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THE CENTRALIZER RESOLUTION OF THE K(2)-LOCAL SPHERE AT
THE PRIME 2.

HANS-WERNER HENN

ABSTRACT. Let G2 be the Morava stabilizer group at the prime 2. We construct a resolution
of the K (2)-local sphere at the prime 2 in terms of certain homotopy fixed point spectra
which are closely related to the spectrum of topological modular forms. This resolution is in
certain ways analogous to the centralizer resolution of the K (n)-local sphere constructed in
[18] if p is an odd prime and n = p — 1.
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1. INTRODUCTION

Let p be a prime, let n > 0 be an integer and let K(n) be the n-th Morava K-theory at p.
The category of K (n)-local spectra is a basic building block of the stable homotopy category
of p-local spectra and the K (n)-localization of the sphere, LK(H)SO, plays a central role in this
category. The homotopy of L K(n)SO can be studied by the Adams-Novikov spectral sequence,
and by [10] this spectral sequence can be identified with the homotopy fixed point spectral
sequence for the action of the extended Morava stabilizer group G,, on E,. Here E,, denotes
the 2-periodic Landweber exact spectrum FE,, whose coefficients in degree 0 classify deformations
(in the sense of Lubin and Tate) of a suitable formal group law I',, of height n over Fy» and G,,
is the automorphism group of I';, in the category of formal group laws (cf [28]). The Es-page
of this spectral sequence is given by the continuous cohomology H}, (G, (E,).) of G, with
coefficients in (F,).. It becomes therefore interesting to find resolutions of the trivial module
for the group G,, from which one can calculate this continuous cohomology.

If p is large with respect to n then the Es-page satisfies E5™ = 0 for * > n? and the spectral
sequence collapses at its Fo-page. In the sequel we concentrate on the case n = 2 because the
case n = 1 is well understood and very little is understood in explicit terms if n > 2.

For n = 2 the spectral sequence collapses if and only if p > 3. In these cases the homotopy
of L K(2)50 has been calculated in [29] without using the point of view of group cohomology.
The results have been reinterpreted in [7] and an independant calculation for the Moore space
has been carried out in [24] by using an explicit projective resolution of length 4 of the trivial
Gg-module Z,,.

If n =2 and p < 3 the mod-p cohomological dimension of the group G is infinite and there
cannot be any projective resolution of the trivial Go-module Z, of finite length. However, for
p = 3 very useful resolutions of the trivial Go-module Z,, of length 4 in terms of more general
modules and corresponding topological resolutions of L (2)S 0 exist; a “duality resolution” has
been constructed in [14] and a “centralizer resolution” in [18]. These resolutions complement
each other and they have been crucial in recent progress of our understanding of K (2)-local
homotopy theory at the prime 3. In particular they have been used for proving the chromatic
splitting conjecture for n = 2 [13], for determining Hopkins’ Picard group of K(2)-local spectra
[22], [15] and for identifying the Brown-Comenetz dual of the K (2)-local sphere [16].

If n = 2 and p = 2 our understanding is less complete although the chromatic splitting
conjecture has already been successfully analyzed in [4] and [6] by heavily using the algebraic
and topological duality resolution for an important subgroup S3 of Go. The existence of an
algebraic duality and an algebraic centralizer resolution of length 3 for S was already announced
in [18], as well as a topological centralizer resolution for the homotopy fixed point spectrum
ESS%, in all cases without proofs. For the algebraic duality resolution the construction was
finally established in [2] and the construction of its topological counterpart was given in [5].
The latter paper relied heavily on the existence of both the algebraic and topological centralizer
resolution for S} for which no proof has been published yet. The main purpose of this paper is
to fill this gap in the literature and extend the announced results from the group S} to S, and
even to Go. Such extensions appear to be impossible for the algebraic and topological duality
resolutions.

1.1. Preliminaries on Morava stabilizer groups at n =p = 2.

1.1.1. Let I" be a formal group law of height n defined over F, let ¢ = p™ and assume that
the automorphism group S, (T") := Autg, (I') is isomorphic to S, := S, (I'g), the automorphism
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group of the Honda formal group law.! Because the formal group law is defined over F,, the
Galois group Gal of the extension F,, C Fy acts on S, (I') and we get extended automorphism
groups

Gr(T) =S,(T) x Gal .

For n = p = 2 there are two important candidates for I". In fact, there are two particularly
interesting formal group laws I' of height 2 over the prime field Fo: the Honda formal group
law Tz, i.e. the [2]-typical formal group law with [2]-series [2]r,, (x) = 2, and the formal group
law I'r of the supersingular elliptic curve over Fy with affine equation y? + vy = x3. In the

remainder of this introduction I' always refers to either I'y or to I'g.

If F5 denotes the algebraic closure of Fy then the endomorphism rings of both formal group
laws satisfy

Ends, (T') = Endz (T)

and because both formal group laws become isomorphic over Fy their endomorphism rings are
already isomorphic over Fy. Consequently the automorphisms groups Sz(I') = Auty, (T") of
these two formal group laws over the field F, are abstractly isomorphic. If I' = 'y this group
is the classical second Morava stabilizer group at p = 2 and usually denoted S, and Go(T') is
usually called the extended Morava stabilizer group and denoted Gs. While the groups So(T")
are abstractly isomorphic this ceases to be true for the groups Go(I") (cf. Lemma 2.2).

The endomorphism rings Endp, (I') contain W, the ring of Witt vectors of Fy. They are
generated as a non-commutative W-algebra by the endomorphism & € Endg, (T') given by
ér(x) = 22, In order to describe the endomorphism rings more explicitly we denote the image
of w € W with respect to the lift of the Frobenius automorphism of F4 by “w and we abbreviate
&r simply by €. Then the canonical algebra map from the free non-commutative W-algebra W(¢)
generated by £ to Endp, (I') induces an isomorphism

(11> W<£>/(§w - o’wg, 52 - 2“’) = Ensz; (F)
where
(1.2) u:{l I'=Tx

-1 I'=Tpg.

An explicit isomorphism between the two rings is given by the W-algebra map which sends &
to £y where we can take for y any element in W with the property yy° = —1 (cf. [2] for an
explicit choice of y).

The ideal generated by & is a two-sided maximal ideal m with quotient F4 and the endomor-
phism rings are complete with respect to the m-adic topology. This also defines a filtration on

4

the group Sy(I') indexed by half integers 5 > 0 given by
Fi=F;$():={geS(I')[g=1 mod (€9}

2

and successive quotients

P = Fy i=0
#Ft TR, i=0.

The group

is a profinite 2-group, the normal 2-Sylow subgroup of So(I").

IThis is equivalent to the endomorphism &r given by & (z) = 2P satisfying £ = pu (cf. Remark 5.2).
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Inverting 2 in the endomorphism rings gives two isomorphic division algebras which we
denote by Do (T"). They contain Q9 as their center and are of dimension 4 over Qy. The division
algebras are equipped with a valuation

1
v:Do(T)* — §Z
which extends the valuation on Q, which is normalized by v(p) = 1.

The group of units Do(T")* of Dy(T") contains Sz(T") as the group of elements of valuation 0
and from (1.1) it is clear that the action of the Galois group on Sq(I") is realized by conjugation
by &r in Do(T")*. Therefore we get canonical isomorphisms

e GalT) 2 B(0) /61) {gg; 1 T

The groups S(I') and G2(I") contain —1 as unique central element of order 2 and dividing
out by the subgroup Cs generated by it gives us quotient groups which we will denote PSy(T")
and PGz(T). From (1.3) it is clear we have isomorphisms

PGo(Ty) 2 Dy(Ty)*/(2,—1) 2 Dy(Tg)*/{-2,—1) = PGy(T'g) .

1.1.2. From (1.1) we see that Endp,(T') is a free W-module with basis 1 and £. Right multipli-
cation induces W-linear maps and the determinant gives a multiplicative homomorphism

det : Endp, (T') = W
which, in fact takes its values in Zy. It is explicitly given as follows: if a,b € W then
det(a + bér) = aa® — 2ubb?’
with w = 1 as in (1.2). This determinant induces an epimomorphism
det : So(T) — Z5
which is often also called the reduced norm. Finally we get an epimorphism given as composition

Ga(T) = So(T) » Gal “X? 7% x Gal — ZF — Z /{*1}
in which the second and third part are given as the obvious projections. Let G(T") be the kernel
of this composition and S(I') resp. S3 its intersection with So(T") resp. Sa(I'). We observe
that the action of Gal on Sp(T) leaves S3(T') invariant and G3(T') is equal to the semidirect
product S}(T") x Gal. By the definition of G3(T) it is clear that every finite subgroup of Go(T")
is contained in G3(T).

The central element —1 = 1 —uf3 (where u is as in (1.2)) is contained in S3(I") and generates
a central subgroup Cs of order 2. If H is any closed subgroup of Gz(I") containing Co then we
will denote the quotient H/Cy by PH.

1.1.3. The groups S}(I"), PS}(T"), G(I'), PG3(T') and PS3(T") contain certain finite subgroups
which figure in the statements of our main results. In all cases except that of Gi(T") the
isomorphism type of the ambient group is independent of I' and only when we discuss finite
subgroups of G3(I") the choice of I' matters. In the other cases we will therefore from now on
omit I' from our notation.

If F is a finite subgroup of G(T") which contains the central Cy and for which Fy := F'N'S}
is of index 2 in F' then we have a commutative diagram of groups with exact rows
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1 — Fy — F — Ga — 1

(14) I I 1=

1 — PFy, — PF — Gal — 1

In the following table we give a list of closed subgroups F' C Gi(I') and the corresponding
groups PF C PGL, Fy C S}, PF, C PS} and PFy N PS3 C PS} which will be relevant for
stating our main results. Subgroups of PS} will play an important role in section 4.2.

L F | Go(T) [ Gas(D) | [) | G12(T) | Cs [ Ca x Gal |
| PF \ PGl | &4 | 64 | &3 [Ci] Gal |
(1.5) [ Fo | S; | Gas | . | GCs [Ci] Cy ]
| PF, | PS§ [ Ay ] A’ | G (G {1 ]
[PRonPSI[ PSI T By | EY | {1} JC[ {17 |

We refer to Section 2, in particular Lemma 2.2, Lemma 2.3, Lemma 2.4 and Lemma 2.5 for
more details on this table. Here we are content to explain that in this table C,, denotes a cyclic
group of order n, Gal is the Galois group of the extension Fo C Fy, &,, and &/, denote symmetric
groups on n letters, A4 and A} alternating groups on 4 letters and Ey and FY groups isomorphic
to Cy x Cy. The groups Gog4 and G, are groups of order 24 both isomorphic to SLy(F3). The
isomorphism type of the groups F' = Gus(I'), F' = G'ig(T") and F' = G12(I") depends on I'. The
first two are maximal subgroups of G4(T') of order 48 which are non-conjugate in G4(T") but
become conjugate in Go(T'). In fact, we have (cf. Lemma 2.2)

GLy(F3) T =Tg

Gug(T) = Gl (T) = {048 L =Ty

where Oys denotes the binary octahedral group. For the groups G12(T") we get (cf. Lemma 2.3)

I () 02><63 F:FE
12 03><lc4 F:FH

where C3 x Cy denotes the semidirect of C3 with Cy acting non-trivially on Cj.

1.2. Main results.

Let G be a profinite group, let X be a profinite G-set such that X = lim;X; with finite
G-sets X; and let W be the ring of Witt vectors for a finite field k of order ¢ = p™ for a prime
p and an integer n > 0. We define

(1.6) W([X]] = lim; ,W/p*[[X;] .

Suppose that G is equipped with a continuous homomorphism ¢ : G — Gal to the Galois group
Gal of the extension F, C F,,.

The Galois-twisted completed group ring Wy[[G]] of G is the W-module W[[G]] with multi-
plication induced by (w1g1)(w2g2) = w19 wag1ge if 91,92 € G, w1, ws € W and if 9wy is the
result of the Galois action of ¢(g1) on ws. A p-profinite Wy [[G]]-module will also be called a
Galois-twisted p-profinite G-module, or simply a Galois-twisted profinite G-module if p is un-
derstood from the context. In order to keep notation simple we will write W[[G]] instead of
W,[[G]).

Analogous to [18] we introduce relative homological algebra in the context of Galois-twisted
p-profinite G-modules. Let F(G) be the set of conjugacy classes of finite subgroups of G and
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assume that F(G) is a finite set. A Galois-twisted p-profinite G-module P will be called F-
projective if it is a direct summand in a module of the form P ) W[[G]] @wr) M where each
Mfp is a p-profinite’* W[F]-module and the direct sum is indexed by conjugacy classes of finite
subgroups of G. In the sequel we will also write M 1¢ instead of W[[G]] @w(r) M.

The class of F-projective Galois-twisted p-profinite G-modules determines in the usual way a
class of F-exact sequences: a sequence of Galois-twisted p-profinite G-modules M’ — M — M"
is called F-exact if the composition M’ — M" is trivial and

HOIIIW[[GH (P, MI) — HOHIW[[G” (P7 M) — HOHIWHG” (P7 M”)

is an exact sequence of abelian groups for each F-projective Galois-twisted p-profinite G-module
P.

An F-resolution of a Galois-twisted p-profinite G-module M is a sequence of Galois-twisted
p-profinite G-modules
=P =P —-M=0
where each P; is F-projective and each 3-term subsequence is F-exact. We note that F-
exactness is equivalent to the complex being split when restricted to any finite subgroup of

G.

Here is the main algebraic result of this paper in which W is now the ring of Witt vector of
F4 and the subgroups of PGy are those of table (1.5).

Theorem 1.1. There exists an F-resolution of the trivial Galois-twisted profinite PGo-module
\%%

0— Wtes? REN te oW 1Ee? —>WTGG2@WTPG2@WTPG2
W 185 @ WAL @ W L5 o WEH 25 WS @ W 5% 5 W .

The main work towards establishing this theorem is the following result.

Theorem 1.2. There exists an F-resolution of the trivial Galois-twisted profinite PG3-module
\%%

PG2 PG}

sy W Bl 22y w400 g w4502

0— W1k —>WTbGQEBWTPG2i>W.

Remark 1.3. a) The resolutions for the group PG3 resp. for PGy can be considered as
resolutions for G3(T") resp. G»(T') via the obvious projections G3 — PG} resp. Gy — PGs.
In terms of the table (1.5) this has the effect of replacing a summand in the resolution of the

1 1 1 1
form W Tgf’? resp. W Tjﬁ% by W T(SP resp. W T%’. Unlike for PG3 resp. for PGy the resulting
resolutions for G3(T") resp. Go(I") will depend on the choice of T

b) Restricted to S}(T') the resolution for G}(T) is an untwisted F- resolution of W which is
a W-linear extension of the algebraic centralizer resolution announced in [18] and used in [5].
We refer to Remark 3.3 for a justification of the terminology centralizer resolution.

Next we will describe the topological analogues of these algebraic resolutions. As in [18] we
call a sequence of spectra

(1.7) Xe:x =X 1 2% Xg— X1 25 ...

a complez of spectra if the composite of two consecutive maps is null-homotopic. Such a complex
is called a a resolution of X_; if in addition each of the maps oy : X;_1 — X;, i > 0, can be

factored as X;_1 i> W; -5 X, such that W;_; Ty X1 i> W; is a cofibration for every

2The assumption that M is p-profinite was regrettably missing in [18].
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1 > 0 (with W_q := ). We say that the resolution is of length n if W,, ~ X,, and X; ~ * if
1> n.

Here are the main topological results of this paper. In their statements Fs should really read
E5(T") where Eo(T") is the 2-periodic Landweber exact spectrum whose coefficients in degree 0
classify deformations (in the sense of Lubin and Tate) of I'. In order to keep notation readable
we will nevertheless simply write Fs instead of E5(I'). By the Goerss-Hopkins-Miller theorem I
acts on FEs, in particular there exist homotopy fixed point spectra ESLF for all finite subgroups
of G3(T") and by [10] also for all closed subgroups.

1
Theorem 1.4. Let I' be either 'y or I'y. Then there exists a resolution of E;LGZ(F)

1 /
s — By o ppiu)y gGa(D  plthal)y phts , plaxCal , groe®

Theorem 1.5. Let I' be either 'y or I'y. Then there exist a resolution of LK(Q)SO ~ E;LGQ(F)

% —> LK(Q)SO - ESG48(F) V E;GQB(F) - Eéle(F) v El£7,08 v ESG%(F) v E;GELB(F)

RN ESZXGal \/ EgG12(F) \/ ESCS N E;lGlz(F) \/ EQCQXG&I N EgG12(F) %,

Remark 1.6. a) Because Gys(I") and Gjg(T") are conjugate subgroups of Go(I"), the homotopy

fixed point spectra Eg Gas(M and E;L %5 Have the same homotopy type.

1
b) There are corresponding resolutions for E; % and E;’SZ which are obtained by replacing
EIT by ENo where F and Fy are the finite subgroups of table (1.5).

The paper is organized as follows. In section 2 we discuss the finite subgroups of the Morava
stabilizer groups at n = p = 2 which figure in our main results and in section 3 we study the
mod-2 cohomology algebra of PS} via its restriction to the cohomology of elementary abelian
2-subgroups. Section 4 contains the construction of the algebraic centralizer resolutions and in
section 5 we show how to realize the algebraic resolutions topologically.

2. IMPORTANT FINITE SUBGROUPS FOR MORAVA STABILIZER GROUPS AT n =p = 2

In this section we will elaborate on table (1.5) and describe more explicitly the relevant finite
subgroups. We remark that in the general case of any prime p and any height n finite subgroups
of S,, have been studied by Hewett in [20] and [21] and finite subgroups of G, (I") have been
studied by Bujard [9].

We will start by recalling from [2] the description of explicit maximal subgroups G4 and
GY, of Sy and we prefer to work with So(T'y) and write S instead of g .

Let w be a third root of unity in W* and let
(2.1) mi=142w.

By Hensel’s Lemma the element —7 € Z, has two square roots in Zs. We pick the one which
satisfies /=7 =1+4 mod (8) and let

12w

VT

We note that m and «a both belong to So and the reduced norm of « is —1 while the reduced
norm of 7 is 3.

(2.2) o

The following lemma is proved by direct calculation (cf. Lemma 2.4.3 of [2]).
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Lemma 2.1. Let
1 1 1
i= 5(1 +2wH)(1 - af), j:= 5(1 +20H)(1 — aw?S), k:= S+ 2w?)(1 — awS) .

Then the elements {£1, +i, £j, &k} form a subgroup of S which is isomorphic to the quaternion
group Qg. This subgroup is invariant by conjugation by w, more precisely

j=wiwl, k=wjw ! i=wkw .
Furthermore

1
w=—s(+itj+k). O

We let G24 be the subgroup generated by Qg and w. It is isomorphic to the semidirect
product of Qg with Cs,

(2.3) Gas Z Qs x Cs .

It is easy to verify that the 16 elements of Go4 which are not in Qg are the elements of the form
(1 +i+j+k) so that

1
(2.4) Goa = {1, %, £j, £k, S (F1 £i % j £ k)}

We also note that the center of Ga4 is the subgroup {1} and Qg is a characteristic subgroup.
Lemma 2.2. Let I be either ' or I'y.

a) The subgroup of G2(T') generated by Ga4 and the image of 1+i is a maximal finite subgroup
Gas(T) of Go(T) of order 48.

b) Gus(T') is a subgroup of GL(T').
¢) The quotient PG4s(I") is isomorphic to &4 independent of T

d) There are isomorphisms Gas(L'g) = GLo(F3) and Gus(Ty) = Oss. The groups GLy(F3)
and Oug are not isomorphic.

e) The intersection Gug(I') NS} is Gay, PGay is isomorphic to Ay and PGoy N PS3 is the
2-Sylow subgroup of Ay, isomorphic to Co x Cs.

Proof. a) It is easy to see, for example from (2.4), that the element 1 4 ¢ normalizes the group
G24. The order of 1+ i as element of D is clearly infinite. However, because of (1 + )% = 2i
and because of (1.3), its square in Go(I") is an element of Sy(T"), equal to ¢ if I' = 'y and equal
to —i if ' = I'g. Because G4 is a maximal finite subgroup of So of order 24 it follows that
G48(T) is a maximal finite subgroup of Go(T") and is of order 48.

b) Any finite subgroup of G(T) is contained in G3(T).

¢) For F' a subgroup of G let Ng(F') resp. Cg(F') denote the normalizer resp. centralizer
of F in G. Conjugation in DS induces a monomorphism from Npx (Qg)/OD; (Qs) to Aut(Qs),
the group of automorphisms of Js. The latter group is well known to be isomorphic to G4
and the subgroup A4 of &, is realized by conjugation in Gas/Co = PGa4. The element 1 + 4
belongs to NDZX (Qs) and it is easy to check that conjugation by it does not belong to A4. Hence
conjugation induces an epimorphism PGys(I') — Aut(Qs) = &4 which for cardinality reasons
has to be an isomorphism.

d) The automorphism group of the elliptic curve with equation y? +y = 23 over Fy is

isomorphic to Gay (cf. [30]). This group injects into the automorphism group of the formal
group law over F4. Because the elliptic curve is already defined over Fo we get an injection
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Gag ¥ Gal = G2(T'g) and the image is G4g(T'g). It is elementary to verify that the group of
F4-points of the elliptic curve is of order 9, isomorphic to Z/3 x Z/3 and that Ga4 x Gal realizes
all automorphisms of E[3]. Hence Gus(I'g) is isomorphic to GLo(F3).

Next it is easy to construct an isomorphism between Ous and Gug(I'y) which restricts to
the identity on Gay; in fact, Oug can be realized within the classical unit quaternions such

that Ga4 corresponds to the subgroup which contains the elements of (2.4) and the element

(14+14) € G4s(T') corresponds to the element %(1 +1) € Ogs.

In order to see that GLy(F3) and Ous are not isomorphic it is enough to see that their 2-
Sylow subgroups are not isomorphic. In the case of GL2(F3) this is the semidihedral group of
order 16 while in the case of Oyg this is the generalized quaternion group of order 16 and these
two groups of order 16 are not isomorphic.

e) This is now obvious. U

Then we define
(2.5) Ghy = mGoym ™!, Glig(T) == 1Gu(T)n ™t .

The groups Gaog and G%, are known to be non-conjugate in S and, up to conjugacy, they
are the two maximal finite subgroups of S (cf. [2]). Consequently G4s(T') and G)g(T) are
non-conjugate in Gi(T") and, up to conjugacy, they are the two maximal finite subgroups of
G3(I'). Likewise, &4 and &/, are non-conjugate in PG3(I") and, up to conjugacy, they are the
two maximal finite subgroups of PG3(T).

Lemma 2.3. Let I be either I'g or I'gy.

a) The subgroup of Go(T') generated by Cs = (—w) and the image of j — k is a subgroup
G12(T") of Go(T') of order 12.

b) G12(T) is a subgroup of GL(T).

¢) The quotient PG15(T") is isomorphic to &3 independent of T.

d) There are isomorphisms G12(Tg) =2 Cy X 63 and G12(Ty) = C5 x Cy.

e) The intersection G12(I) NS} is Cg, PCg is isomorphic to C3 and PCsN PS3 is the trivial
group.

Proof. a) The element j — k normalizes the subgroup Cg generated by —w. In fact, a direct

calculation in the division algebra using that w = —3(1 +i + j + k) shows
(G =k — k) =w.
The order of j — k as element of D is clearly infinite. However, because of (j — k)? = —2, its

square in Go(T") is an element of So(T"), equal to 1 if I' = ' and equal to —1 if ' = 'y. Then
it is clear that G12(I") is of order 12.

b) Any finite subgroup of Gz(T') is contained in G}(T).

¢) This is immediate from the calculation in part a). The image of w in PG12(T") generates
a normal subgroup of order 3 and the image of j — k is of order 2 and acts non-trivially on the
image of w.

d) This follows because the image of j — k in G12(I") is of order 2 in the case of I' = I'; and
of order 4 in the case of I' = I'y. O
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The following two lemmas are elementary and their proof is left to the reader.

Lemma 2.4. Let T be either ' or I'y.

a) The subgroup of Go(T') generated by 1 + i is a subgroup Gg of Go(T') of order 8 which
contains Cy = (i) and is, up to isomorphism, independent of T'.

b) Gg is a subgroup of GL(T).

¢) The quotient PGy is isomorphic to Cy.

d) The intersection Gg NS} is the subgroup Cy generated by i, PCy is isomorphic to Cy and
PCyN PSi = PCy. O
Lemma 2.5. Let I be either I'g or I'y.

a) The subgroup of Go(T') generated by —1 and the Galois group is a subgroup G4 of Go(T")
of order 4 which is isomorphic to Cy x Gal independent of T'.

b) Gy is a subgroup of G3(T).
¢) The quotient PGy is isomorphic to Gal.

d) The intersection G4 NSy is the subgroup Cy generated by —1 and PCo = PCo N PS3 is
the trivial group. O

3. THE MOD-2 COHOMOLOGY ALGEBRA OF PS}

3.1. Quillen’s F-isomorphism for the mod-p cohomology of a profinite group.

Let G be a profinite group and let p be a fixed prime. The continuous cohomology H}(G;TF,)
of G with coefficients in the trivial module F,, will be abbreviated by H*(G;F,), or simply by
H*G if p is understood from the context. We recall that if G is the (inverse) limit of finite
groups G; then H*G = colim; H*G;.

We will assume that H*G is finitely generated as Fp-algebra. By work of Lazard [23] it is
known that this holds for many interesting profinite groups, for example for profinite p-analytic
groups like GL(n,Z,), the general linear groups over the p-adic integers, or the automorphism
groups of formal group laws over finite fields.

In case H*G is finitely generated as Fj-algebra Quillen has shown [26] that there are only
finitely many conjugacy classes of elementary abelian p-subgroups of G (i.e. groups isomorphic
to (Z/p)™ for some natural number n). In other words, the following category A(G) is equivalent
to a finite category: objects of A(G) are all elementary abelian p-subgroups of G, and if F;
and Fs are elementary abelian p-subgroups of G, then the set of morphisms from E; to Fs in
A(G) consists precisely of those homomorphisms « : Ey — FEy of abelian groups for which
there exists an element g € G with a(e) = geg~! for all e € E;. The assignment E +— H*E
determines a functor from the opposite category A.(G)° to graded F,-algebras.

Theorem 3.1. (Quillen) [26] Let G be a profinite group and assume H*G is a finitely gener-
ated Fp-algebra. Then the canonical map

qa H*G — limA(G)opH*E

is an F-isomorphism, in other words q has the following properties.

o If x € Kerqg, then x is nilpotent.
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o Ify € limygyer H*E then there exists an integer n with y?" € Imgq.
In the sequel we will call A(G) the Quillen category of G.

Let A.(G) be the full subcategory of A(G) whose objects are all elementary abelian p-
subgroups except the trivial subgroup. The centralizer Cg(E) of an elementary abelian p-
subgroup F is a closed subgroup and hence inherits a natural profinite structure from G. The
assignment £ — H*Cq(E) extends to a functor from A,(G) to graded F, - algebras and
the restriction homomorphisms H*G — H*Cg(E) (for E running through the non-trivial
elementary abelian p-subgroups of ¢) induce a canonical map p : H*G — lim4, () H*Cq(E).
The main result of [17] reads as follows.

Theorem 3.2. Let G be a profinite group and assume H*G is a finitely generated ¥y, - algebra.
Then the canonical map p: H*G — lim 4, (q)H*Cg(E) has finite kernel and cokernel.

Remark 3.3. a) In our current approach this theorem is is no longer needed. However, it
played a crucial role in our initial approach to construct resolutions for PS} and is utimately
the reason for naming our resolutions centralizer resolutions. Furthermore, in [18] the theorem
played a crucial role for constructing algebraic centralizer resolutions at odd primes, which as
the algebraic resolutions of this paper are F-resolutions in the sense of Section 1.2.

b) Theorem 3.2 is not useful if G contains central elements of order p, because then H*G
appears in the limit. In these cases one can use the theorem to study the quotient of G by the
maximal central elementary abelian p-subgroup of G and this was the orign for considering the
groups PS} and PS}.

3.2. The Quillen category of PS,.

We recall from section 2 that S contains two subgroups isomorphic to Qg and they give rise
to two elementary abelian 2-subgroups E and EY in PS} which are contained in the normal
2-Sylow subgroup PS3.

The following result has a significant overlap with section 2.4 of [2].

Proposition 3.4. a) Up to conjugacy PS3 contains three elementary abelian 2-subgroups of
rank 1 and two of rank 2.

b) All automorphism groups of the category A(PSY) are trivial and there is exactly one
morphism from each rank 1 group to each of the rank 2 groups.

Proof. a) If E is an elementary abelian 2-subgroup of PS3 then its inverse image Ein S3 is an
extension of E by Z/2. The structure of the possible finite 2 subgroups of the division algebra
D5 is explicitly known: in fact, any finite abelian subgroup must be cyclic and generates in the
division algebra a cyclotomic extension the degree of which must divide 2. Hence any abelian
2-subgroup is cyclic of order 2 or 4 and this implies that any finite 2-subgroup is isomorphic to
a subgroup of Qg. In particular we see that the 2-rank of F is either 1 or 2.

Now suppose that Fy and F, are two elementary abelian 2-subgroups of rank 1 of PSs.
Then ﬁl and ﬁg are two subgroups isomorphic to Z/4 and by the Skolem Noether theorem
any isomorphism ¢ : ﬁl — 132 can be realized by conjugation by an element of u € DJ, i.e.
o(z) = uzu~! for any x € Fy. If we denote a generator of F; by i then 14 i € D centralizes
Fy, so we can change u by any power of (14 4) and conjugation by u(1 + 7)™ will still give .

1

Because the valuation of 14 is 5 we can choose n such that (1 +4)"u is of valuation 0. In

other words, we can suppose that u is an element of S;. Furthermore, the element 1 4 2i € S
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has reduced norm 5 and is thus a topological generator of Sy/S}. It also centralizes Fy and
by multiplying u by a suitable p-adic power of 1 + 2i we can even assume that u is in Si.
This implies that all rank 1 subgroups of PS} are conjugate and therefore the quotient group
S3/83 = F} which is generated by the image of w acts transtively on the PSi-conjugacy classes
of elementary abelian 2-subgroups of rank 1.

Thus there are either three or one PS3-conjugacy classes of elementary abelian 2-subgroups of
rank 1. If there was only one then conjugation by w would have to be the same as conjugation
by an element in PS} and this would mean that there is an element in S} of the form wu/’
with v/ € S} whose image in PS} centralizes Fy, and hence wu’ normalizes Fy. However,
ng(ﬁl)/csé (F}) is isomorphic to a subgroup of

Nyx (F1)/Crpx (Fy) = Aut(Fy) 2= Cy

hence Ng,(F}) contains the centralizer Cg, (F}) = Zs[i]* as an subgroup of index at most 2.
This implies that Ng,(F7) is a profinite 2-group and cannot contain such an element which
would have non-trivial image in F .

Next suppose F; and Fy are two elementary abelian 2-subgroups of rank 2 of PS3. Then F i1
and Fy are two subgroups of S} isomorphic to Qg and again by the Skolem Noether theorem
any isomorphism ¢ : 151 — ﬁg can be realized by conjugation by an element of u € DJ, i.e.
o(z) = uzu~?! for any z € Fy. In particular, we have an isomorphism

Npx (F1)/Cpx (F1) = Aut(Qs) = &y .

In order to determine the number of conjugacy classes of elementary abelian 2-subgroups of
rank 2 of PS} we need to know something about the structure of the normalizer Ng,(Qs). The
centralizer CDZX (Qs) is isomorphic to Q5 and the quotient Npx (Qs)/ CD; (Qs) is generated by
the image of the group Ga4 and the element 1 + ¢ (cf. the proof of part a) of Lemma 2.2).
Furthemore the centralizer Cs,(Qg) is isomorphic to ZJ and we get an isomorphism

(3.1) Ns,(Qs) = Z5 Xc, Goa
between Ng,(Qs) and the central product Z5 X ¢, Go4 and an isomorphism
(3.2) Ns,(Qs)/Cs,(Qs) = PGag = Ay .

Because the normalizer Npx (F}) always contains an element y of valuation %, we can assume
2

by changing u, if necessary, by a suitable power of y that there is an isomorphism 1) : f‘l — 132
which is realized by conjugation in S;. In particular, in S, there is only one conjugacy class
of subgroups isomorphic to Qg and in PS, there is only one conjugacy class of elementary
abelian 2-subgroups of rank 2. This means that the group S»/Si acts transitively on the set
of conjugacy classes of subgroups of S} which are isomorphic to Qg. Because the center acts
trivially on the set of conjugacy classes and the image of the center in Sp/S} is of index 2 there
are at most two conjugacy classes of Qg’s in S3. We claim that there are two of them given by
Qg and mQgm ™! where Qg is the 2- Sylow subgroup of the group Gay of section 2 and 7 € S, is
the element defined in (2.1). In fact, if they were conjugate then 7 could be written as product
an with = € S} and n € N, (F}). However, from (3.1) we sce that the reduced norm of such an
element is always a square in Z; and this contradicts the fact that the reduced norm of 7 is 3.

b) It is clear that the automorphism groups of elementary abelian 2-subgroups of rank 1
are trivial. For the automorphisms of a rank 2 subgroup we note that (3.2) implies that the
automorphism group Aut 4(ps,)(PQs) is C3 because conjugation by any element of the subgroup
Qs of Ga4 induces the trivial automorphism. This in turn implies that AutA(pszl)(PQg) is
trivial.
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It remains to show that there is exactly one morphism from each rank 1 to each rank 2
object, or equivalently, that the three non-trivial elements in a rank 2 object are non-conjugate
in PSi. If they were conjugate in PS3, then there would be an element in PS} of the form
wFlz with x in PS} which centralizes the rank 1 subgroup generated by one of these elements,
respectively its preimage in S§ would normalize the preimage, and this contradicts what we
have seen in the proof of part a) above. O

Remark 3.5. We can choose representatives Fy and F) for the two conjugacy classes of
elementary abelian 2-subgroups of rank 2 such that E; N E} is cyclic of order 2. In fact, if Fy
is such that E2 is the subgroup of G24 generated ¢ and j then conjugation by 1+ 2i fixes i and
carries Es to E2 In S} the group Es is not conjugate to EQ, hence in the quotient PS} we get
that E2 and F} are non-conjugate and intersect in the subgroup generated by the image of i.

3.3. Quillen’s F-isomorphism for PS} and the mod-2 cohomology algebra of PS1.

The inverse limit in Quillen’s Theorem 3.1 is always a subalgebra of the product [[, H*E
where E runs through the maximal elementary abelian subgrous of G, up to conjugacy. By
Theorem 3.4 there are, in the case of G = PSi, two of them, both or rank 2 with mod-2
cohomology both given by Fsx, y] with 2 and y of cohomological degree 1.

Proposition 3.6. There is an isomorphism of graded Fo-algebras

lim 4 psy)H*E = {(p1,p2) € Falz,y] X Folz,y] | p1 — pa is divisible by xy(x + y)}

Proof. If E; and E, are two non-conjugate elementary abelian 2-subgroups of rank 2 of PS3

then the non-trivial elements of F; and E5 belong to the three non-conjugate elementary abelian

2-subgroups Fi, F» and F3 of rank 1. This glves 6 morphlbmb in A(PSY), and if we choose

the non-trivial elements of £ and Fs as ejl, e} and €} for j = 1,2 then we have morphisms
.j + Fi — E; which send the nontrivial element of F; to the element €] of E;.

Then the inverse limit is given by pairs of polynomials (p1,ps) € H*Ey x H*E5 such that
Q;j1P1 = O op2 for i« = 1,2,3, or if we identify H*E; with H*E5 via the abstract group
isomorphism which sends e} to e? for i = 1,2,3 then p; — p must be divisible by the three
non-trivial elements in Fa[z, y] and the claim follows. O

The quotient homomorphism S3 — S3/F;S3 = Fy induces a surjection PS} — Fy and the
explicit form of the elements ¢, j and k given in Lemma 2.1 shows that both subgroups Fs and
E!, map isomorphically to this quotient.

Corollary 3.7. As a module over H*(S3/F1S3) = Fa[x,y] the inverse limit is the free sub-
module of Falx,y] x Falx,y] generated by the classes (1,1) and (zy(z + y),0). O

The following result describes the algebraic centralizer resolution of the trivial S}-odule Zs.
It has been established in Theorem 1.2.1 and 1.2.6 of [2]. The subgroups of S} occuring in the
statement are those of (1.5) and I.S] is the augmentation ideal of the completed group algebra
Zs[[S4]]. The notation used is analogous to that of Section 1.2. In other words, if G is a profinite
group and X is a profinite G-set such that X = lim; X; with finite S%—sets X, then we define

(3.3) Zo[[X]] = lim; 4 Z/2"[[X]]

and if F' is a finite subgroup of G and M is a Zy[F]-module then M 1€ denotes the Zs[[G]]-
module Z[[S3]] ®@z,(# M.
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Theorem 3.8.
a) There is an exact complex of profinite Zo[[S3]]-modules

sy o S Sy @ S
0—Zs T(;254_3> Ly ta,—> Lo te,— Lo g, — 22— 0
b) The maps 01, o and d5 are trivial modulo (2,1S3). O

Remark 3.9. a) In fact, the central subgroup Cy acts trivially in this complex and according
to table (1.5) the complex can be considered as a complex of profinite PS}-modules

(3.4) 0= Zs Ti?% Zo o2 2 Ty 152 2 2o 10 55 2, 5 0

or even as a complex of profinite PS3-modules
1« 1« 1 - 1
(3.5) 0 = Zs ¢§f2ﬂ> Zs Tﬁﬁd—> Zo 100y O Ty 155 2y = 0.

b) For every profinite PS3-module M there is a duality spectral sequence associated to the
complex of (3.5)
By = Exty,psy (Cr, M) = Exty ( poay (Z2, M) = H*(PSy, M)
with
Zo 155 s=0
Zo i s=1,2
7o Tgf% s=3

0 else .

Cs =

If M = Fy we can identify the F;j-term via the usual Shapiro-type isomorphisms with

H*(Ey) 2 Folx,y] s=0

ok H*({1}) 2 F, s=1,2
(3.6) E}P" = Iy B
H*(E)) 2 Fslz,y] s=3
0 else .

Proposition 3.10. The duality spectral sequence for the group PSi and M = Fy collapses at
E;.

Proof. By part b) of Theorem 3.8 we have d; = 0 and by (3.6) any higher differential would
have to originate at the vertical edge. However, as we have noted before the composition of
the inclusion of Fy into PS5 followed by the quotient map PS3 — Fy is an isomorphism. This
implies that the vertical edge of the duality spectral sequence survives to F., in particular all
differentials originating at the vertical edge are trivial. O

Theorem 3.11.
a) The map of Theorem 3.1
apsy  H*(PSY) > Ty psyyor H* (E)

is surjective with kernel XFy @ 2?Fy where YkFy is the graded Fo-module Fo concentrated in
degree k.

b) The Poincaré series X ==, 5, dimg, H"(PS5)t" is given by

_ L+t
A G P
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¢) The Bockstein homomorphism induces an isomorphism between the kernel of qpsy in
cohomological degree 1 and 2.

Proof. a) The spectral sequence (3.6) is one of modules over H*(PS3/FyPS} Fy) = Fyz, y).
By Proposition 3.10 we get a filtration

0CG3C Gy C Gy CGy :H*(PS%)
by H*(PS3/F1PS}) = Fylx, y]-modules G; with associated graded given by
Go/G1 = Fz[l‘,y}, Gl/GQ = ZFQ, Gz/Gg = E2F2, Gg = EBFQ[.I,:I/] .

Because both inclusions Fy C PSi and Ej C PS) split the projection map from PS} to
PSY/FPS} the image of qg maps onto the diagonal in H*(Ey) x H*(E}). Furthermore G
maps trivially to H*(E,). By linearity with respect to H*(PS4/F1PS3) the quotient G1/G3
maps also trivially to H*(E%) and then the generator of the Fa[x, y]-module G5 must map non-
trivially to (0,2zy(z +y)) € limgpsiyer H*(E)/qc(Go/G2) because otherwise Quillen’s map
could not be an F-isomorphism. Part a) follows.

b) This is an immediate consequence of part a) and Corollary 3.7.

¢) It is enough to show that the class in H'(PS3,Fs) detected in G1/Gy lifts to a class
in H'(PS3,7Z) of order 2. The cohomology of the groups S» has been first investigated by
Ravenel [27]. For a recent acount which stresses the group theoretical point of view see [19].

In particular, it follows from Proposition 3.5.3 of [19] that the mod-2 reduction homomor-
phism H;(PS3,7Z2) — Hy(PS3,Fy) is an isomorphism and both groups are isomorphic to
(Z/2)3. As a consequence we find H*(PS3,Zy) = 0, HY(PS3,Fy) = (Z/2)3 and the mod-2
Bockstein homomorphism H!(PS3,Fy) — H?(PS3,Fy) is injective. Part c) follows. O

4. ALGEBRAIC CENTRALIZER RESOLUTIONS

4.1. Galois-twisted modules.

We take up the notions introduced in Section 1.2. So we assume that n > 1 is an integer,
p is a prime and Gal is the Galois group of the field extension F, C [F, where ¢ = p", and
W denotes the ring of Witt vectors of F,. Furthermore let G be a profinite group equipped
with a continuous homomorphism ¢ : G — Gal and let S be the kernel of ¢. As before we
consider the Galois-twisted completed group ring Wy[[G]] of G and Galois-twisted p-profinite
Wy [[G]]-modules. In order to keep notations simple we will, as before, simply write W[[G]]
instead of W[[G]].

Note that for n = 1 we recover the usual group ring Z,[[G]]. In general, the action of S on
a Galois-twisted profinite G-module is W-linear while the action of G is only Z,-linear. The
groups we have in mind are G,,, GL, PG,, and closed subgroups of these groups, in particular
in the case n = p = 2.

A crucial input for the sequel is the following result.

Proposition 4.1. Suppose that G is a finite group and P is a Galois-twisted p-profinite G-
module.

a) If P is WI[S]]-projective then P is W[[G]]-projective.

b) If P is F4[[S]] projective then P is F4[[G]]-projective.
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Proof. We give the proof of part a). The proof of part b) is completely anlogous. Let ¢ :
P — M be a homomorphism of Galois-twisted profinite G-modules and let 7 : M — N be an
epimorphism of Galois-twisted profinite G-modules. Because P is W[[S]]-projective there exist
a W[[S]]-linear homomorphism @ : P — M such that 7¢ = ¢.

Let o be the generator of Gal given by the Frobenius homomorphism 2 — z? of F, and
denote its lift to W still by 0. The trace map ¢r : F, — ), is surjective by Hilbert 90, and
therefore the trace map tr : W — Z, is also surjective, in particular there exists an element
A € W with ¢tr(A\) = 1. Furthermore, if h € S, g € G and z € P then

P(N)ghg(h™ g™ x) = (N)g@(g ") ,

L2) is constant on S-orbits for the translation action of S on G on the right

hence (YA)g3(g~

and
v:P—=> M, - Z (9N gp(g ')
geG/S
is a well-defined. Furthermore, ¢ is a W[[G]]-linear map. In fact, if & is in G then
hp(z) = Yieqss "(INhgp(g~ w) = EhgeG/S(hg)‘)hg@(g_lx)

= EhgeG/S(hg)\)hggZ((hg)_1hx) = () .

Furthermore
m(z) = dec/s(g)\)gﬂ'ﬁﬂg_lx) = dea/s(g/\)9¢(g_1$)
= Dgeass("Ne(@) = tr(N)e(z) = ¢(z)

and this shows that P is projective. O

Corollary 4.2. Suppose that G is finite and S is of order prime to p. Then the trivial Galois-
twisted profinite G-module W resp. the trivial Galois-twisted profinite G-module I, is a projec-
tive W[[G]]-module resp. F,[[G]]-module. O

Lemma 4.3. Suppose G is a finite group and let 0 — My — My — M3 — 0 be an exact
sequences of Galois-twisted p-profinite G-modules which is split as sequence of W-modules. If
M is projective then the sequence is split as a sequence of Galois-twisted profinite G-modules.

Proof. This proof is actually extracted from the proof of Lemma 16 of [18]. We begin with
the following observation. If M; is projective as Galois-twisted profinite G-module then M,
is a direct summand in the induced module W[G] ®w M;. Furthermore for a finite group the
induced module and the coinduced module Homy (W[G], M7) are isomorphic.

The existence of a W-linear splitting of the monomorphism M; — M, implies that any
W[G]-linear map ¢ from M; to the coinduced module Homw (W[G], M7) can be extended to
a W[G]-linear map ¢ : My — Homy (W[G], M;). Now we take for ¢ any W[G]-split inclusion
of M; into Homw(W[G], M1). Then the composition of ¢ with a W[G]-linear splitting of ¢
provides the desired splitting of the monomorphism M; — M. 0

The other crucial input in the construction of the centralizer reolution is the following
Nakayama type lemma which is analogous to Lemma 4.3 of [14]. We say that a profinite
p-group G is finitely generated if H:(G,Fy) is a finite dimensional F,-vector space. In the se-
quel the kernel of the augmentation W[[G]] — F, is denoted by I,G, or simply by I if p and G
are clear from the context. Then a Galois-twisted p-profinite W[[G]]-module M is automatically
I-complete, i.e the filtration by the submodules I" M, n > 0, is complete.

Lemma 4.4. Let G be a finitely generated profinite p-group and f : M — N a morphism of
complete Galois-twisted p-profinite W[[G]]-modules.

a) If Toro(f) : TorXVHG”(M, F,) — TorXVHG” (N,Fy) is surjective, then f is surjective.
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b) If Tory(f) : Tor, WG (v, F,) — Torzw[[c]] (N,F,) is an isomorphism for ¢ =0 and surjec-
tive for ¢ =1 then f zs an isomorphism. O

4.2. The algebraic centralizer resolution for PG} and PGs.

The following theorem establishes Theorem 1.2 of the introduction. The finite subgroups of
PG} occuring in this section are those specified in table (1.5) and section 2.

Theorem 4.5. There are F-resolutions of the trivial Galois-twisted profinite PG4-module resp.
Gi-module W

PG2 PG}

sy W hle 22w L% g w100

0— W1k —>WTGG2@WTPG2L>W

and

G o3 Gl B Gl Gl o Gl G ¢
00— WG, = Widiiaa = Wic, ®W g, = Wig, Wi, —W.

Proof. The second complex is obtained from the first one by simply considering a complex
of profinite W[[PG]]-modules as a complex of profinite W[[G}]]-modules via the canonical
projection G3 — PGL. The property of being an F-resolutions is preserved by the analogue of
Lemma 14 of [18]. So we concentrate on constructing the first complex. In order to simplify
notation we will write this complex in the sequel as

0—)P3—>P2—>P1—>P0—>ZQ.

The existence of an exact complex follows from splicing the exact sequences of Lemma 4.6,
Lemma 4.9 and Lemma 4.10 below. The F-projectivity of the resolution will be established in
Lemma 4.11 below. 0

Our strategy for the remainder of the proof of Theorem 4.5 is analogous to the strategy
used in section 4 of [14] in the construction of the duality resolution for p = 3. In the following
computations we will abbreviate Extyypgiy (M, Fs) simply by Ext™(M) and Tor, WiPS, ] (Fy, M)
simply by Tor,(M). We observe that we have isomorphisms

(4.1) Ext?(M) = Tor,(M)*
for any profinite W[[P.S3]]-module M if (—)* denotes the Fy-linear dual.

We also note that Ext*(—) and Tor.(—) define functors from the category of Galois-twisted
profinite W[[PG3]]-modules to Galois-twisted F4[[PG3/PS3]]-modules and this will be impor-
tant in the proof of Lemma 4.8, Lemma 4.9 and Lemma 4.10 below. Note that the quotient
group PG3/PS} is isomorphic to PSY/PSi x Gal 2 F} x Gal & &3.

As input for our construction we will use Lemma 4.4 and the isomorphisms (4.1) together
with the calculation of Ext*(W) = H*(PS3;F4). The latter is given by Theorem 3.11 with
coefficients extended from Fo to Fy.

Lemma 4.6. There is a short exact sequence of Galois-twisted profinite PG3-modules
1 1
(4.2) 0— Ny — Py i= Wig? @ Wig,” < W —0.

where € is given by augmentation. The Poincaré series ) -, dimp, Coker(Ext"(¢))t" is equal
to % while the Poincaré series of 3, dimp, Ker(Ext"(e))t" is t + > and the Poincaré
series X1 1= ), 5 dimg, Ext™(N1)t" is given by

1+t+t2

=+ 1+¢t.
X1 11t + 1+



18 Hans-Werner Henn

Proof. Tt is clear that € is surjective. As modules over W[[PS31]] we have
Py = WipS @ Wip,?
where Ey and E) are the elementary abelian 2-subgroups of rank 2 of table (1.5). By the
Shapiro lemma there is an isomorphism
Ext*(Py) & H*(Eo,Fy) x H*(EY;Fy)
and Ext*(g) corresponds via this isomorphism to the restriction homomorphism
H*(PS3,F,) — H*(Ey,Fy) x H*(E},Fy) .

The long exact sequence in Ext*(—) associated to the short exact sequence (4.2) gives a short
exact sequence of Fy[PG}/PS3]-modules

(4.3) 0 — Coker(Ext*(¢)) — Ext*(N;) — Ker(Ext*T'()) = 0
and by Theorem 3.11 the Poincaré series of Coker(Ext*(¢)) is given by
2 1+ 1—t% 14t+414

(1-12 (1-1t)2 (1-1t)2  1-t
while that of Ker(Ext*(¢)) is given by t + ¢2. The result follows. O

Remark 4.7. (cf. Remark 3.5) We can and will choose &4 and & such that &4 N &) = Cy.
In fact, if we choose as generator of the subgroup Cj the image of 1+ i (as in Lemma 2.4) and
for &4 the group PGy of Lemma 2.2 then conjugation by 1+ 2i fixes Cy and we can take the
conjugate copy of G4 as &. Then it is elementary to check that &4 N &) = Cy.

Lemma 4.8. There is a homomorphism of Galois-twisted profinite PG}-modules
1

(4.4) bW = Ny

with the following properties.

a) The Poincaré series
Xk = Z dimp, Ker(Ext™(¢))t", xc:= Z dimp, Coker(Ext"(¢))t"
n>0 n>0

are given by
Xe =14+t XxXc=2+t.

b) As a Galois-twisted G3 = PG}/ PS}-module Coker(Ext® (1)) is isomorphic to the cokernel
of the F4[&3]-linear inclusion Fy = F4[G3/Gal]“® — Fy[&3/Gal].

Proof. Consider the map of Galois-twisted profinite PG}-modules

1 1 1
(4.5) P Wi 2 — Pp=Wia 2 @ W Tgfv
which sends the generator e; to (eg, —¢(). Here ey is given as e ® 1 € W[[PG3]] ®wyc,; W and
eq resp. € by the corresponding element in W[[PG3]] @wie,)] W resp. in W[[PGS]] Qe W.

1

Clearly e is trivial, hence ¢ factors as composition 1 : WT&GQ — N, followed by the inclusion
of Ny into Py. In order to analyze Ext* () we start by analyzing Ext*(¢).

As homomorphism of modules over PS4 the homomorphism ¢ becomes

Ps; PS; Ps} PS} PS}
WTCZ *® WTwC;w*1 & WTwzégw*2 - WTEz o WTE; :
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and the induced map Ext*(¢) becomes a homomorphism

2
H*(Ey,Fy) @ H* (B}, Fy) = [[ H* (w'Cow™ !, Fy)
i=0
whose kernel is the inverse limit of Corollary 3.7 with Fs-coefficients replaced by Fy-coefficients.

Therefore Ker(Ext*(y)) has Poincaré series (}Jjjz and the exact sequence

2
0 — Ker(Ext*(¢)) — H*(Eq,Fy) @ H*(E}, Fy) — H H*(w'Cow™*,Fy) — Coker(Ext*(p)) — 0
i=0
shows that Coker(Ext*(¢)) has Poincaré series x¢ given by
1448 L3 2 B 4+31—t)—1 2 —3t+2
Xe = a2 "1t -0 -0z (1-12
Now we turn towards analyzing Ext*(¢)) and we consider the exact sequence (4.3)

0 — Coker(Ext*(¢)) — Ext*(N;) — Ker(Ext*t'(¢)) = 0.

Because ey is trivial Ext*(p) factors through Coker(Ext*(¢)) and the restriction of Ext* (1)) to
the submodule Coker(Ext*(¢)) is induced by Ext*(¢). If xx is the Poincaré series of the kernel
of this restriction then we have an identity

=t+2.

X + 3 dimg, Ext™ (W 16°2)" = x¢ + dimg, Coker(Ext™ (¢))t"
n>0

We have just seen that yo = t + 2 and therefore Lemma 4.6 implies the following identity of
Poincaré series

1+¢+¢?
Xc + Z dimp, Coker(Ext™(e))t" =t + 2+ +1 _J; = = Z dimp, (Ext™( WTC4 ))

n>0 n>0
and this shows that xx = 0. In other words, the restriction of Ext*(v) to Coker(Ext*(g)) is
injective. Part a) will therefore follow if we can show that there are elements 7 € Ext’(N;)
respectively 7 € Ext' (V1) which are both in the kernel of Ext*(¢)) and which project in the exact
sequence (4.3) to non-trivial elements in Ext! (Ker(g)) = Fy respectively in Ext?(Ker(e)) = Fy.

The short exact sequence (4.3) is a sequence of Galois-twisted PG3/PS} = &3-modules and
we know from Lemma 4.6 that Ker(Ext**!(¢)) is trivial unless * = 0 or * = 1 and in this case
its value is F4. The Galois-twisting arises from the canonical homomorphism G3 — Gal which
induces a homomorphism PG1/PS} = &3 — Gal with kernel C3 cyclic of order 3. Therefore
Corollary 4.2 shows that the short exact sequences

0 — Coker(Ext’(¢)) = Fy — Ext’(N;) — Ker(Ext'(¢)) = F4 — 0
and

0 — Coker(Ext'(g)) = F2 — Ext'(N;) — Ker(Ext?(¢)) = F4 — 0
are split exact as sequences of Galois-twisted F4[&3]-modules. In particular Ext’(Ny) is iso-
morphic to the trivial Galois-twisted module F4 & F4. On the other hand it is clear that as
F4[&3]-module ExtO(WTgiGé) is isomorphic to F4[G3/Gal] and therefore its Cs-invariants are

isomorphic to Fy. The image of Exto(go) is isomorphic to F4 and therefore necessarily equal
to these invariants. Hence the image of Ext’(¢) must agree with the image of Ext®(y) be-

1
cause otherwise Ext’ (WTE%) would contain a F4[Cs]-submodule of dimension 2 with trivial
action of C3. This shows the existence of T and proves part (b) because we have just seen that
Coker(Ext’(¢))) is isomorphic to the cokernel of the inclusion

Fy = F4[G3/Gal]“* — Fy[S3/Gal] .
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Finally we use that for each profinite W[[PG3]]-module M the short exact sequence of trivial
Galois-twisted W[[PG1]]-modules
0— W/(2) 23 W/(4) = W/(2) =0
induces a connecting homomorphism

8+ Ext™ (M) = Extiypyy (M, W/(2)) = Extigpen (M, W/(2)) = Ext™ (M)

which is functorial in M and commutes with the connecting homomorphisms associated to
short exact sequences 0 — M7 — My — Ms in the first variable of Ext. If M = W is the
trivial module then part c) of Theorem 3.11 says that this connecting homomorphism induces
an isomorphism between the kernel of Ext'(¢) and the kernel of Ext?(¢). In the exact sequence
(4.3) for ¥ = 0 we have just seen that we can choose a lift of a generator z € Ext! (Ker(¢)) to an
element 7 € Ext’(N;) such that  is in the kernel of Ext®(¢)). Then ¢ := §(Z) is in the kernel
of Ext!(¢)) and projects to a non-trivial element in Ker(Ext?(e)). O

Lemma 4.9. There is a short exact sequence of Galois-twisted profinite PGL-modules
(4.6) 0 — Ny — P i= WiEE2 @ W% 25 vy — 0
such that the Poincaré series X2 1= ), dimp, (Ext™ (N2))t" is given by
X2 =3+1.
and such that there is an isomorphism of Galois-twisted F4[PGL/PS3] = F4[&3]-modules
Ext(Ny) = Fy[&3/Gal] .

Proof. By the isomorphisms of (4.1) we have Coker(Torg(¢))) = Ker(Ext’(¢))) and by the
previous lemma this is isomorphic to the necessarily trivial Galois-twisted module Fy.

By Corollary 4.2 W is a projective Galois-twisted W[S3]-module. Hence, the canonical
epimorphism W — F4 can be lifted against the canonical projection
Ny — Torg(N1) — Coker(Torg()) = Fy
to a W[[PG}]]-linear homomorphism
/. PG}
YW, ? = Ni .
Then the homomorphism
PG; PG}
p: P1 = WTC42 @WT632 — N1
is defined via its restriction to the two summands given by v and ¢’. By construction the

map p induces an epimorphism on Torg(—). By Lemma 4.4 it is therefore surjective and Ny is
defined as its kernel and we have established the short exact sequence (4.6).

The long exact sequence in Ext*(—) associated to the short exact sequence (4.6) gives a short
exact sequence
(4.7) 0 — Coker(Ext*(p)) — Ext*(Ny) — Ker(Ext***(p)) = 0.
Because WTQ?Q is isomorphic to W[[PS3]] as PSi-module we get Ext*(WTgSQ) >~ F, concen-
trated in degree 0 and hence Ext*(p) agrees with Ext*(¢)) for * > 0. For * = 0 the difference is

that
Ext®(p) : Ext’(N)) 2 Fy @ Fy — Ext(Py) = (Fp)?

is injective with cokernel isomorphic to the cokernel of Ext” (1) while
Ext® (1)) : Ext’(N1) = Fy @ Fy — Ext(W502) = (Fy)?
has kernel F,. It follows that yo = 3 + ¢ as claimed.
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For the last statement we use that the short exact sequence (4.7) for x = 0 is one of Galois-
twisted F4[G3]-modules and identifies by part b) of Lemma 4.8 with the sequence

0 — Coker(Fy — F4[&3/Cal]) — Ext’(Ny) — Ker(Ext'(p)) =F4 — 0 .
By Proposition 4.1 the sequence is split just as the sequence
0 — Fy =2 Fy[G3/Gal]® — F4[S3/Gal] — Coker(F4[G3/Gal] — F4[S3/Gal]) — 0
and this implies Ext’(Ny) 2 Fy @ Coker(Fy — F4[&3/Cal]) = Fy[S3/Gall. O

Lemma 4.10. There is a short exact sequence of Galois-twisted profinite PG3-modules

(4.8) 0— Py = WHE® & Py = WL 5 N, - 0.

Proof. By Proposition 4.1 the Galois-twisted G3-module W[S3/Gal] is projective. Hence the
canonical epimorphism W[G3/Gal] — Fy4[S3/Gal] can be lifted against the canonical projection
NQ — TOI‘()(NQ) = IF4[63/Ga1]

to a W[[PG}]]-linear homomorphism
PG} S, \ 4 PG}
Whgal® = (WTgil) Te, = N2

Then the homomorphism P, — Ny induces an epimorphism on Torg(—). By Lemma 4.4 it is
therefore surjective. Let N3 be its kernel so that (4.8) is a short exact sequence.

By the isomorphisms of (4.1) and by the previous lemma the induced map in Ext*(—) is a
monomorphism with cokernel Fy concentrated in degree 1. Therefore, if N3 is the kernel of our
map P> — Na, then by the isomorphisms of (4.1) we have

Fy ¢=0
0 ¢>0"

Tory(N3) = {

By Corollary 4.2 the Galois-twisted G3-module W is again projective. Hence the canonical epi-
morphism of Galois twisted G3-modules W — F,4 can be lifted against the canonical projection

N3 — TOI‘()(Ng) =y
to a W[[PG}]]-linear homomorphism of Galois-twisted profinite PG3-modules
1
W Whge? = Ny .

By construction the map induces an isomorphism on Tor,(—) for all ¢ and by Lemma 4.4 it is
therefore an isomorphism. O

Lemma 4.11. The exact complexes of Galois-twisted profinite PGL-modules respectively Gi-
modules of Theorem 4.5 are F-resolutions of the trivial Galois-twisted module W.

Proof. By the obvious analogue of Lemma 14 of [18] it suffices to consider the case of PGJ.
Furthermore it suffices to show that the sequence is split after restriction to any finite subgroup
F and for this it is enough that the short exact sequences of Lemma 4.6, Lemma 4.9 and Lemma
4.10 are split exact after restriction to F'. Furthermore it suffices to consider to restrict attention
to maximal finite 2-subgroups which are given by &4 and & (cf. the discussion around (2.5)).
The maps

PG PG}
W — Wtg,” ® Wi, *
given by sending z to (264,0) resp. = to (0,28)) are clearly W[G,] resp. W[&)]-linear and

provide splittings of . Then Lemma 4.3 shows that for any finite subgroup F of PG} the exact
sequence of Lemma 4.10 is split as sequence of W[F]-modules. In particular, as W[F]-module
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1
N3 is a direct summand in WTgff and therefore Nj is projective as W[F]-module. So Lemma
4.3 also applies to the exact sequence of Lemma 4.9 and this completes the proof. O

Finally we turn towards the construction of an F-resolution for the trivial Galois-twisted
profinite G-module W for G = Go resp. G = PGy. We oberserve that because of Go/G} =
PGy /PGy 22 Zs there is a short exact sequence of Galois-twisted profinite Gy resp. G%—modules
(4.9) 0 — W[[Zs]] =5 W([Z2]] — W — 0

where g is a topological generator of the group Zs. In fact, for every prime p here is a well
known isomorphism Z,[[T]] — Z,[[Z,]] which sends T to g — e where g is any topological
generator of Z, and this extends to an isomorphism W[[T]] — WI[Z,]]. Via this isomorphism
the augmentation is just given by the map which sends T to 0.

By the analogue of Lemma 15 of [18] induction of the F-resolutions of Theorem 4.5 from
PG} to PGy gives an F-resolution of the W[[PGs]]-module W[[PGs/PG}]] of the form

(4.10) 0— Qs 20y 201 25 Q= Wihat = 0
with
Qs =Wlg,?, Q2 =WIGy, Qi =Wig? o Wig™, Qo =Wig.? @ Wig™
and the monomorphism of the exact sequence (4.10) can be covered by a map of complexes

0= Qs 2 Q@ 2 Q@ B Q S WG =0

PGL
(4.11) ' | ! ! Lg—e
O3 o2 01 € PG

0 = Q3 — @Q — Q1 — Qy — WTPG% 0.

The following result is a more precise form of Theorem 1.1.

Theorem 4.12. The total complex of the double complex Q. . of (4.11) is a Galois-twisted
F-resolution of the trivial W][[PGz]]-module W.

Proof. Tt is clear that Tot(C), is an exact comple of F-projective modules. The fact that the
complexes Homyyiqy) (P, Qi,») are exact for i = 1,0 and each F-projective module P implies
that the complex Homyyjjgy (P, Tot(Q).) is exact for each F-projective module P. d

5. REALIZING THE CENTRALIZER RESOLUTIONS

5.1. Preliminaries on Morava modules.

By the Goerss-Hopkins-Miller theorem the extended Morava stabilizer group G, (") acts on
the spectrum E,,(T") (see [12], [28]) ; we recall that F,(I") is a Landweber exact spectrum given
by a 2-periodic theory with coefficients 7. (FE,(T)) = mo(E,)[u™!] (with u € 7_5(E,)) whose
associated formal group law over my(E,(T")) is a universal deformation of T' in the sense of
Lubin and Tate [LT]. In particular there is a (non-canonical) isomorphism between 7o (Ey, (T"))
and W([ug, ..., u,—1]], the ring of formal power series over W in the variables uy, ..., u,—1. The
maximal ideal (p,u1,...,u,—1) of this power series ring will be denoted m. To avoid cluttered
notation we will abbreviate in this section E,(T") simply by F, and G,(T') by G,,.

For the purposes of this paper, a Morava module is a complete (E,,).-module M equipped
with a continuous G,-action (continuous with respect to the m-adic topology on M and the
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profinite topology on G,,) such that for g € G,, a € m.E,, A € W and © € M we have

glax) = g(a)g(z) and g(Az) =IAg(z) .
So a Morava module is a Galois-twisted module but it need not be p-profinite and therefore not
be a module over the (twisted) group algebra W[[G,]]. The category of Morava modules will be
denoted £G,,. A morphism in this category is an (F,).-linear map M — M’ which commutes

with the action of G,,. We note that such a map will be automatically continuous with respect
to the m-adic topologies on M; and Ms.

The Morava module of a spectrum X is defined as
(En)*X = W*LK(n) (En A X) .

This is an (E,,).-module which is complete but not necessarily Hausdorff with respect to the
m-adic topology if m denotes the maximal ideal of 7o (E,). All Morava modules in this paper
will be Hausdorff, in fact they will all be pro-discrete.

For the Honda formal group law the following result is folklore and can be found in [10] or
in [31]. We give a proof which is very close to that in [31].

Proposition 5.1. Let E,, be the Lubin-Tate spectrum associated to a deformation of a formal
group law I' over Py which is already defined over F,,. Assume that the Frobenius endomorphism
&r defined by &r(x) = aP satisfies an equation &} = pu in the endomorphism ring of T' (over
F,) where u is a p-adic unit. Then there is an isomorphism
(5.1) ¢ T Lic(n)(En A Ey) Z map ., (Gn, (En)x)
which is adjoint to the map
G,, x W*LK(n)(En N En) — W*(En)

given by

(z:S" = Ep AEp, g €Gp) s (S° - B, ANE, 24 B, AE, 5 E,)

where p s multiplication on E,,.

We prepare the proof of the proposition with two remarks, one on formal group laws and
another one on g-Boolean algebras.

Remark 5.2. a) Let ¢ = p™ and let k be a field which contains F,. The endomorphism &7
commutes with an endomorphism ), a;x" € Endg(T) if and only if al = a; for all i, i.e. a; € F,
for all . Hence the canonical map

End]pq (F) — Endk (F)

is an isomorphism if and ony if £} is central in which case it must satisfy an equation £ = pu
in the endomorphism ring of I' (over F,,) for some p-adic unit.

b) More generally, if k is a finite field of order p™ then the endomorphism ring over k is
isomorphic to the centralizer of £ in Endy(T").

Remark 5.3. a) Let I' be any formal group law over F, and consider as in the proof of Theorem
12 of [31] the functor which sends an Fg-algebra A to the set of pairs (8, f) where a : Fy — A
is is the ring homomorphim defining the F,-algebra structure on A, 3 : F; — A is any other
ring homomorphism and f is an isomorphism £,I" — «a,I" of formal group laws. This functor
is corepresented by the F, algebra

B(I') :==Fq ®r L[to, t1,...] @1 Fq

where the F,-algebra structure comes from the first tensor factor Iy, L is the Lazard ring,
F, is considered as an L-algebra via the homomorphism classifying I" and Lltg,t1,...] is an
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L-algebra via the usual units 7z, and 7 in the Hopf-algebroid (L, L[to, , t1, . ..]). The algebra B
is generated over Fy ® IF, by the elements ¢;, ¢ = 0, 1, ..., with respect to complicated relations
determined by nr and I'.

Now assume that the formal group law I' is already defined over IF,. Then we have 3,I' = o, I
because there is only one algebra homomorphism F, — A and then f is an automorphism of
B.I' = a,I'. If furthermore (! = pu then for any endomorphism Y, a;z* € End4(T") we have

q

a; = a; and the complicated relations must include the relations tg = t; for all 7. Therefore

B(T'") is a g-Boolean algebra, i.e an F4-algebra which satisfies 27 = « for any « € B.

b) Let B be a ¢g-Boolean algebra. A g-Boolean algebra which is an integral domain only has
q solutions to the equation z? = x, hence any prime ideal in such a B is maximal and is the
kernel of a unique Fg-algebra morphism B — [F,. So we can identify the spectrum spec(B) with
Homp, —q14(B,Fy). Furthermore B is the colimit of its finite F;-subalgebras and this defines a
profinite topology on its spectrum spec(B). The structure theorem for g-Boolean algebra says
that the evaluation map from B to the algebra of continuous functions on its spectrum

B = map(spec(B), Fq), = (0= ¢(2))

is an isomorphism. In fact, if 2 € B is any element then 297! is idempotent. Hence, if 277! # 1
then B is the product of the ideals generated by z?~! and 1 — 297!, From this one sees
immediately that the evaluation map is an isomorphism if B is finite. The general case follows
by observing that for a profinite set S = lim;S; with .S; finite, the set of continuous functions
map,,,(S,Fy) is equal to colim;map(S;,Fy).

We are now ready for the proof of Proposition 5.1.

Proof. 1t is enough to prove the isomorphism in degree 0 after reducing modulo the ideal
generated by the maximal ideal m in m(E). The F -algebra (E,)oE,/m agrees with the algebra
B(T') considered in part a) of the previous remark. By the assumption on I" and part b) of
the preceeding remark (E,,)oE,/m is an F,-Boolean algebra and is therefore isomorphic to the
ring of continuous functions on its spectrum. The spectrum of (E,)oE, /m identifies with the
profinite set of pairs (£, f) and this is exactly equal to G,,(T). O

In the remainder of this section we assume that I" satisfies the assumption of Proposition
5.1.

The group G,, x G,, acts on 7. (L n)(En A Ey,)). The action of the left hand factor is the
one used in the definition of the Morava module of 7. (L () (En A Ey)). We will also need the
action of the right hand factor and we need to know how this action translates to the right
hand side of the isomorphism (5.1). We record this in the following lemma whose proof is
straightforward.

Lemma 5.4. Let g, hy and hy be elements of Gy, and x be an element of .(Lg (n)En N Ey).
Then

¢((h1,h2)x)(g) = hap(x)(hy  ghs) -

In other words, the action on the left hand copy of E, corresponds to the diagonal action on
the set of continuous maps while the action on the right hand copy of E, corresponds to the
action on G,, on the right. O

The results of [10] on homotopy fixed points will now carry over to the case of E,, = E,(T")
if I' satisfies the assumptions of Proposition 5.1. In particular we have the following result.
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Corollary 5.5. Let K be a closed subgroup of G,. Then there is an isomophism of Morava
modules

(En)*(EZK) = map, (G, /K, (En)s) = HomW[Gal]fcts(W[[Gn/KH7 (En)x)

if G, acts diagonally on the set of continuous maps respectively continuous Galois-twisted ho-
momorphisms. O

Let M be a Morava module and let z € M. If « : M — (E,). is an (E,).-linear map let
®(a) : M — map,;,(Gn, (En)s) be given by

(@(a)(2))(g) = galg~'x) .
Conversely, let 8 : M — map,,,(Gy, (Ey)«) be a morphism of Morava modules where G,, acts
on map (G, (Ey).) diagonally. Then let U(5) : M — (E,,). be given by

(B)(x) = (B(x))(e) -
For h € G, let hx 8 : M — map_,,(Gy, (Fy)«) and hx « : M — (E,). be given by

(h* B(x))(g) = (B(x))(gh) and (h+a)(z) = ha(h™ x) .

The proof of the following lemma is straightforward and left to the reader.

Lemma 5.6.
a) ®(a) is a homomorphism of Morava modules.
b) U(B) is (E,)«-linear.

¢) The map
® : Homg,, ), (M, (E,)«) = Homgg, (M, map.,(Gy, (En)«)), o $(a)
s an tsomorphism with inverse given by
W : Homeg, (M, mapy (G, (En).)) — Homs, ). (M, (Ba).), B W(B) .

d) The action of G,, on T Ly n)(En A Ey) on the right hand smash factor translates via the
isomorphism of Proposition 5.1 and of the isomorphisms ® and U of part ¢) into the diagonal
action, i.e. for h € G,, we have ®(hx a) = h* ®(a) and V(h* B) = hx ¥(B). O

The following two results are taken from [14]. There they were crucial in realizing the duality
resolution at n = 2 and p = 3 and here they are crucial for constructing the centralizer resolution
for n = p = 2. In these results we use the following notation: if F is a spectrum and X = lim; X;
is an inverse limit of a sequence of finite sets then E[[X]] is defined as holim;E A (X;);. We
observe that if X is such a profinite set with a continuous action of a finite group K and if F
is a K-spectrum then E[[X]] is a K-spectrum via the diagonal action. If X and Y are spectra
then we denote the function spectrum by F(X,Y).

Proposition 5.7 ([GHMRI1, Prop. 2.6]).
a) Let K1 be a closed subgroup and Ks a finite subgroup of G,. Then there is a natural

equivalence (where the homotopy fized points on the left hand side are formed with respect to
the diagonal action of K)

En[[Gn/ Kl = F(ERS ERR?)

b) If Ky is also an open subgroup then there is a natural decomposition

EnHGn/KVIHhK2 = H EZKT
Kz\Gn/Kl
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where K, = KoNx Kz~ ! is the isotropy subgroup of the coset xK, and Ko\G,, /K is the finite
set of double cosets.

¢) If K1 is a closed subgroup and K, = (|, U; for a decreasing sequence of open subgroups U;
then

F(E}S, E}?) ~ holim, B, [[G, /U] ~ holim;  [[ ~ ERf=
KQ\G,L/UI'

where K, ; = Ko NaU;z™" is, as before, the isotropy subgroup of the coset xUs;. O

The following remark is taken from section 1.3 of [18].

Remark 5.8. If U; C U; then the map
T EMfer— I EMs
Ko\G,/U; K2\Gn/Uj

in the inverse system of part (c) of the proposition can be described as follows: if x € G, /U;
has isotropy group K, ; and its image ' € G,,/U; has isotropy group K, ; then the restriction

. . hE
of the map to the factor determined by x sends EZK’ via the transfer to the factor E,, **~’
determined by z. Because K3 is finite this implies that on homotopy groups the inverse system
is Mittag-Leffler.

Proposition 5.9 ((GHMRI1, Prop. 2.7]). Let Ky and K5 be closed subgroups of G,, and suppose
that Ky is finite. Then there is an isomorphism

Ky =
((En)*[[Gn/KIH) F— Homfgn((En)*EvizLKlv (En)*EZIQ)
such that the following diagram commutes

T Ea[[Go /K2 — ((Bn):[[Gn/ K] "™

~ ~

T F (B ERR2) — Homeg, ((En)«ERTY, (En) ELE?)

where the top horizontal map is the edge homomorphism in the homotopy fixed point spectral
sequence, the left-hand vertical map is the isomorphism given by Proposition 5.7 and the bottom
horizontal map is the E, -Hurewicz homomorphism. O

We will also need the following result from section 1 of [5].

Lemma 5.10. Let K C Gy, be a closed subgroup and let Ky = K NS,,. Suppose the canonical
map

K/Ky — G, /S, = Gal
s an isomorphism.

a) There is a Gal-equivariant equivalence

Gal, A EME 5 phio

b) For any profinite Morava module M we have isomorphisms

H*(K,M) = H,(Ko, M), H,(Ko, M) =W ®g, H.(K,M). O
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5.2. Realizing the centralizer resolution for G} and for G..

The construction of the topological centralizer resolutions of Theorem 1.4 and Theorem 1.5
comes in two steps. In Proposition 5.11 we first construct a complex of spectra X, such that the
complex of Morava modules (Es).(X,) is isomorphic to the complex Homyygaij—cts(Pe; (E2)x)
if Py denotes the complexes of Theorem 1.1 resp. of Theorem 1.2. Here Homyygay—cts denotes
continuous homomorphisms of Galois-twisted continuous Gal-modules. This part is analogous
to the first step in the construction of the duality resolution at n = 2 and p = 3 in [14] and
the centralizer resolutions in [18]. In the second step we refine the complex of spectra to a
resolution, i.e. we construct the necessary factorisations of the maps «;. This step follows
the strategy used in the proof of Theorem 25 and Theorem 26 of [18]. The crucial result is
Proposition 5.12. We give details of the proof of Theorem 1.5. The proof of Theorem 1.4 is
completely analogous with details which are less complicated.

Proposition 5.11. There is a complex of spectra

Xo % = Lig(yS° — ERCs0)y pheus® _y phGu)y phs \, phtasl) , phtisT)

N EgQ x Gal vV EgGlz(F) Vi ESCS - E5G12(F) \Vi EngGal - EQGIZ(F) %

such that the complex of Morava modules (E2)«(Xs) is isomorphic to the complex of Morava
modules Homyy(gat—cts(Pe, (E2)+) if Pe denotes the complex given by Theorem 1.1 respectively
Theorem 4.12.

Proof. By Corollary 5.5 we can choose X; as the explicit (wedges of) homotopy fixed point
spectra appearing in the statement of the theorem such that we have isomorphisms of Morava
modules

(B2)«(X;) = Homyygay (P, (E2)«)

for e = —1,0,1,2,3,4. It is therefore enough to show that the Eo-Hurewicz homomorphisms

(5.2) ToF'(X;, Xit1) — Homeg, ((E2)«Xi, (E2)«Xit1)

are surjective for = —1,0,1,2,3 and the Es-Hurewicz homomorphisms

(5.3) moF (X, Xiq2) — Homeg, (E2)« X, (E2)« Xi12)

are injective for ¢ = —1,0, 1, 2. In fact, we will see that in most cases these homomorphisms are

even isomorphisms.

By the explicit nature of the spectra X; it is enough to show that the FEs-Hurewicz homo-
morphisms

(5-4) moF(Ey"", By™*) — Homeg, ((E2) Ey ™", (Bs). By?)

are isomorphisms for every combination of H; and Hs with H; running through Gy, Gas(T'),
G)s(T) Cs, G12(T), C2 x Gal and Hs running through Gug(T), Gis(T) Cs, G12(T'), Cy x Gal,
except possibly in the case that Hy and Hy are equal to either Gyg(T") or Gg(T"). In this case
we will see that we still have at least a surjection and this is good enough.

In fact, by Proposition 5.9 it is enough to show that the edge homomorphisms
7o (Ea[[Go/ Hi]))" 2 — mo(Bx[[Go/ Hi )2
of the descent spectral sequences is an isomorphism for every combination of H; and Hs. except

if Hy, Hy € {G4s(T"), Gii5(T")} and that in this case it is still surjective.

For this we use Proposition 5.7 and the usual lim-lim'-sequence. First we note that the
lim'-terms lim' e, v Wl(E;LHT) and lim' g, v m (Ey)H= arising from part c) of

Proposition 5.7 are trivial. For the second lim'-term this is trivial because 7, (F,) = 0 and
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for the first lim'-term this follows from Remark 5.8 because the inverse system satisfies the
Mittag-Lefler condition.

Therefore we get the desired isomorphisms in (5.2) respectively the surjection in (5.3) if for
every H; ; the edge homomorphism

hH ;
2

(55) 770(E ) — 7T0(E2)H"’i

of the homotopy fixed point spectral sequence is an isomorphism in degree 0 respectively sur-
jective in degree 0. The groups H,; always contain the central Cy. Furthermore, by Lemma
5.10 it is enough to assume that Hs is contained in So. The relevant groups are then Gaog, Qs,
Cs, C4 and Cs, and by Lemma 5.10 the edge homomorphism is a surjection for G4 if and only
if this is the case for Gus(T").

The relevant calculations can be found in [1] and [11] in the case of G4s(T'g), in [25] in
the case of Cg, in [8] in the case of Cy, and in [5] in the case of C5. In these cases the edge
homomorphism is always an isomorphism. So it remains to consider the case of (QJg. The
homotopy fixed point spectrum E;L Gas ig 192-periodic with periodicity generator given by A8
where the modular form A is the algebraic periodicity generator for the Gas-module (Es)..
With respect to the action of Qg there is an invariant A such that A3 = A (cf. Theorem A.4 of
[3]). Then ESL @ will be 64-periodic with periodicity generator A® and there is an equivalence

E;LQS ~ ESGM vV 264E;1G24 v 2128E£LG24 .
So we need to understand the edge homomorphism
Wk(EgGM) — Wk(EQ)GM

not only for & = 0 but also for k£ = 128 and k = 64. The calculations in [1] and [11] show that this
is still an isomorphism for £ = 64 while for £ = 128 it is only surjective with kernel isomorphic to
[F4 and given by a class denoted A®e. The case of Qg can only arise if Hy, Hy € {G4s(T), G%s(I') };
in case Hy = G, all H;; are equal to Hj. O

To complete the proof of Theorem 1.5 it remains to construct the factorizations X;_; LN

W; % X, of a; for i = 1,2, 3,4, such each W;_4 iy X1 i) W, is a cofibration. We note that

these factorisations will realize the splitting of the exact complex of Morava modules (Es).(Xa)
into the usual short exact sequences. In particular, this will show that v, : (F2) Wy — (E2). X4
is an isomorphism, hence 74 is an equivalence and the resolution is of length 4.

The factorizations are constructed inductively. In the case i = 1 we simply use that the
composition aqaq is null homotopic. Now let 2 < ¢ < 4 and suppose that for 0 < r < ¢ we have
already constructed factorizations X, _; B—> W, X% X, of a, such that W,_; pai X, B—>
W, is a cofibration. In order to factor «; it is enough to show that the composition a;y;—1
considered as element in 7o F'(W;_1, X;) is null homotopic.

The already constructed cofibrations can be used to analyze m.F(W;_1,X;). In fact, if Z
is any spectrum then these cofibrations determine a finitely convergent Adams type spectral
sequence which has the form

(5.6) EY'(Wis1,Z) = m— s F(W;_1, 2)
with differentials dt : ESY(W;_1,Z) — ESTH =1 (W, _4, Z) and

E?t(Wi—l) Z) =

ﬂtF(Xi_2_s,Z) 0<s<i
s>1i.
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Clearly Q57Yi—1 is in the kernel of ,3;-';1 : Wo(F(Wi_l,Xi)) — 7T0(F(XZ‘_2, Xz)) This implies
that «;v;,—1 must be detected in higher filtration, i.e. in one of the groups E5f(W;_1, X;) for
s > 0. By the following result these groups are trivial, so the factorization exists and the
induction step is complete.

Proposition 5.12. Leti € {2,3,4}. If Z = X, then in the spectral sequences (5.6) we have
Ey*(Wi—1,X;) =0 for all s > 0.

Proof. If s > i then we already have E}*(W;_1,X;) = 0. The d;-differentials are induced by
the maps «; and hence we need to show that for 1 < s < i — 1 the sequences

*

(5.7) T F(Xii1os, X))~ 1y F( Xy, Xi) =5 wo F(Xi_s_s, Xi)

are exact in the middle and that for s =7 —1

(5.8) ag T F(Xo, X;) = msF (X1, X;)

is onto. The following two lemmas imply Proposition 5.12. U

Lemma 5.13. E5"'(Ws, X4) = 0 for every t.

Proof. In this case Proposition 5.7 shows that
F(X_1, Xq) = B0 and F(Xo, X4) = (E3[[G2/Gus(T)]] V Ez[Go/Gls (1)])) 20
and the map F (X, X4) — F(X_1, X4) corresponds to the map
(Ea[[Ga/Gas(D)]] V E2[[Ga/ G (D))" 121 — E[[Gy/Gy]) 12

induced by the canonical maps Gz/Gus(T) [] G2/G)s(I") — G2/Gz. The latter map has a
G12(I")-equivariant section and this implies that the map

7o (Ba[[Ga/Gas(T)]] V Ea[[Ga/Glg (D))" 12 (1) — 7, By [[Go/Go] 2™
is split surjective and hence
af T F(Xo, X;) = mF (X1, X))
is surjective for every t. O

Lemma 5.14. Leti € {2,3,4}, t € {0,1,2} and s > 0. Then E*(W;_1, X;) = 0.

Proof. The spectrum X is a wedge of homotopy fixed point spectra Eg Fii for certain explicitly
given finite subgroups F; j, j = 1,...,m;

m;

hF; ;

X;=\/E" .
Jj=1

Then, for any spectrum Y we have a homotopy equivalence natural in Y

(5.9) F(Y, X))~ \/ F(Y,Ey"7) ~ \| F(Y, EBy)"s .
j=1 j=1

IfY = X;_o_, then Y is again a a finite wedge of homotopy fixed point spectra Eg % with
explicitly given closed subgroups G, j, 7 = 1,...,n,. For each of these wedge summands
Proposition 5.9 (with K5 is the trivial group) gives an isomorphism

T F(EY97 Ey) = Homeg, ((E2) ESC™7, (Es). Es)

and because (F3).FEs = Homgs(Ga, (E2)*) is coinduced this simplifies by Lemma 5.6 to an
isomorphism

T F(By 9, By) 2 Hom(,), (E2) B3, (Bs).) -
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These isomorphisms combine to give an isomorphism
(5.10) T (Xi—o—s, B2) =2 Homg,), ((E2)«Xi—2_s, (E2)+) .
Again by Lemma 5.6 this isomorphism is compatible with the action of Go which acts on the

left hand side via its action on F5 and on the right hand side diagonally.

From (5.9) and (5.10) we get a (direct sum of) descent spectral sequence(s) converging to
Tg—pF (Xi—o_s, X;) with Ea-term given by

(5.11) E%9(s,i) == @HP F; ;. Hom g, ((Ba)tqXia—s, (B2)y) = My o F(Xi—a—s, X;) .

From the isomorphlsm of complexes (Es3).(X,) = Homyygay—cts(Ce, (F2)«) and the fact that
the complex
0—+N;,—=C;—...Co =2, =0

is W[F|]-split? for every finite subgroup of Gy we deduce that the complex
0— (Eg)*X_l — (EQ)*XO — ... (EQ)*Xi_l — (EQ)*W/L —0
is (E2)+[F]-split.

Now let i <4, s <i—1andt € {0,1,2}. By the following Lemma there are isomorphisms
EY'(Wisy, Xi) = mF (X5, Xi) @H i, Homg,), (E2)st2t Xi—o—s, (E2)))

and the differential d5*' : ES*(W;_1, X;) — ESTYY(W;_1, X;) is induced by the map o;_,_;
(E2)sXi—a—s = (F2)+Xi—35-s (with X_5 = x). Because the complex

0— (EQ)*X,1 — (EQ)*X() — .. (EQ)*XZ‘,Q — (EQ)*WZ‘,1 —0
is m, Eo[F; j]-split we deduce that for ¢t € {0, 1, 2}

By (W1, X;) = Hy(B}" dy') = @m‘ H(Fij,Homg,) ((E2)srziWiot, (B2).)) s =0
2 1 1 $s>0

as claimed. 0

Lemma 5.15. Let i € {2,3,4}, s and t be integers, 0 < s < i and t € {0,1,2}. In the spectral
sequences (5.11) we have

E5*(s,1) = L2 (s,1) = mF(Xi—o—s, Xi) -

Proof. If Hy is a closed subgroup and Hs is a finite subgroup of Gs then Proposition 5.7 gives
an equivalence

F(Ey™, EYf2) ~ By [[Go/ Hy )M
in particular an isomorphism

T F(Ey™ By) = m Bo[[Go/ H1]]) -

The spectrum X;_s_g is a wedge of homotopy fixed point spectra with respect to explicitly
known closed subgroups G, j = 1,...,n, and X; is also a wedge of homotopy fixed point
spectra with respect to explicitly known closed subgroups F; ;, j = 1,...,n;. Therefore the
Es-term of the spectral sequence (5.11) can be rewritten as
m; Ms
ED(s,i) = @D EP HP(Frj, mg Ba[[Ga /G nl]) = mq—pF (Xio1—s, Xis1)
Jj=1 k=1

3We use this opportunity to point out an annoying typo on line 2 of page 164 of [18]. Instead of “Zy-split”
it should have read “Zp[F]-split”.
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This spectral sequence is the direct sum of spectral sequences indexed by j and k.

If H; is an open subgroup of G2 and Hs is a finite subgroup of G2 then by part b) of
Proposition 2.6 of [14] the function spectrum F(EXH1 EIH2) is identified with E[[Go/H,])"">
and this is a finite product of homotopy fixed point spectra of the form EI" where F is always
a subgroup of Hy. In our case Hs is one of the groups Cy x Gal, Cs or G12(I") and the
homotopy groups 7; for ¢t = 0,1,2 of the homotopy fixed point spectra EX" are always given
by HY?'(F, (E).). In fact, as in the proof of Proposition 5.11 one sees that because of Lemma
5.10 it is enough to consider the cases that F is either Cy, Cy or Cg and then the necessary
information is provided by [25], [8] and [5].

Therefore for t =0, t =1 and ¢ = 2 and H; open we get isomorphisms
(5.12) m(F(Ey™, By12)) 22 HY! (Ho; m.(Es[[Ga/ Hn]))) -

A general closed subgroup H; can be written as an intersection of a decreasing sequence of
open subgroups U; and then

F(EM EMH2) ~ holim, F(EMYV EJH2)

and Remark 5.8 show that for ¢t = 0, 1,2 the sources of the isomorphisms of (5.12) are given as
the obvious inverse limit. For the target one uses that

T (E2[[G2/ Hi]]) = limm, (E2[[G2/Us]])

if Hy =", U; for U; a decreasing sequence of open subgroups of G,. Because the inverse limit
is an exact functor on the category of profinite abelian groups we find that H*(F, —) commutes
with inverse limits of profinite coefficient modules and thus the case of open subgroups implies
the case of closed subgroups. 0
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