
HAL Id: hal-01697481
https://hal.science/hal-01697481

Submitted on 31 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MarsyasX : Multimédia Datflow Processing vith Implicit
Patching

Luís Teixeira, Luis G Martins, Mathieu Lagrange, George Tzanetakis

To cite this version:
Luís Teixeira, Luis G Martins, Mathieu Lagrange, George Tzanetakis. MarsyasX : Multimédia Datflow
Processing vith Implicit Patching. Proceeding of the 16th ACM international conference, Oct 2008,
Vancouver, France. �10.1145/1459359.1459510�. �hal-01697481�

https://hal.science/hal-01697481
https://hal.archives-ouvertes.fr

See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/221572114

MarsyasX:	multimedia	dataflow	processing	with
implicit	patching.

Conference	Paper	·	January	2008

DOI:	10.1145/1459359.1459510	·	Source:	DBLP

CITATIONS

4

READS

23

4	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

The	Orchive	View	project

ZATLAB	View	project

Luis	Gustavo	Martins

Universidade	Católica	Portuguesa

30	PUBLICATIONS			209	CITATIONS			

SEE	PROFILE

Mathieu	Lagrange

Institut	de	Recherche	et	Coordination	Acoustiq…

44	PUBLICATIONS			342	CITATIONS			

SEE	PROFILE

George	Tzanetakis

University	of	Victoria

200	PUBLICATIONS			6,385	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	George	Tzanetakis	on	19	May	2014.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/221572114_MarsyasX_multimedia_dataflow_processing_with_implicit_patching?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221572114_MarsyasX_multimedia_dataflow_processing_with_implicit_patching?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/The-Orchive?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/ZATLAB?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Martins9?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Martins9?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Universidade_Catolica_Portuguesa2?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luis_Martins9?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathieu_Lagrange?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathieu_Lagrange?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Institut_de_Recherche_et_Coordination_Acoustique_Musique?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mathieu_Lagrange?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Tzanetakis?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Tzanetakis?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Victoria?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Tzanetakis?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George_Tzanetakis?enrichId=rgreq-efd74ad57f6eae1cc2c8eaaf1936ab65-XXX&enrichSource=Y292ZXJQYWdlOzIyMTU3MjExNDtBUzo5ODQ5MzUyMzgyNDY0MkAxNDAwNDk0MDk0MzYx&el=1_x_10&_esc=publicationCoverPdf

MarsyasX: Multimedia Dataflow Processing
with Implicit Patching

Luis F. Teixeira, Luis G. Martins
INESC Porto

Campus da FEUP
Rua Dr. Roberto Frias, 378
4200 - 465 Porto, Portugal

{luis.f.teixeira,lmartins}@inescporto.pt

Mathieu Lagrange, George Tzanetakis
Dep. of Computer Science

University of Victoria
3800 Finnerty Road

Victoria, BC, Canada V8P 5C2
{lagrange,gtzan}@uvic.ca

ABSTRACT
The design and implementation of multimedia signal pro-
cessing systems is challenging especially when efficiency and
real-time performance is desired. In many modern appli-
cations, software systems must be able to handle multiple
flows of various types of multimedia data such as audio and
video. Researchers frequently have to rely on a combina-
tion of different software tools for each modality to assem-
ble proof-of-concept systems that are inefficient, brittle and
hard to maintain. Marsyas is a software framework orig-
inally developed to address these issues in the domain of
audio processing. In this paper we describe MarsyasX, a
new open-source cross-modal analysis framework that aims
at a broader score of applications. It follows a dataflow ar-
chitecture where complex networks of processing objects can
be assembled to form systems that can handle multiple and
different types of multimedia flows with expressiveness and
efficiency.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures—
domain-specific architectures; D.2.13 [Software Engineer-
ing]: Reusable Software—reusable libraries

Keywords
Multimedia processing framework, Dataflow processing, Open-
source library

1. INTRODUCTION
Over the last decade we have witnessed a proliferation of

multimedia content that is easily and widely accessible. One
of the main challenges facing multimedia research is how to
analyze and search such huge amounts of information. The
multimedia signal processing community has been actively
working on these problems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’08, October 26–31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-303-7/08/10 ...$5.00.

This paper presents the most recent line of development
of Marsyas1, termed MarsyasX, which stands for Marsyas
“cross-modal”. Marsyas is an open-source software frame-
work which finds its roots in the Music Information Retrieval
community. Its name stands for Music Analysis, Retrieval
and SYnthesis for Audio Signals, and it started as a frame-
work for the audio analysis, being especially suited for the
development, testing and prototyping of analysis, process-
ing and machine learning algorithms for audio signals [8].
Marsyas supports many ways of interacting with other pro-
grams and software environments including: run-time com-
munication with MATLAB, Qt integration, bindings in var-
ious languages (Python, Ruby, Lua, Java) [9]. The new
MarsyasX version implements a new payload architecture
and extends the functionalities of Marsyas 0.2 (the current
Marsyas version) by adding support for the processing of
multiple flows with different modalities (e.g. audio, video).
In addition to supporting real-time applications, MarsyasX
has been designed with multimedia mining and retrieval ap-
plications in mind and has support for batch processing and
machine learning tools (e.g. Weka).

Examples of other well known open source software frame-
works for audio analysis and processing are CLAM [1], Chuck
[10], Pd [6], and FAUST [5], among others. Commercial
tools also exist in this area, as is the example of MAX/MSP.
In what regards visual processing tools, there are many open
libraries that deal exclusively with image or video process-
ing, namely OpenCV, LTI-Lib, and The Recognition and Vi-
sion Library (RAVL), just to mention a few. However, these
projects focus exclusively on computer vision and can be
seen as utility libraries since they do not provide mechanisms
to easily assemble algorithms based on building blocks. Even
though the frameworks have been successfully used by users
within their respective areas, the lack of intercommunica-
tion with other fields of research often leads to excessive
overheads, reimplementation of similar techniques or even
constant reinventions. Other frameworks and tools already
exist that allow the integrated processing of audio and video
streams. Although not originally created as multimodal
platforms, Pd can be extended with visual processing mod-
ules from GEM, and Jitter adds video and image processing
abilities to the MAX/MSP environment. EyesWeb, on the
other hand, has been originally conceived for supporting re-
search on multimodal expressive interfaces and multimedia
interactive systems [3], but although being freely available,
is not an open-source initiative.

1http://marsyas.sourceforge.net

2. ARCHITECTURE
MarsyasX borrows from Marsyas 0.2 most of the concepts,

namely the hierarchical composition paradigm and the im-
plicit patching of modules. However, it was designed to sup-
port multiple flows with different modalities instead of just
audio. Similarly to Marsyas 0.2 and other module-based pro-
cessing frameworks, such as SIMULINK and LabView, sys-
tems in MarsyasX are expressed as interconnected dataflow
networks of processing modules. Each processing module
performs a specific task that always consists of a matrix
transformation. Audio and other types of data are rep-
resented by matrices with some semantics associated with
them. Processing is performed on defined chunks of data
and is executed whenever the tick() function of the module
is called.

2.1 Implicit patching
To assemble multimedia processing systems, modules are

implicitly connected using hierarchical composition [2]. Spe-
cial “Composite” modules such as Series, Fanout, Parallel
are used for this purpose. For example, modules added to
a Series composite will be connected in series, following the
order they were added - the first module’s output is shared
with the second module’s input and so on. Moreover, the
“tick” method is called sequentially following the same or-
der. Figure 1 shows an example of how composite and non-
composite modules can be used. This paradigm differs from
typical processing tools based on explicit patching such as
CLAM, MAX/MSP or PD, where the user would first cre-
ate the modules and then connect them by explicit patching
statements.

Series (network)

Series (series1) Fanout (fanout1)

Series
(series2)

...

Module
(module1)

Module
(module2)

Series (series2)...

Fanout (fanout2)

...

Module
(module3)

Legend: Controls ProcessingControl link

Figure 1: Building blocks in Marsyas.

2.2 Dynamic access to modules and controls
Each module can be accessed by querying the system with

a path-like string. For example, to reach the processing mod-
ule module1 shown in Figure 1, the query path would be /Se-

ries/network/Series/series1/Module/module1. The first “/”
indicates the outermost module and the rest of the path is
always composed by the concatenation of Type/Name strings.
This naming scheme was inspired from the way messages are
exchanged in Open Sound Control (OSC) [11]. It is possible
to access controls with a similar naming scheme. Controls
represent internal parameters of the modules, and can be of
different types (e.g. integers, floats, strings, vectors, or arbi-
trary user-defined types). Controls can be linked as shown

in Figure 1, so that changes to the value of one control are
automatically propagated to all the others.

2.3 Payload architecture
As in Marsyas 0.2, data is processed in defined chunks

by calling a tick() function and each module also has a set
of controls that are used to access their internal parame-
ters. The main conceptual difference is in the way data is
exchanged between processing modules. Instead of using
shared matrices of real values, MarsyasX exchanges data
through a payload mechanism. Whenever data is produced
in a given module at each tick, a payload is created. This
payload,“carrying”the data, is then sent to the output chan-
nel as depicted in 2. A channel is a connection between
adjacent modules where payloads are stacked while waiting
to be processed. It is important to note that channels are
established implicitly, according to the type of composite
being used.

Series

1

Source
producing flow 3

Sink
consuming flow 3

2 1 2 3 1

Sink
consuming flow 2

1

2

to origin factory

P
a
y
lo

a
d
s

3
channel

2

Figure 2: Payload architecture in MarsyasX.

This data exchange mechanism is highly generic and flexi-
ble, supporting any type of data (e.g. images, audio frames,
MIDI, XML, lists of points, etc.). However, it does have its
own specific issues such as timing and synchronization. Tim-
ing relations and constraints between data is assured by two
time metadata fields in payloads – Time of Capture (TOC),
which stores at what time the data held by the payload was
created or captured, and Time to Schedule (TTS), which
stores the time when the data should be processed by the
modules that handle the payload. Whereas TOC is used to
synchronize data of different flows (with the same or differ-
ent types and names), TTS is used to schedule payloads for
processing. The latter is especially important if, for optimi-
sation reasons, we want to parallelize the work load while at
the same time maintaining coherent time relations. If there
are any payloads of the respective flow in the input channel,
such that the current time Tcur ≥ TTS, these are processed
immediately and the resulting new payload is placed in the
output. In case new data is created or if the processing
consists of an in-place transformation, the same payload is
forwarded. Any other payloads not satisfying this condition
will remain in the input channel.

When a payload reaches a module that consumes the data
without forwarding it or when it reaches the end of the net-
work, the payload becomes no longer useful. From an effi-
ciency point of view, creating and destroying payloads con-
tinuously would be computationally expensive. To avoid this
overhead, a simple recycling mechanism is used. If a mod-
ule is a source of payloads, it will have an associated payload
factory. When a payload is required, it will be requested to
the factory, which will either reuse an existing one or create
a new payload based on a template. When the payload is no

longer needed anywhere in the processing network, it will be
returned to the corresponding factory where it will be stored
in a recycle bin for future use. However, if the properties
of the source have changed, a new template will be assigned
and the old payloads are destroyed. This is a form of highly
efficient type-specific garbage collection (or more accurately,
recycling) that is enabled by the strict semantics of time and
dataflow processing used in MarsyasX.

2.4 Data flows
Different payloads can be grouped together in abstract en-

tities called flows. A flow consists of all payloads that have
the same type and are tagged with the same name. A flow
type field is used to distinguish different types of flows. Each
payload of a given type must contain the same type of data.
For example, a Visual flow payload should always contain
an image, an Audio flow payload, an audio frame, and so
on. On the other hand, a flow name field is used to identify
different flows of the same type. Distinguishing flows of the
same type can be useful for handling, for example, multiple
video feeds with different image sizes. Moreover, it is of-
ten mandatory to distinguish different sources of data since
many modules have stateful processing. If multiple sources
are propagated in the same flow, unexpected behaviour on
these modules will occur. Currently 5 types of flows are sup-
ported, namely Audio, Visual, XML, Multidata and Legacy.
Each flow type is closely related to a data structure: ma-
trix vector for multichannel audio frames, image supporting
multiple colour spaces, XML tree structure, vector of inde-
pendent matrices for generic data, and a matrix compatible
with Marsyas 0.2 for legacy flows (see next subsection).

2.5 Legacy interface
An important feature of MarsyasX is the legacy interface

with Marsyas 0.2. Undoubtedly it is very important to still
be able to use the large collection of modules available in
Marsyas 0.2 releases now and in the future. Since the frame-
work base follows closely the previous, it is rather straight-
forward to support legacy modules. A MarsyasX module
called MarSystemLegacy wraps a legacy module and syn-
chronizes the controls of both. The most important differ-
ence is the way data is exchanged between modules. It is
also the most costly operation, since it implies copying the
data stored in the payload to the input slice of the legacy
module and, after processing, from the output slice to the
payload that will be sent to the output channel.

2.6 Modules
The similar architecture of MarsyasX and Marsyas 0.2,

simplifies the porting of modules. Moreover, with the legacy
interface it is possible to mix modules created with both ver-
sions. The plethora of Marsyas 0.2 modules for reading au-
dio files, feature extraction, and audio analysis and synthesis
can easily be made available for MarsyasX users. In addi-
tion to that, visual processing modules are being created,
including modules for video and image IO, filtering, optical
flow estimation, segmentation and feature extraction. Sup-
port for XML handling is also available. This is an ongoing
process and more modules are expected to be developed.

Despite the complex architecture underlying the MarsyasX
modules, the process of creating modules has been simpli-
fied. Typically, a user only needs to define the input and
output flows and create a process function accepting the

data according to the defined flows. This does not require
any knowledge about the payload mechanism. Addition-
ally, modules are managed using a simple plugin system.
Plugins are dynamically loaded whenever necessary. Each
plugin includes modules that are somewhat related. This
has multiple advantages, namely: avoid excessive startup
times due to module initialization, allow the deployment of
smaller packages containing only the strictly necessary, and
open the possibility for third-party modules (possibly with
different licenses).

3. EXAMPLE APPLICATIONS

3.1 Music Information Retrieval
Marsyas was recently used for the submission of several

algorithms to the MIREX2007 evaluation exchange2, show-
ing comparable results to other state-of-the-art algorithms
(e.g. it was ranked first in the Audio Mood Classification
task and second in the Audio Artist Identification task). In-
teresting to note are the computational runtimes achieved
by the Marsyas algorithms when compared to the other
contestants, being systematically lower in several orders of
magnitude (e.g. in the Audio Mood Classification task, the
Marsyas based algorithm, ranked first, took 122 seconds per
fold against the 521 seconds per fold taken by the second
fastest, though ranked last, algorithm).

3.2 Visual object segmentation and tracking
Another application implemented in MarsyasX was a vi-

sual object matching algorithm, described in more detail
in [7]. Only visual processing modules are used. The al-
gorithm consists of three steps: (1) segment each relevant
visual object, (2) extract a representation for each object,
(3) compare this representation with a database of objects,
(4) if a given object is known, label it accordingly, and (5)
update the database with the new information, if it is found
relevant. In MarsyasX each of these steps corresponds to
one or more modules performing a specific task. The main
modules for this application include: background modelling
and subtraction for object segmentation, extraction of local
descriptors and vocabulary-based representation, and SVM
classification.

3.3 Multimodal speaker identification
An example of a multimodal application implemented in

MarsyasX is a speaker segmentation system [4]. The algo-
rithm and the corresponding network can be broadly sepa-
rated in three parts: the audio speaker segmentation algo-
rithm, the visual motion estimation and centroid calculation,
and finally a multimodal speaker segmentation module that
combines the visual and audio results.

The audio algorithm used for the speaker segmentation
assumes no prior knowledge about the number of speakers
or their identities and presumes that the audio input con-
tains only speech. The method follows a metric-based ap-
proach for coarse speaker segmentation using Line Spectral
Pairs (LSP), which is subsequently validated by means of
the Bayesian Information Criterion (BIC).

The visual algorithm part of the network considers sce-
narios with only two speakers facing the camera, such as in-

2http://www.music-ir.org/mirex/2007/index.php/
Main_Page

Series (main network)

Parallel

Legacy

Series (Marsyas 0.2 network)

Accumulator

Series

Sound
File
Source

LPCnet LSP

BICchange
Detector

Memory

Series

VisualFileSource Optical
FlowEstimation
accepts: Visual

Multimodal
Segmentation
accepts: Legacy,
Multidata

VisualSink
accepts: Visual

CentroidEstimation
accepts: Multidata

Visual Multidata

Legacy

Legend: Flow source ControlsControl linkNote: Only relevant module controls are represented to avoid cluttering.

Figure 3: Network used for the speaker segmenta-
tion scenario.

terviews or lectures. It is assumed that the speaker will be
located in the region containing the most amount of motion.
The separation of these regions is defined by a boundary that
for simplicity is kept as a vertical straight line splitting the
image in two halves. A centroid of the motion is calculated
and is used to detect the potential speaker.

The multimodal speaker segmentation algorithm takes into
account two constraints: people tend to move their bodies,
arms and lips before producing any sounds and the first
sounds produced are usually non speech vocalizations such
as breath, etc, hence the visual change detector is then more
likely to be fired before the audio one; also, this last audio
detector is more likely to detect the correct boundary but
with a higher false alarm rate due to the presence of non
speech sounds and background noise. When a speaker seg-
mentation is detected by the multimodal module it is sig-
naled in a control. This control is linked to the VisualSink
that will display which speaker is speaking.

This work implements a late fusion scheme where one clas-
sifier is attached to each modality and the decisions of the
classifiers are finally combined. Future work will concentrate
on early fusion, namely the use of only one classifier that
considers all the modalities at once, which is usually consid-
ered more reliable but harder to implement. MarsyasX can
be powerful in such scenarios, since audio and video data
can be conveniently aligned and combined within the same
network of data.

4. DISCUSSION AND CONCLUSIONS
Cross-modal processing is an important and growing field

of research among the scientific community. However, creat-
ing applications that rely on audio or visual processing can
often be a cumbersome task. Although, there is a wide of-
fer of specific tools and libraries, both commercial and free
(open source or not), problems arise if one wants to com-
bine some of these. The first problem is that data structure
and semantics are almost always different and the user ends
up creating custom wrappers or sometimes reimplementing
functionalities. This is even more evident with a combina-
tion of audio and visual processing libraries. In fact, mul-
timodal processing is an important and growing field of re-
search among the scientific community. Having the ability
to, under the same framework, use or develop new tools and
algorithms is undoubtedly important. We proposed in this

paper MarsyasX, a broad framework that attempts to solve
these problems. By abstracting both data structures as well
as its flow, and by using uniform procedures to define and
set parameters, a considerable effort of integration can be
removed from the user.

Marsyas is a software multimedia processing framework,
with a special emphasis on audio processing. MarsyasX ex-
tends the functionalities of Marsyas 0.2 to visual support
alongside audio. It is however not limited to audio and vi-
sual processing but can in fact be seamlessly used for generic
data processing. Data is exchanged between modules us-
ing timed payloads, which in turn are implicitly grouped in
flows, enabling efficient processing and memory recycling.

5. REFERENCES
[1] X. Amatriain. CLAM, a framework for audio and

music application development. IEEE Software,
24(1):82–85, Jan./Feb. 2007.

[2] S. Bray and G. Tzanetakis. Implicit patching for
dataflow-based audio analysis and synthesis. In
Proceedings of International Computer Music
Conference (ICMC), 2005.

[3] A. Camurri, P. Coletta, A. Massari, B. Mazzarino,
M. Peri, M. Ricchetti, A. Ricci, and G. Volpe. Toward
real-time multimodal processing: Eyesweb 4. In
Proceedings of AISB 2004 Convention: Motion,
Emotion and Cognition, Leeds, UK, 2004.

[4] M. Lagrange, L. G. Martins, L. F. Teixeira, and
G. Tzanetakis. Speaker segmentation of interviews
using integrated video and audio change detections. In
Proceedings of International Workshop on
Content-Based Multimedia Indexing (CBMI),
Bordeaux, France, 2006.

[5] Y. Orlarey, D. Fober, and S. Letz. Syntactical and
semantical aspects of Faust. Soft Computing - A
Fusion of Foundations, Methodologies and
Applications, 8(9):623–632, September 2004.

[6] M. Puckette. Pure data. In Proceedings of
International Computer Music Conference (ICMC),
pages 269–272, 1997.

[7] L. F. Teixeira and L. Corte-Real. Video object
matching across multiple independent views using
local descriptors and adaptive learning. Pattern
Recognition Letters, 2008. (in press).

[8] G. Tzanetakis and P. Cook. Marsyas: a framework for
audio analysis. Organized Sound, 3(4), 2000.

[9] G. Tzanetakis, L. G. Martins, L. F. Teixeira,
C. Castillo, M. Lagrange, and R. Jones.
Interoperability and the Marsyas 0.2 runtime. In
Proceedings of International Computer Music
Conference (ICMC), 2008.

[10] G. Wang and P. Cook. Chuck: A programming
language for on-the-fly, real-time audio synthesis and
multimedia. In Proceedings of ACM International
Conference on Multimedia, New York, USA, 2004.

[11] M. Wright, A. Freed, and A. Momeni. Opensound
control: State of the art 2003. In Proceedings of
International Conference on New Interfaces for
Musical Expression (NIME’03), Montreal, Canada,
2003.

View publication statsView publication stats

https://www.researchgate.net/publication/221572114

