)√
a2

k +b2
k

 ,

where

ak = 2[g2
krk+1 cos(θk+1)−g2

k+1rk cos(θk)]

bk = 2[g2
krk+1 sin(θk+1)−g2

k+1rk sin(θk)].

For real solutions we must have∣∣∣g2
k+1(1+ r2

k )−g2
k(1+ r2

k+1)
∣∣∣≤√

a2
k +b2

k .

Negative frequency solutions must be offset by 2π to ensure ωmin ∈
[0,2π), and we simply choose the ωmin ∈ (θk,θk+1) as the appro-
priate value.

5. EXPERIMENTS

In this section, the proposed IPA filter design scheme is compared
with the all-pole, sine section, and cosine section designs. Some
criteria will be considered to evaluate the performance of the dif-
ferent approaches using databases of synthetic and real modes to
test the designs.

5.1. Performance Criteria

We formulate three criteria to evaluate a filter H(z) modelling a
resonator with K modes at angular frequencies θk: the overall dy-
namic range (ODR), the pole dynamic range (PDR), and the aver-
age valley curvature (AVC).

We denote the magnitude response of the filter H(z) by G(ω)=
20log10|H(e jω )|. The ODR is then defined as the difference be-
tween the maximum and minimum values of the magnitude re-
sponse:

ODR{G}= max
ω∈[−π,π)

[G(ω)]− min
ω∈[−π,π)

[G(ω)]. (14)

DAFX-3



Proc. of the 11th Int. Conference on Digital Audio Effects (DAFx-08), Espoo, Finland, September 1-4, 2008

0 2 4 6 8 10
50

100

150

200

O
DR

 (d
B)

0 2 4 6 8 10
0

50

100

150

PD
R 

(d
B)

0 2 4 6 8 10
0

0.005

0.01

0.015

AV
C 

(d
B)

Number of Modes

Figure 4: ODR, PDR, and AVC versus the number of modes con-
sidered for the four different methods of filter design: all-pole (di-
amonds), sine sections (stars), cosine sections (squares), and IPA
(circles).

The PDR is defined as the difference between the maximum and
minimum peaks of the filter magnitude response:

PDR{G}= max
ω∈{θ1,...,θK}

[G(ω)]− min
ω∈{θ1,...,θK}

[G(ω)]. (15)

The AVC is defined as

AVC{G}=
1

K−1

K−1

∑
k=1

1
θk+1 −θk −2ε

∫
θk+1−ε

θk+ε

G′′(ω)dω (16)

=
1

K−1

K−1

∑
k=1

G′(θk+1 − ε)−G′(θk + ε)
θk+1 −θk −2ε

. (17)

Here, ε is a positive number used to discard the effects of peaks on
the AVC.

5.2. Synthetic Data

In the first experiment, we compute filters modelling sets of K ∈
[1,20] modes, with mode frequencies θk and damping parameters
dk = ln(rk) randomly selected such that θk ∈ (0,π) radians and
dk ∈ (0,0.001). We compute 1,000 filters for each set of K modes
and take the mean values of ODR, PDR, and AVC over the filters.

Figure 4 compares the performance of filters designed using
all-pole sections, sine sections, cosine sections, and IPA. (The trends
in performance do not change beyond ten modes.) The ODR and
PDR curves for the standard filter structures confirm the qualitative
discussion of Section 2. Filters designed using IPA have a higher
dynamic range (both in terms of ODR and PDR) than filters de-
signed using cosine sections. This appears to be the price of the
significant improvement in AVC.

5.3. Percussive Data

In this experiment, we considered 147 sets of modes extracted us-
ing high resolution approaches [7] from a database of percussive
sounds recorded by Bruno Giordano1. Details about the type of

1Results of deconvolution using the three different filter designs will be
presented at the conference.

ap sin cos IPA
ODR (dB) 0.010 0.009 0.005 0.007
PDR (dB) 0.008 0.009 0.005 0.005
AVC 4.92e-07 7.52e-07 6.32e-07 4.17e-07

Table 1: ODR, PDR, and AVC criteria for the four methods of fil-
ter design over sets of modes extracted from percussive sounds:
all-pole (ap), sine sections (sin), cosine sections (cos), and incre-
mental phase adaptation (IPA).

hammers and plates, as well as the recording settings, can be found
in [5]. The results displayed in Table 1 globally confirm the results
obtained in the synthetic case.
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7. CONCLUSION

The source-filter model is a very convenient approach for the mod-
elling of a variety of natural phenomena. One of the major issues
is the estimation of the excitation signal since only the filter output
is available in common recording settings. The proposed approach
attempts to improve the inverse filtering process by individually
controlling the phase of the different modes to reduce some arti-
facts that limit the applicability of this process.
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