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THE CENTRALIZER RESOLUTION OF THE K(2)-LOCAL SPHERE AT

THE PRIME 2.

HANS-WERNER HENN

Abstract. Let G2 be the Morava stabilizer group at the prime 2. We construct a resolution

of the K(2)-local sphere at the prime 2 in terms of certain homotopy fixed point spectra
which are closely related to the spectrum of topological modular forms. This resolution is in

certain ways analogous to the centralizer resolution of the K(n)-local sphere constructed in

[18] if p is an odd prime and n = p− 1.
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1. Introduction

Let p be a prime, let n > 0 be an integer and let K(n) be the n-th Morava K-theory at p.
The category of K(n)-local spectra is a basic building block of the stable homotopy category
of p-local spectra and the K(n)-localization of the sphere, LK(n)S

0, plays a central role in this

category. The homotopy of LK(n)S
0 can be studied by the Adams-Novikov spectral sequence,

and by [10] this spectral sequence can be identified with the homotopy fixed point spectral
sequence for the action of the extended Morava stabilizer group Gn on En. Here En denotes
the 2-periodic Landweber exact spectrum En whose coefficients in degree 0 classify deformations
(in the sense of Lubin and Tate) of a suitable formal group law Γn of height n over Fpn and Gn
is the automorphism group of Γn in the category of formal group laws (cf [28]). The E2-page
of this spectral sequence is given by the continuous cohomology H∗cts(Gn, (En)∗) of Gn with
coefficients in (En)∗. It becomes therefore interesting to find resolutions of the trivial module
for the group Gn from which one can calculate this continuous cohomology.

If p is large with respect to n then the E2-page satisfies Es,∗2 = 0 for ∗ > n2 and the spectral
sequence collapses at its E2-page. In the sequel we concentrate on the case n = 2 because the
case n = 1 is well understood and very little is understood in explicit terms if n > 2.

For n = 2 the spectral sequence collapses if and only if p > 3. In these cases the homotopy
of LK(2)S

0 has been calculated in [29] without using the point of view of group cohomology.
The results have been reinterpreted in [7] and an independant calculation for the Moore space
has been carried out in [24] by using an explicit projective resolution of length 4 of the trivial
G2-module Zp.

If n = 2 and p ≤ 3 the mod-p cohomological dimension of the group G2 is infinite and there
cannot be any projective resolution of the trivial G2-module Zp of finite length. However, for
p = 3 very useful resolutions of the trivial G2-module Zp of length 4 in terms of more general
modules and corresponding topological resolutions of LK(2)S

0 exist; a “duality resolution” has
been constructed in [14] and a “centralizer resolution” in [18]. These resolutions complement
each other and they have been crucial in recent progress of our understanding of K(2)-local
homotopy theory at the prime 3. In particular they have been used for proving the chromatic
splitting conjecture for n = 2 [13], for determining Hopkins’ Picard group of K(2)-local spectra
[22], [15] and for identifying the Brown-Comenetz dual of the K(2)-local sphere [16].

If n = 2 and p = 2 our understanding is less complete although the chromatic splitting
conjecture has already been successfully analyzed in [4] and [6] by heavily using the algebraic
and topological duality resolution for an important subgroup S1

2 of G2. The existence of an
algebraic duality and an algebraic centralizer resolution of length 3 for S1

2 was already announced
in [18], as well as a topological centralizer resolution for the homotopy fixed point spectrum

E
hS12
2 , in all cases without proofs. For the algebraic duality resolution the construction was

finally established in [2] and the construction of its topological counterpart was given in [5].
The latter paper relied heavily on the existence of both the algebraic and topological centralizer
resolution for S1

2 for which no proof has been published yet. The main purpose of this paper is
to fill this gap in the literature and extend the announced results from the group S1

2 to S2 and
even to G2. Such extensions appear to be impossible for the algebraic and topological duality
resolutions.

1.1. Preliminaries on Morava stabilizer groups at n = p = 2.

1.1.1. Let Γ be a formal group law of height n defined over Fp, let q = pn and assume that
the automorphism group Sn(Γ) := AutFq

(Γ) is isomorphic to Sn := Sn(ΓH), the automorphism
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group of the Honda formal group law.1 Because the formal group law is defined over Fp the
Galois group Gal of the extension Fp ⊂ Fq acts on Sn(Γ) and we get extended automorphism
groups

Gn(Γ) = Sn(Γ) o Gal .

For n = p = 2 there are two important candidates for Γ. In fact, there are two particularly
interesting formal group laws Γ of height 2 over the prime field F2: the Honda formal group
law ΓH , i.e. the [2]-typical formal group law with [2]-series [2]ΓH

(x) = x4, and the formal group
law ΓE of the supersingular elliptic curve over F2 with affine equation y2 + y = x3. In the
remainder of this introduction Γ always refers to either ΓH or to ΓE .

If F2 denotes the algebraic closure of F2 then the endomorphism rings of both formal group
laws satisfy

EndF4
(Γ) ∼= EndF2

(Γ) ,

and because both formal group laws become isomorphic over F2 their endomorphism rings are
already isomorphic over F4. Consequently the automorphisms groups S2(Γ) = AutF4

(Γ) of
these two formal group laws over the field F4 are abstractly isomorphic. If Γ = ΓH this group
is the classical second Morava stabilizer group at p = 2 and usually denoted S2, and G2(Γ) is
usually called the extended Morava stabilizer group and denoted G2. While the groups S2(Γ)
are abstractly isomorphic this ceases to be true for the groups G2(Γ) (cf. Lemma 2.2).

The endomorphism rings EndF4(Γ) contain W, the ring of Witt vectors of F4. They are
generated as a non-commutative W-algebra by the endomorphism ξΓ ∈ EndF4

(Γ) given by
ξΓ(x) = x2. In order to describe the endomorphism rings more explicitly we denote the image
of w ∈W with respect to the lift of the Frobenius automorphism of F4 by σw and we abbreviate
ξΓ simply by ξ. Then the canonical algebra map from the free non-commutative W-algebra W〈ξ〉
generated by ξ to EndF4(Γ) induces an isomorphism

(1.1) W〈ξ〉/(ξw − σwξ, ξ2 − 2u) ∼= EndF4(Γ)

where

(1.2) u =

{
1 Γ = ΓH

−1 Γ = ΓE .

An explicit isomorphism between the two rings is given by the W-algebra map which sends ξ
to ξy where we can take for y any element in W with the property yyσ = −1 (cf. [2] for an
explicit choice of y).

The ideal generated by ξ is a two-sided maximal ideal m with quotient F4 and the endomor-
phism rings are complete with respect to the m-adic topology. This also defines a filtration on
the group S2(Γ) indexed by half integers i

2 ≥ 0 given by

F i
2

:= F i
2
S2(Γ) := {g ∈ S2(Γ) | g ≡ 1 mod (ξi)}

and successive quotients

F i
2/F i+1

2

∼=

{
F×4 i = 0

F4 i = 0 .

The group

S2(Γ) := F i
2
S2(Γ)

is a profinite 2-group, the normal 2-Sylow subgroup of S2(Γ).

1This is equivalent to the endomorphism ξΓ given by ξΓ(x) = xp satisfying ξnΓ = pu (cf. Remark 5.2).
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Inverting 2 in the endomorphism rings gives two isomorphic division algebras which we
denote by D2(Γ). They contain Q2 as their center and are of dimension 4 over Q2. The division
algebras are equipped with a valuation

v : D2(Γ)× → 1

2
Z

which extends the valuation on Qp which is normalized by v(p) = 1.

The group of units D2(Γ)× of D2(Γ) contains S2(Γ) as the group of elements of valuation 0
and from (1.1) it is clear that the action of the Galois group on S2(Γ) is realized by conjugation
by ξΓ in D2(Γ)×. Therefore we get canonical isomorphisms

(1.3) G2(Γ) ∼= D2(Γ)×/〈ξ2
Γ〉 ∼=

{
D2(Γ)×/〈2〉 Γ = ΓH

D2(Γ)×/〈−2〉 Γ = ΓE .

The groups S2(Γ) and G2(Γ) contain −1 as unique central element of order 2 and dividing
out by the subgroup C2 generated by it gives us quotient groups which we will denote PS2(Γ)
and PG2(Γ). From (1.3) it is clear we have isomorphisms

PG2(ΓH) ∼= D2(ΓH)×/〈2,−1〉 ∼= D2(ΓE)×/〈−2,−1〉 ∼= PG2(ΓE) .

1.1.2. From (1.1) we see that EndF4
(Γ) is a free W-module with basis 1 and ξ. Right multipli-

cation induces W-linear maps and the determinant gives a multiplicative homomorphism

det : EndF4(Γ)→W

which, in fact takes its values in Z2. It is explicitly given as follows: if a, b ∈W then

det(a+ bξΓ) = aaσ − 2ubbσ

with u = 1 as in (1.2). This determinant induces an epimomorphism

det : S2(Γ)→ Z×2
which is often also called the reduced norm. Finally we get an epimorphism given as composition

G2(Γ) = S2(Γ) o Gal
det×id−→ Z×2 ×Gal→ Z×2 → Z×2 /{±1}

in which the second and third part are given as the obvious projections. Let G1
2(Γ) be the kernel

of this composition and S1
2(Γ) resp. S1

2 its intersection with S2(Γ) resp. S2(Γ). We observe
that the action of Gal on S2(Γ) leaves S1

2(Γ) invariant and G1
2(Γ) is equal to the semidirect

product S1
2(Γ) o Gal. By the definition of G1

2(Γ) it is clear that every finite subgroup of G2(Γ)
is contained in G1

2(Γ).

The central element −1 = 1−uξ2
Γ (where u is as in (1.2)) is contained in S1

2(Γ) and generates
a central subgroup C2 of order 2. If H is any closed subgroup of G2(Γ) containing C2 then we
will denote the quotient H/C2 by PH.

1.1.3. The groups S1
2(Γ), PS1

2(Γ), G1
2(Γ), PG1

2(Γ) and PS1
2(Γ) contain certain finite subgroups

which figure in the statements of our main results. In all cases except that of G1
2(Γ) the

isomorphism type of the ambient group is independent of Γ and only when we discuss finite
subgroups of G1

2(Γ) the choice of Γ matters. In the other cases we will therefore from now on
omit Γ from our notation.

If F is a finite subgroup of G1
2(Γ) which contains the central C2 and for which F0 := F ∩ S1

2

is of index 2 in F then we have a commutative diagram of groups with exact rows
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(1.4)
1 −→ F0 −→ F −→ Gal −→ 1

↓ ↓ ↓ =
1 −→ PF0 −→ PF −→ Gal −→ 1 .

In the following table we give a list of closed subgroups F ⊂ G1
2(Γ) and the corresponding

groups PF ⊂ PG1
2, F0 ⊂ S1

2, PF0 ⊂ PS1
2 and PF0 ∩ PS1

2 ⊂ PS1
2 which will be relevant for

stating our main results. Subgroups of PS1
2 will play an important role in section 4.2.

(1.5)

F G1
2(Γ) G48(Γ) G′48(Γ) G12(Γ) C8 C2 ×Gal

PF PG1
2 S4 S′4 S3 C4 Gal

F0 S1
2 G24 G′24 C6 C4 C2

PF0 PS1
2 A4 A′4 C3 C2 {1}

PF0 ∩ PS1
2 PS1

2 E2 E′2 {1} C2 {1}

We refer to Section 2, in particular Lemma 2.2, Lemma 2.3, Lemma 2.4 and Lemma 2.5 for
more details on this table. Here we are content to explain that in this table Cn denotes a cyclic
group of order n, Gal is the Galois group of the extension F2 ⊂ F4, Sn and S′n denote symmetric
groups on n letters, A4 and A′4 alternating groups on 4 letters and E2 and E′2 groups isomorphic
to C2 ×C2. The groups G24 and G′24 are groups of order 24 both isomorphic to SL2(F3). The
isomorphism type of the groups F = G48(Γ), F = G′48(Γ) and F = G12(Γ) depends on Γ. The
first two are maximal subgroups of G1

2(Γ) of order 48 which are non-conjugate in G1
2(Γ) but

become conjugate in G2(Γ). In fact, we have (cf. Lemma 2.2)

G48(Γ) ∼= G′48(Γ) ∼=

{
GL2(F3) Γ = ΓE

O48 Γ = ΓH

where O48 denotes the binary octahedral group. For the groups G12(Γ) we get (cf. Lemma 2.3)

G12(Γ) ∼=

{
C2 ×S3 Γ = ΓE

C3 o C4 Γ = ΓH

where C3 o C4 denotes the semidirect of C3 with C4 acting non-trivially on C3.

1.2. Main results.

Let G be a profinite group, let X be a profinite G-set such that X = limiXi with finite
G-sets Xi and let W be the ring of Witt vectors for a finite field k of order q = pn for a prime
p and an integer n > 0. We define

(1.6) W[[X]] = limi,kW/pk[[Xi]] .

Suppose that G is equipped with a continuous homomorphism φ : G→ Gal to the Galois group
Gal of the extension Fp ⊂ Fq.

The Galois-twisted completed group ring Wφ[[G]] of G is the W-module W[[G]] with multi-
plication induced by (w1g1)(w2g2) = w1

g1w2g1g2 if g1, g2 ∈ G, w1, w2 ∈ W and if g1w2 is the
result of the Galois action of φ(g1) on w2. A p-profinite Wφ[[G]]-module will also be called a
Galois-twisted p-profinite G-module, or simply a Galois-twisted profinite G-module if p is un-
derstood from the context. In order to keep notation simple we will write W[[G]] instead of
Wφ[[G]].

Analogous to [18] we introduce relative homological algebra in the context of Galois-twisted
p-profinite G-modules. Let F(G) be the set of conjugacy classes of finite subgroups of G and



6 Hans-Werner Henn

assume that F(G) is a finite set. A Galois-twisted p-profinite G-module P will be called F-
projective if it is a direct summand in a module of the form

⊕
(F ) W[[G]]⊗W[F ] M where each

MF is a p-profinite2 W[F ]-module and the direct sum is indexed by conjugacy classes of finite
subgroups of G. In the sequel we will also write M ↑GF instead of W[[G]]⊗W[F ] M .

The class of F-projective Galois-twisted p-profinite G-modules determines in the usual way a
class of F-exact sequences: a sequence of Galois-twisted p-profinite G-modules M ′ →M →M ′′

is called F-exact if the composition M ′ →M ′′ is trivial and

HomW[[G]](P,M
′)→ HomW[[G]](P,M)→ HomW[[G]](P,M

′′)

is an exact sequence of abelian groups for each F-projective Galois-twisted p-profinite G-module
P .

An F-resolution of a Galois-twisted p-profinite G-module M is a sequence of Galois-twisted
p-profinite G-modules

. . .→ P1 → P0 →M → 0

where each Pi is F-projective and each 3-term subsequence is F-exact. We note that F-
exactness is equivalent to the complex being split when restricted to any finite subgroup of
G.

Here is the main algebraic result of this paper in which W is now the ring of Witt vector of
F4 and the subgroups of PG2 are those of table (1.5).

Theorem 1.1. There exists an F-resolution of the trivial Galois-twisted profinite PG2-module
W

0 −→W ↑PG2

S3

∂4−→W ↑PG2

S3
⊕W ↑PG2

Gal

∂3−→W ↑PG2

Gal ⊕W ↑PG2

S3
⊕W ↑PG2

C4

∂2−→W ↑PG2

S3
⊕W ↑PG2

C4
⊕W ↑PG2

S4
⊕W ↑PG2

S′4

∂1−→W ↑PG2

S4
⊕W ↑PG2

S′4

ε−→W .

The main work towards establishing this theorem is the following result.

Theorem 1.2. There exists an F-resolution of the trivial Galois-twisted profinite PG1
2-module

W

0 −→W ↑PG1
2

S3

∂3−→W ↑PG1
2

Gal

∂2−→W ↑PG1
2

S3
⊕W ↑PG1

2

C4

∂1−→W ↑PG1
2

S4
⊕W ↑PG1

2

S′4

ε−→W .

Remark 1.3. a) The resolutions for the group PG1
2 resp. for PG2 can be considered as

resolutions for G1
2(Γ) resp. G2(Γ) via the obvious projections G1

2 → PG1
2 resp. G2 → PG2.

In terms of the table (1.5) this has the effect of replacing a summand in the resolution of the

form W ↑PG1
2

PF resp. W ↑PG1
2

PF by W ↑G
1
2

F resp. W ↑G
1
2

F . Unlike for PG1
2 resp. for PG2 the resulting

resolutions for G1
2(Γ) resp. G2(Γ) will depend on the choice of Γ.

b) Restricted to S1
2(Γ) the resolution for G1

2(Γ) is an untwisted F- resolution of W which is
a W-linear extension of the algebraic centralizer resolution announced in [18] and used in [5].
We refer to Remark 3.3 for a justification of the terminology centralizer resolution.

Next we will describe the topological analogues of these algebraic resolutions. As in [18] we
call a sequence of spectra

(1.7) X• : ∗ → X−1
α0−→ X0 → X1

α1−→ . . .

a complex of spectra if the composite of two consecutive maps is null-homotopic. Such a complex
is called a a resolution of X−1 if in addition each of the maps αi : Xi−1 → Xi, i ≥ 0, can be

factored as Xi−1
βi−→ Wi

γi−→ Xi such that Wi−1
γi−1−→ Xi−1

βi−→ Wi is a cofibration for every

2The assumption that M is p-profinite was regrettably missing in [18].
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i ≥ 0 (with W−1 := ∗). We say that the resolution is of length n if Wn ' Xn and Xi ' ∗ if
i > n.

Here are the main topological results of this paper. In their statements E2 should really read
E2(Γ) where E2(Γ) is the 2-periodic Landweber exact spectrum whose coefficients in degree 0
classify deformations (in the sense of Lubin and Tate) of Γ. In order to keep notation readable
we will nevertheless simply write E2 instead of E2(Γ). By the Goerss-Hopkins-Miller theorem Γ
acts on E2, in particular there exist homotopy fixed point spectra EhF2 for all finite subgroups
of G2(Γ) and by [10] also for all closed subgroups.

Theorem 1.4. Let Γ be either ΓH or ΓE. Then there exists a resolution of E
hG1

2(Γ)
2

∗ → E
hG1

2(Γ)
2 → E

hG48(Γ)
2 ∨ EhG

′
48(Γ)

2 → E
hG12(Γ)
2 ∨ EhC8

2 → EC2×Gal
2 → E

hG12(Γ)
2 → ∗ .

Theorem 1.5. Let Γ be either ΓH or ΓE. Then there exist a resolution of LK(2)S
0 ' EhG2(Γ)

2

∗ → LK(2)S
0 → E

hG48(Γ)
2 ∨ EhG

′
48(Γ)

2 → E
hG12(Γ)
2 ∨ EhC8

2 ∨ EhG48(Γ)
2 ∨ EhG

′
48(Γ)

2

→ EC2×Gal
2 ∨ EhG12(Γ)

2 ∨ EhC8
2 → E

hG12(Γ)
2 ∨ EC2×Gal

2 → E
hG12(Γ)
2 → ∗ .

Remark 1.6. a) Because G48(Γ) and G′48(Γ) are conjugate subgroups of G2(Γ), the homotopy

fixed point spectra E
hG48(Γ)
2 and E

hG′48(Γ)
2 have the same homotopy type.

b) There are corresponding resolutions for E
hS12
2 and EhS22 which are obtained by replacing

EhF2 by EhF0
2 where F and F0 are the finite subgroups of table (1.5).

The paper is organized as follows. In section 2 we discuss the finite subgroups of the Morava
stabilizer groups at n = p = 2 which figure in our main results and in section 3 we study the
mod-2 cohomology algebra of PS1

2 via its restriction to the cohomology of elementary abelian
2-subgroups. Section 4 contains the construction of the algebraic centralizer resolutions and in
section 5 we show how to realize the algebraic resolutions topologically.

2. Important finite subgroups for Morava stabilizer groups at n = p = 2

In this section we will elaborate on table (1.5) and describe more explicitly the relevant finite
subgroups. We remark that in the general case of any prime p and any height n finite subgroups
of Sn have been studied by Hewett in [20] and [21] and finite subgroups of Gn(Γ) have been
studied by Bujard [9].

We will start by recalling from [2] the description of explicit maximal subgroups G24 and
G′24 of S2 and we prefer to work with S2(ΓH) and write S instead of ξH .

Let ω be a third root of unity in W× and let

(2.1) π := 1 + 2ω .

By Hensel’s Lemma the element −7 ∈ Z2 has two square roots in Z2. We pick the one which
satisfies

√
−7 ≡ 1 + 4 mod (8) and let

(2.2) α :=
1− 2ω√
−7

.

We note that π and α both belong to S2 and the reduced norm of α is −1 while the reduced
norm of π is 3.

The following lemma is proved by direct calculation (cf. Lemma 2.4.3 of [2]).
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Lemma 2.1. Let

i :=
1

3
(1 + 2ω2)(1− αS), j :=

1

3
(1 + 2ω2)(1− αω2S), k :=

1

3
(1 + 2ω2)(1− αωS) .

Then the elements {±1,±i,±j,±k} form a subgroup of S1
2 which is isomorphic to the quaternion

group Q8. This subgroup is invariant by conjugation by ω, more precisely

j = ωiω−1, k = ωjω−1 i = ωkω−1 .

Furthermore

ω = −1

2
(1 + i+ j + k) . �

We let G24 be the subgroup generated by Q8 and ω. It is isomorphic to the semidirect
product of Q8 with C3,

(2.3) G24
∼= Q8 o C3 .

It is easy to verify that the 16 elements of G24 which are not in Q8 are the elements of the form
1
2 (±1± i± j ± k) so that

(2.4) G24 = {±1,±i,±j,±k, 1

2
(±1± i± j ± k)}

We also note that the center of G24 is the subgroup {±1} and Q8 is a characteristic subgroup.

Lemma 2.2. Let Γ be either ΓE or ΓH .

a) The subgroup of G2(Γ) generated by G24 and the image of 1+i is a maximal finite subgroup
G48(Γ) of G2(Γ) of order 48.

b) G48(Γ) is a subgroup of G1
2(Γ).

c) The quotient PG48(Γ) is isomorphic to S4 independent of Γ.

d) There are isomorphisms G48(ΓE) ∼= GL2(F3) and G48(ΓH) ∼= O48. The groups GL2(F3)
and O48 are not isomorphic.

e) The intersection G48(Γ) ∩ S1
2 is G24, PG24 is isomorphic to A4 and PG24 ∩ PS1

2 is the
2-Sylow subgroup of A4, isomorphic to C2 × C2.

Proof. a) It is easy to see, for example from (2.4), that the element 1 + i normalizes the group
G24. The order of 1 + i as element of D×2 is clearly infinite. However, because of (1 + i)2 = 2i
and because of (1.3), its square in G2(Γ) is an element of S2(Γ), equal to i if Γ = ΓH and equal
to −i if Γ = ΓE . Because G24 is a maximal finite subgroup of S2 of order 24 it follows that
G48(Γ) is a maximal finite subgroup of G2(Γ) and is of order 48.

b) Any finite subgroup of G2(Γ) is contained in G1
2(Γ).

c) For F a subgroup of G let NG(F ) resp. CG(F ) denote the normalizer resp. centralizer
of F in G. Conjugation in D×2 induces a monomorphism from ND×2

(Q8)/CD×2
(Q8) to Aut(Q8),

the group of automorphisms of Q8. The latter group is well known to be isomorphic to S4

and the subgroup A4 of S4 is realized by conjugation in G24/C2 = PG24. The element 1 + i
belongs to ND×2

(Q8) and it is easy to check that conjugation by it does not belong to A4. Hence

conjugation induces an epimorphism PG48(Γ) → Aut(Q8) ∼= S4 which for cardinality reasons
has to be an isomorphism.

d) The automorphism group of the elliptic curve with equation y2 + y = x3 over F4 is
isomorphic to G24 (cf. [30]). This group injects into the automorphism group of the formal
group law over F4. Because the elliptic curve is already defined over F2 we get an injection



The centralizer resolution for LK(2)S
0 9

G24 o Gal → G2(ΓE) and the image is G48(ΓE). It is elementary to verify that the group of
F4-points of the elliptic curve is of order 9, isomorphic to Z/3×Z/3 and that G24oGal realizes
all automorphisms of E[3]. Hence G48(ΓE) is isomorphic to GL2(F3).

Next it is easy to construct an isomorphism between O48 and G48(ΓH) which restricts to
the identity on G24; in fact, O48 can be realized within the classical unit quaternions such
that G24 corresponds to the subgroup which contains the elements of (2.4) and the element
(1 + i) ∈ G48(ΓH) corresponds to the element 1√

2
(1 + i) ∈ O48.

In order to see that GL2(F3) and O48 are not isomorphic it is enough to see that their 2-
Sylow subgroups are not isomorphic. In the case of GL2(F3) this is the semidihedral group of
order 16 while in the case of O48 this is the generalized quaternion group of order 16 and these
two groups of order 16 are not isomorphic.

e) This is now obvious. �

Then we define

(2.5) G′24 := πG24π
−1, G′48(Γ) := πG48(Γ)π−1 .

The groups G24 and G′24 are known to be non-conjugate in S1
2 and, up to conjugacy, they

are the two maximal finite subgroups of S1
2 (cf. [2]). Consequently G48(Γ) and G′48(Γ) are

non-conjugate in G1
2(Γ) and, up to conjugacy, they are the two maximal finite subgroups of

G1
2(Γ). Likewise, S4 and S′4 are non-conjugate in PG1

2(Γ) and, up to conjugacy, they are the
two maximal finite subgroups of PG1

2(Γ).

Lemma 2.3. Let Γ be either ΓE or ΓH .

a) The subgroup of G2(Γ) generated by C6 = 〈−ω〉 and the image of j − k is a subgroup
G12(Γ) of G2(Γ) of order 12.

b) G12(Γ) is a subgroup of G1
2(Γ).

c) The quotient PG12(Γ) is isomorphic to S3 independent of Γ.

d) There are isomorphisms G12(ΓE) ∼= C2 ×S3 and G12(ΓH) ∼= C3 o C4.

e) The intersection G12(Γ)∩S1
2 is C6, PC6 is isomorphic to C3 and PC6∩PS1

2 is the trivial
group.

Proof. a) The element j − k normalizes the subgroup C6 generated by −ω. In fact, a direct
calculation in the division algebra using that ω = − 1

2 (1 + i+ j + k) shows

(j − k)ω(j − k)−1 = ω2 .

The order of j − k as element of D×2 is clearly infinite. However, because of (j − k)2 = −2, its
square in G2(Γ) is an element of S2(Γ), equal to 1 if Γ = ΓE and equal to −1 if Γ = ΓH . Then
it is clear that G12(Γ) is of order 12.

b) Any finite subgroup of G2(Γ) is contained in G1
2(Γ).

c) This is immediate from the calculation in part a). The image of ω in PG12(Γ) generates
a normal subgroup of order 3 and the image of j − k is of order 2 and acts non-trivially on the
image of ω.

d) This follows because the image of j − k in G12(Γ) is of order 2 in the case of Γ = ΓE and
of order 4 in the case of Γ = ΓH . �
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The following two lemmas are elementary and their proof is left to the reader.

Lemma 2.4. Let Γ be either ΓE or ΓH .

a) The subgroup of G2(Γ) generated by 1 + i is a subgroup G8 of G2(Γ) of order 8 which
contains C4 = 〈i〉 and is, up to isomorphism, independent of Γ.

b) G8 is a subgroup of G1
2(Γ).

c) The quotient PG8 is isomorphic to C4.

d) The intersection G8 ∩ S1
2 is the subgroup C4 generated by i, PC4 is isomorphic to C2 and

PC4 ∩ PS1
2 = PC4. �

Lemma 2.5. Let Γ be either ΓE or ΓH .

a) The subgroup of G2(Γ) generated by −1 and the Galois group is a subgroup G4 of G2(Γ)
of order 4 which is isomorphic to C2 ×Gal independent of Γ.

b) G4 is a subgroup of G1
2(Γ).

c) The quotient PG4 is isomorphic to Gal.

d) The intersection G4 ∩ S1
2 is the subgroup C2 generated by −1 and PC2 = PC2 ∩ PS1

2 is
the trivial group. �

3. The mod-2 cohomology algebra of PS1
2

3.1. Quillen’s F -isomorphism for the mod-p cohomology of a profinite group.

Let G be a profinite group and let p be a fixed prime. The continuous cohomology H∗c (G;Fp)
of G with coefficients in the trivial module Fp will be abbreviated by H∗(G;Fp), or simply by
H∗G if p is understood from the context. We recall that if G is the (inverse) limit of finite
groups Gi then H∗G = colimiH

∗Gi.

We will assume that H∗G is finitely generated as Fp-algebra. By work of Lazard [23] it is
known that this holds for many interesting profinite groups, for example for profinite p-analytic
groups like GL(n,Zp), the general linear groups over the p-adic integers, or the automorphism
groups of formal group laws over finite fields.

In case H∗G is finitely generated as Fp-algebra Quillen has shown [26] that there are only
finitely many conjugacy classes of elementary abelian p-subgroups of G (i.e. groups isomorphic
to (Z/p)n for some natural number n). In other words, the following category A(G) is equivalent
to a finite category: objects of A(G) are all elementary abelian p-subgroups of G, and if E1

and E2 are elementary abelian p-subgroups of G, then the set of morphisms from E1 to E2 in
A(G) consists precisely of those homomorphisms α : E1 −→ E2 of abelian groups for which
there exists an element g ∈ G with α(e) = geg−1 for all e ∈ E1. The assignment E 7→ H∗E
determines a functor from the opposite category A∗(G)op to graded Fp-algebras.

Theorem 3.1. (Quillen) [26] Let G be a profinite group and assume H∗G is a finitely gener-
ated Fp-algebra. Then the canonical map

qG : H∗G→ limA(G)opH
∗E

is an F -isomorphism, in other words q has the following properties.

• If x ∈ KerqG, then x is nilpotent.
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• If y ∈ limA(G)opH
∗E then there exists an integer n with yp

n ∈ Imq.

In the sequel we will call A(G) the Quillen category of G.

Let A∗(G) be the full subcategory of A(G) whose objects are all elementary abelian p-
subgroups except the trivial subgroup. The centralizer CG(E) of an elementary abelian p-
subgroup E is a closed subgroup and hence inherits a natural profinite structure from G. The
assignment E 7→ H∗CG(E) extends to a functor from A∗(G) to graded Fp - algebras and
the restriction homomorphisms H∗G −→ H∗CG(E) (for E running through the non-trivial
elementary abelian p-subgroups of G) induce a canonical map ρ : H∗G −→ limA∗(G)H

∗CG(E).
The main result of [17] reads as follows.

Theorem 3.2. Let G be a profinite group and assume H∗G is a finitely generated Fp - algebra.
Then the canonical map ρ : H∗G −→ limA∗(G)H

∗CG(E) has finite kernel and cokernel.

Remark 3.3. a) In our current approach this theorem is is no longer needed. However, it
played a crucial role in our initial approach to construct resolutions for PS1

2 and is utimately
the reason for naming our resolutions centralizer resolutions. Furthermore, in [18] the theorem
played a crucial role for constructing algebraic centralizer resolutions at odd primes, which as
the algebraic resolutions of this paper are F-resolutions in the sense of Section 1.2.

b) Theorem 3.2 is not useful if G contains central elements of order p, because then H∗G
appears in the limit. In these cases one can use the theorem to study the quotient of G by the
maximal central elementary abelian p-subgroup of G and this was the orign for considering the
groups PS1

2 and PS1
2.

3.2. The Quillen category of PS1
2 .

We recall from section 2 that S1
2 contains two subgroups isomorphic to Q8 and they give rise

to two elementary abelian 2-subgroups E2 and E′2 in PS1
2 which are contained in the normal

2-Sylow subgroup PS1
2 .

The following result has a significant overlap with section 2.4 of [2].

Proposition 3.4. a) Up to conjugacy PS1
2 contains three elementary abelian 2-subgroups of

rank 1 and two of rank 2.

b) All automorphism groups of the category A(PS1
2) are trivial and there is exactly one

morphism from each rank 1 group to each of the rank 2 groups.

Proof. a) If E is an elementary abelian 2-subgroup of PS1
2 then its inverse image Ẽ in S1

2 is an
extension of E by Z/2. The structure of the possible finite 2 subgroups of the division algebra
D2 is explicitly known: in fact, any finite abelian subgroup must be cyclic and generates in the
division algebra a cyclotomic extension the degree of which must divide 2. Hence any abelian
2-subgroup is cyclic of order 2 or 4 and this implies that any finite 2-subgroup is isomorphic to
a subgroup of Q8. In particular we see that the 2-rank of E is either 1 or 2.

Now suppose that F1 and F2 are two elementary abelian 2-subgroups of rank 1 of PS1
2 .

Then F̃1 and F̃2 are two subgroups isomorphic to Z/4 and by the Skolem Noether theorem

any isomorphism ϕ : F̃1 → F̃2 can be realized by conjugation by an element of u ∈ D×2 , i.e.

ϕ(x) = uxu−1 for any x ∈ F̃1. If we denote a generator of F̃1 by i then 1 + i ∈ D×n centralizes
F1, so we can change u by any power of (1 + i) and conjugation by u(1 + i)n will still give ϕ.
Because the valuation of 1 + i is 1

2 we can choose n such that (1 + i)nu is of valuation 0. In
other words, we can suppose that u is an element of S2. Furthermore, the element 1 + 2i ∈ S2
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has reduced norm 5 and is thus a topological generator of S2/S1
2. It also centralizes F̃1 and

by multiplying u by a suitable p-adic power of 1 + 2i we can even assume that u is in S1
2.

This implies that all rank 1 subgroups of PS1
2 are conjugate and therefore the quotient group

S1
2/S

1
2
∼= F×4 which is generated by the image of ω acts transtively on the PS1

2 -conjugacy classes
of elementary abelian 2-subgroups of rank 1.

Thus there are either three or one PS1
2 -conjugacy classes of elementary abelian 2-subgroups of

rank 1. If there was only one then conjugation by ω would have to be the same as conjugation
by an element in PS1

2 and this would mean that there is an element in S1
2 of the form ωu′

with u′ ∈ S1
2 whose image in PS1

2 centralizes F1, and hence ωu′ normalizes F̃1. However,

NS12(F̃1)/CS12(F̃1) is isomorphic to a subgroup of

ND×2
(F̃1)/CD×2

(F̃1) ∼= Aut(F̃1) ∼= C2

hence NS2(F̃1) contains the centralizer CS2(F̃1) ∼= Z2[i]× as an subgroup of index at most 2.

This implies that NS2(F̃1) is a profinite 2-group and cannot contain such an element which
would have non-trivial image in F×4 .

Next suppose F1 and F2 are two elementary abelian 2-subgroups of rank 2 of PS1
2 . Then F̃1

and F̃2 are two subgroups of S1
2 isomorphic to Q8 and again by the Skolem Noether theorem

any isomorphism ϕ : F̃1 → F̃2 can be realized by conjugation by an element of u ∈ D×2 , i.e.

ϕ(x) = uxu−1 for any x ∈ F̃1. In particular, we have an isomorphism

ND×2
(F1)/CD×2

(F1) ∼= Aut(Q8) ∼= S4 .

In order to determine the number of conjugacy classes of elementary abelian 2-subgroups of
rank 2 of PS1

2 we need to know something about the structure of the normalizer NS2(Q8). The
centralizer CD×2

(Q8) is isomorphic to Q×2 and the quotient ND×2
(Q8)/CD×2

(Q8) is generated by

the image of the group G24 and the element 1 + i (cf. the proof of part a) of Lemma 2.2).
Furthemore the centralizer CS2(Q8) is isomorphic to Z×2 and we get an isomorphism

(3.1) NS2(Q8) ∼= Z×2 ×C2
G24

between NS2(Q8) and the central product Z×2 ×C2 G24 and an isomorphism

(3.2) NS2(Q8)/CS2(Q8) ∼= PG24 = A4 .

Because the normalizer ND×2
(F1) always contains an element y of valuation 1

2 , we can assume

by changing u, if necessary, by a suitable power of y that there is an isomorphism ψ : F̃1 → F̃2

which is realized by conjugation in S2. In particular, in S2 there is only one conjugacy class
of subgroups isomorphic to Q8 and in PS2 there is only one conjugacy class of elementary
abelian 2-subgroups of rank 2. This means that the group S2/S1

2 acts transitively on the set
of conjugacy classes of subgroups of S1

2 which are isomorphic to Q8. Because the center acts
trivially on the set of conjugacy classes and the image of the center in S2/S1

2 is of index 2 there
are at most two conjugacy classes of Q8’s in S1

2. We claim that there are two of them given by
Q8 and πQ8π

−1 where Q8 is the 2- Sylow subgroup of the group G24 of section 2 and π ∈ S2 is
the element defined in (2.1). In fact, if they were conjugate then π could be written as product

xn with x ∈ S1
2 and n ∈ NS2(F̃1). However, from (3.1) we see that the reduced norm of such an

element is always a square in Z×2 and this contradicts the fact that the reduced norm of π is 3.

b) It is clear that the automorphism groups of elementary abelian 2-subgroups of rank 1
are trivial. For the automorphisms of a rank 2 subgroup we note that (3.2) implies that the
automorphism group AutA(PS2)(PQ8) is C3 because conjugation by any element of the subgroup
Q8 of G24 induces the trivial automorphism. This in turn implies that AutA(PS1

2)(PQ8) is
trivial.
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It remains to show that there is exactly one morphism from each rank 1 to each rank 2
object, or equivalently, that the three non-trivial elements in a rank 2 object are non-conjugate
in PS1

2 . If they were conjugate in PS1
2 , then there would be an element in PS1

2 of the form
ω±1x with x in PS1

2 which centralizes the rank 1 subgroup generated by one of these elements,
respectively its preimage in S1

2 would normalize the preimage, and this contradicts what we
have seen in the proof of part a) above. �

Remark 3.5. We can choose representatives E2 and E′2 for the two conjugacy classes of
elementary abelian 2-subgroups of rank 2 such that E2 ∩ E′2 is cyclic of order 2. In fact, if E2

is such that Ẽ2 is the subgroup of G24 generated i and j then conjugation by 1 + 2i fixes i and

carries Ẽ2 to Ẽ′2. In S1
2 the group Ẽ2 is not conjugate to Ẽ′2, hence in the quotient PS1

2 we get
that E2 and E′2 are non-conjugate and intersect in the subgroup generated by the image of i.

3.3. Quillen’s F -isomorphism for PS1
2 and the mod-2 cohomology algebra of PS1

2 .

The inverse limit in Quillen’s Theorem 3.1 is always a subalgebra of the product
∏
E H

∗E
where E runs through the maximal elementary abelian subgrous of G, up to conjugacy. By
Theorem 3.4 there are, in the case of G = PS1

2 , two of them, both or rank 2 with mod-2
cohomology both given by F2[x, y] with x and y of cohomological degree 1.

Proposition 3.6. There is an isomorphism of graded F2-algebras

limA(PS1
2)H

∗E ∼= {(p1, p2) ∈ F2[x, y]× F2[x, y]
∣∣ p1 − p2 is divisible by xy(x+ y)}

Proof. If E1 and E2 are two non-conjugate elementary abelian 2-subgroups of rank 2 of PS1
2

then the non-trivial elements of E1 and E2 belong to the three non-conjugate elementary abelian
2-subgroups F1, F2 and F3 of rank 1. This gives 6 morphisms in A(PS1

2), and if we choose

the non-trivial elements of E1 and E2 as ej1, ej2 and ej3 for j = 1, 2 then we have morphisms

αi,j : Fi → Ej which send the nontrivial element of Fi to the element eji of Ej .

Then the inverse limit is given by pairs of polynomials (p1, p2) ∈ H∗E1 × H∗E2 such that
α∗i,1p1 = α∗i,2p2 for i = 1, 2, 3, or if we identify H∗E1 with H∗E2 via the abstract group

isomorphism which sends e1
i to e2

i for i = 1, 2, 3 then p1 − p2 must be divisible by the three
non-trivial elements in F2[x, y] and the claim follows. �

The quotient homomorphism S1
2 → S1

2/F1S
1
2
∼= F4 induces a surjection PS1

2 → F4 and the
explicit form of the elements i, j and k given in Lemma 2.1 shows that both subgroups E2 and
E′2 map isomorphically to this quotient.

Corollary 3.7. As a module over H∗(S1
2/F1S

1
2) ∼= F2[x, y] the inverse limit is the free sub-

module of F2[x, y]× F2[x, y] generated by the classes (1, 1) and (xy(x+ y), 0). �

The following result describes the algebraic centralizer resolution of the trivial S1
2-odule Z2.

It has been established in Theorem 1.2.1 and 1.2.6 of [2]. The subgroups of S1
2 occuring in the

statement are those of (1.5) and IS1
2 is the augmentation ideal of the completed group algebra

Z2[[S1
2]]. The notation used is analogous to that of Section 1.2. In other words, if G is a profinite

group and X is a profinite G-set such that X = limiXi with finite S1
2-sets Xi then we define

(3.3) Z2[[X]] = limi,kZ/2k[[Xi]] ,

and if F is a finite subgroup of G and M is a Z2[F ]-module then M ↑GF denotes the Z2[[G]]-
module Z2[[S1

2]]⊗Z2[F ] M .



14 Hans-Werner Henn

Theorem 3.8.

a) There is an exact complex of profinite Z2[[S1
2]]-modules

0→ Z2 ↑
S12
G′24

∂3−→ Z2 ↑
S12
C6

∂2−→ Z2 ↑
S12
C6

∂1−→ Z2 ↑
S12
G24

ε−→ Z2 → 0

b) The maps ∂1, ∂2 and ∂3 are trivial modulo (2, IS1
2). �

Remark 3.9. a) In fact, the central subgroup C2 acts trivially in this complex and according
to table (1.5) the complex can be considered as a complex of profinite PS1

2-modules

(3.4) 0→ Z2 ↑
PS12
A′4

∂3−→ Z2 ↑
PS12
C3

∂2−→ Z2 ↑
PS12
C3

∂3−→ Z2 ↑
PS12
A4

ε−→ Z2 → 0

or even as a complex of profinite PS1
2 -modules

(3.5) 0→ Z2 ↑
PS1

2

E′2

∂3−→ Z2 ↑
PS1

2

{1}
∂2−→ Z2 ↑

PS1
2

{1}
∂3−→ Z2 ↑

PS1
2

E2

ε−→ Z2 → 0 .

b) For every profinite PS1
2 -module M there is a duality spectral sequence associated to the

complex of (3.5)

Es,t1 = ExtsZ2[[PS1
2 ]](Ct,M) =⇒ Exts+tZ2[[PS1

2 ]]
(Z2,M) ∼= Hs+t(PS1

2 ,M)

with

Cs =


Z2 ↑

PS1
2

E2
s = 0

Z2 ↑
PS1

2

{1} s = 1, 2

Z2 ↑
PS1

2

E′2
s = 3

0 else .

If M = F2 we can identify the E1-term via the usual Shapiro-type isomorphisms with

(3.6) Es,∗1 =


H∗(E2) ∼= F2[x, y] s = 0

H∗({1}) ∼= F2 s = 1, 2

H∗(E′2) ∼= F2[x, y] s = 3

0 else .

Proposition 3.10. The duality spectral sequence for the group PS1
2 and M = F2 collapses at

E1.

Proof. By part b) of Theorem 3.8 we have d1 = 0 and by (3.6) any higher differential would
have to originate at the vertical edge. However, as we have noted before the composition of
the inclusion of E2 into PS1

2 followed by the quotient map PS1
2 → F4 is an isomorphism. This

implies that the vertical edge of the duality spectral sequence survives to E∞, in particular all
differentials originating at the vertical edge are trivial. �

Theorem 3.11.

a) The map of Theorem 3.1

qPS1
2

: H∗(PS1
2)→ limA(PS1

2)opH
∗(E)

is surjective with kernel ΣF2 ⊕ Σ2F2 where ΣkF2 is the graded F2-module F2 concentrated in
degree k.

b) The Poincaré series χ :=
∑
n≥0 dimF2

Hn(PS1
2)tn is given by

χ =
1 + t3

(1− t)2 + t+ t2
.
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c) The Bockstein homomorphism induces an isomorphism between the kernel of qPS1
2

in
cohomological degree 1 and 2.

Proof. a) The spectral sequence (3.6) is one of modules over H∗(PS1
2/F1PS

1
2 ,F2) ∼= F2[x, y].

By Proposition 3.10 we get a filtration

0 ⊂ G3 ⊂ G2 ⊂ G1 ⊂ G0 = H∗(PS1
2)

by H∗(PS1
2/F1PS

1
2) ∼= F2[x, y]-modules Gi with associated graded given by

G0/G1 = F2[x, y], G1/G2
∼= ΣF2, G2/G3 = Σ2F2, G3

∼= Σ3F2[x, y] .

Because both inclusions E2 ⊂ PS1
2 and E′2 ⊂ PS1

2 split the projection map from PS1
2 to

PS1
2/F1PS

1
2 the image of qG maps onto the diagonal in H∗(E2) × H∗(E′2). Furthermore G1

maps trivially to H∗(E2). By linearity with respect to H∗(PS1
2/F1PS

1
2) the quotient G1/G3

maps also trivially to H∗(E′2) and then the generator of the F2[x, y]-module G3 must map non-
trivially to (0, xy(x + y)) ∈ limA(PS1

2)opH
∗(E)/qG(G0/G2) because otherwise Quillen’s map

could not be an F -isomorphism. Part a) follows.

b) This is an immediate consequence of part a) and Corollary 3.7.

c) It is enough to show that the class in H1(PS1
2 ,F2) detected in G1/G2 lifts to a class

in H1(PS1
2 ,Z2) of order 2. The cohomology of the groups S2 has been first investigated by

Ravenel [27]. For a recent acount which stresses the group theoretical point of view see [19].

In particular, it follows from Proposition 3.5.3 of [19] that the mod-2 reduction homomor-
phism H1(PS1

2 ,Z2) → H1(PS1
2 ,F2) is an isomorphism and both groups are isomorphic to

(Z/2)3. As a consequence we find H1(PS1
2 ,Z2) = 0, H1(PS1

2 ,F2) ∼= (Z/2)3 and the mod-2
Bockstein homomorphism H1(PS1

2 ,F2)→ H2(PS1
2 ,F2) is injective. Part c) follows. �

4. Algebraic centralizer resolutions

4.1. Galois-twisted modules.

We take up the notions introduced in Section 1.2. So we assume that n > 1 is an integer,
p is a prime and Gal is the Galois group of the field extension Fp ⊂ Fq where q = pn, and
W denotes the ring of Witt vectors of Fq. Furthermore let G be a profinite group equipped
with a continuous homomorphism φ : G → Gal and let S be the kernel of φ. As before we
consider the Galois-twisted completed group ring Wφ[[G]] of G and Galois-twisted p-profinite
Wφ[[G]]-modules. In order to keep notations simple we will, as before, simply write W[[G]]
instead of Wφ[[G]].

Note that for n = 1 we recover the usual group ring Zp[[G]]. In general, the action of S on
a Galois-twisted profinite G-module is W-linear while the action of G is only Zp-linear. The
groups we have in mind are Gn, G1

n, PGn and closed subgroups of these groups, in particular
in the case n = p = 2.

A crucial input for the sequel is the following result.

Proposition 4.1. Suppose that G is a finite group and P is a Galois-twisted p-profinite G-
module.

a) If P is W[[S]]-projective then P is W[[G]]-projective.

b) If P is Fq[[S]] projective then P is Fq[[G]]-projective.
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Proof. We give the proof of part a). The proof of part b) is completely anlogous. Let ϕ :
P → M be a homomorphism of Galois-twisted profinite G-modules and let π : M → N be an
epimorphism of Galois-twisted profinite G-modules. Because P is W[[S]]-projective there exist
a W[[S]]-linear homomorphism ϕ̃ : P →M such that πϕ̃ = ϕ.

Let σ be the generator of Gal given by the Frobenius homomorphism x 7→ xp of Fq and
denote its lift to W still by σ. The trace map tr : Fq → Fp is surjective by Hilbert 90, and
therefore the trace map tr : W → Zp is also surjective, in particular there exists an element
λ ∈W with tr(λ) = 1. Furthermore, if h ∈ S, g ∈ G and x ∈ P then

gh(λ)ghϕ̃(h−1g−1x) = (gλ)gϕ̃(g−1x) ,

hence (gλ)gϕ̃(g−1x) is constant on S-orbits for the translation action of S on G on the right
and

ψ : P →M, x 7→
∑

g∈G/S

(gλ)gϕ̃(g−1x)

is a well-defined. Furthermore, ψ is a W[[G]]-linear map. In fact, if h is in G then

hψ(x) =
∑
g∈G/S

h(gλ)hgϕ̃(g−1x) =
∑
hg∈G/S(hgλ)hgϕ̃(g−1x)

=
∑
hg∈G/S(hgλ)hgϕ̃((hg)−1hx) = ψ(hx) .

Furthermore

πψ(x) =
∑
g∈G/S(gλ)gπϕ̃(g−1x) =

∑
g∈G/S(gλ)gϕ(g−1x)

=
∑
g∈G/S(gλ)ϕ(x) = tr(λ)ϕ(x) = ϕ(x)

and this shows that P is projective. �

Corollary 4.2. Suppose that G is finite and S is of order prime to p. Then the trivial Galois-
twisted profinite G-module W resp. the trivial Galois-twisted profinite G-module Fq is a projec-
tive W[[G]]-module resp. Fq[[G]]-module. �

Lemma 4.3. Suppose G is a finite group and let 0 → M1 → M2 → M3 → 0 be an exact
sequences of Galois-twisted p-profinite G-modules which is split as sequence of W-modules. If
M1 is projective then the sequence is split as a sequence of Galois-twisted profinite G-modules.

Proof. This proof is actually extracted from the proof of Lemma 16 of [18]. We begin with
the following observation. If M1 is projective as Galois-twisted profinite G-module then M1

is a direct summand in the induced module W[G] ⊗W M1. Furthermore for a finite group the
induced module and the coinduced module HomW(W[G],M1) are isomorphic.

The existence of a W-linear splitting of the monomorphism M1 → M2 implies that any
W[G]-linear map ϕ from M1 to the coinduced module HomW(W[G],M1) can be extended to
a W[G]-linear map ϕ̃ : M2 → HomW(W[G],M1). Now we take for ϕ any W[G]-split inclusion
of M1 into HomW(W[G],M1). Then the composition of ϕ̃ with a W[G]-linear splitting of ϕ
provides the desired splitting of the monomorphism M1 →M2. �

The other crucial input in the construction of the centralizer reolution is the following
Nakayama type lemma which is analogous to Lemma 4.3 of [14]. We say that a profinite
p-group G is finitely generated if H1(G,Fq) is a finite dimensional Fq-vector space. In the se-
quel the kernel of the augmentation W[[G]]→ Fq is denoted by IpG, or simply by I if p and G
are clear from the context. Then a Galois-twisted p-profinite W[[G]]-module M is automatically
I-complete, i.e the filtration by the submodules InM , n ≥ 0, is complete.

Lemma 4.4. Let G be a finitely generated profinite p-group and f : M → N a morphism of
complete Galois-twisted p-profinite W[[G]]-modules.

a) If Tor0(f) : Tor
W[[G]]
0 (M,Fq)→ Tor

W[[G]]
0 (N,Fq) is surjective, then f is surjective.
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b) If Torq(f) : TorW[[G]]
q (M,Fq)→ TorW[[G]]

q (N,Fq) is an isomorphism for q = 0 and surjec-
tive for q = 1 then f is an isomorphism. �

4.2. The algebraic centralizer resolution for PG1
2 and PG2.

The following theorem establishes Theorem 1.2 of the introduction. The finite subgroups of
PG1

2 occuring in this section are those specified in table (1.5) and section 2.

Theorem 4.5. There are F-resolutions of the trivial Galois-twisted profinite PG1
2-module resp.

G1
2-module W

0 −→W ↑PG1
2

S3

∂3−→W ↑PG1
2

Gal

∂2−→W ↑PG1
2

S3
⊕W ↑PG1

2

C4

∂1−→W ↑PG1
2

S4
⊕W ↑PG1

2

S′4

ε−→W

and

0 −→W ↑G
1
2

G12

∂3−→W ↑G
1
2

C2×Gal

∂2−→W ↑G
1
2

G12
⊕W ↑G

1
2

C8

∂1−→W ↑G
1
2

G48
⊕W ↑G

1
2

G48

ε−→W .

Proof. The second complex is obtained from the first one by simply considering a complex
of profinite W[[PG1

2]]-modules as a complex of profinite W[[G1
2]]-modules via the canonical

projection G1
2 → PG1

2. The property of being an F-resolutions is preserved by the analogue of
Lemma 14 of [18]. So we concentrate on constructing the first complex. In order to simplify
notation we will write this complex in the sequel as

0→ P3 → P2 → P1 → P0 → Z2 .

The existence of an exact complex follows from splicing the exact sequences of Lemma 4.6,
Lemma 4.9 and Lemma 4.10 below. The F-projectivity of the resolution will be established in
Lemma 4.11 below. �

Our strategy for the remainder of the proof of Theorem 4.5 is analogous to the strategy
used in section 4 of [14] in the construction of the duality resolution for p = 3. In the following

computations we will abbreviate Ext∗W[[PS1
2 ]](M,F4) simply by Ext∗(M) and Tor

W[[PS1
2 ]]

∗ (F4,M)

simply by Tor∗(M). We observe that we have isomorphisms

(4.1) Extq(M) ∼= Torq(M)∗

for any profinite W[[PS1
2 ]]-module M if (−)∗ denotes the F4-linear dual.

We also note that Ext∗(−) and Tor∗(−) define functors from the category of Galois-twisted
profinite W[[PG1

2]]-modules to Galois-twisted F4[[PG1
2/PS

1
2 ]]-modules and this will be impor-

tant in the proof of Lemma 4.8, Lemma 4.9 and Lemma 4.10 below. Note that the quotient
group PG1

2/PS
1
2 is isomorphic to PS1

2/PS
1
2 o Gal ∼= F×4 o Gal ∼= S3.

As input for our construction we will use Lemma 4.4 and the isomorphisms (4.1) together
with the calculation of Ext∗(W) = H∗(PS1

2 ;F4). The latter is given by Theorem 3.11 with
coefficients extended from F2 to F4.

Lemma 4.6. There is a short exact sequence of Galois-twisted profinite PG1
2-modules

(4.2) 0→ N1 → P0 := W↑PS12
S4
⊕W↑PS12

S′4

ε−→W→ 0 .

where ε is given by augmentation. The Poincaré series
∑
n≥0 dimF4

Coker(Extn(ε))tn is equal

to 1+t+t2

1−t while the Poincaré series of
∑
n≥0 dimF4

Ker(Extn(ε))tn is t + t2 and the Poincaré

series χ1 :=
∑
n≥0 dimF4 Extn(N1)tn is given by

χ1 =
1 + t+ t2

1− t
+ 1 + t .
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Proof. It is clear that ε is surjective. As modules over W[[PS1
2 ]] we have

P0 = W↑PS
1
2

E2
⊕W↑PS12

E′2

where E2 and E′2 are the elementary abelian 2-subgroups of rank 2 of table (1.5). By the
Shapiro lemma there is an isomorphism

Ext∗(P0) ∼= H∗(E2,F4)×H∗(E′2;F4)

and Ext∗(ε) corresponds via this isomorphism to the restriction homomorphism

H∗(PS1
2 ,F4)→ H∗(E2,F4)×H∗(E′2,F4) .

The long exact sequence in Ext∗(−) associated to the short exact sequence (4.2) gives a short
exact sequence of F4[PG1

2/PS
1
2 ]-modules

(4.3) 0→ Coker(Ext∗(ε))→ Ext∗(N1)→ Ker(Ext∗+1(ε))→ 0

and by Theorem 3.11 the Poincaré series of Coker(Ext∗(ε)) is given by

2

(1− t)2
− 1 + t3

(1− t)2
=

1− t3

(1− t)2
=

1 + t+ t2

1− t

while that of Ker(Ext∗(ε)) is given by t+ t2. The result follows. �

Remark 4.7. (cf. Remark 3.5) We can and will choose S4 and S′4 such that S4 ∩S′4 = C4.
In fact, if we choose as generator of the subgroup C4 the image of 1 + i (as in Lemma 2.4) and
for S4 the group PG48 of Lemma 2.2 then conjugation by 1 + 2i fixes C4 and we can take the
conjugate copy of S4 as S′4. Then it is elementary to check that S4 ∩S′4 = C4.

Lemma 4.8. There is a homomorphism of Galois-twisted profinite PG1
2-modules

(4.4) ψ : W↑PG1
2

C4
→ N1

with the following properties.

a) The Poincaré series

χk :=
∑
n≥0

dimF4
Ker(Extn(ψ))tn, χc :=

∑
n≥0

dimF4
Coker(Extn(ψ))tn

are given by

χk = 1 + t, χc = 2 + t .

b) As a Galois-twisted S3 = PG1
2/PS

1
2 -module Coker(Ext0(ψ)) is isomorphic to the cokernel

of the F4[S3]-linear inclusion F4
∼= F4[S3/Gal]C3 → F4[S3/Gal].

Proof. Consider the map of Galois-twisted profinite PG1
2-modules

(4.5) ϕ : W↑PG1
2

C4
→ P0 = W↑PG1

2

S4
⊕W ↑PG1

2

S′4

which sends the generator e1 to (e0,−e′0). Here e1 is given as e⊗ 1 ∈W[[PG1
2]]⊗W[[C4]] W and

e0 resp. e′0 by the corresponding element in W[[PG1
2]]⊗W[[S4]] W resp. in W[[PG1

2]]⊗W[[S′4]] W.

Clearly εϕ is trivial, hence ϕ factors as composition ψ : W↑PG1
2

C4
→ N1 followed by the inclusion

of N1 into P0. In order to analyze Ext∗(ψ) we start by analyzing Ext∗(ϕ).

As homomorphism of modules over PS1
2 the homomorphism ϕ becomes

W↑PS
1
2

C2
⊕W↑PS

1
2

ωC2ω−1 ⊕W↑PS
1
2

ω2C2ω−2 →W↑PS
1
2

E2
⊕W↑PS

1
2

E′2
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and the induced map Ext∗(ϕ) becomes a homomorphism

H∗(E2,F4)⊕H∗(E′2,F4)→
2∏
i=0

H∗(ωiC2ω
−1,F4)

whose kernel is the inverse limit of Corollary 3.7 with F2-coefficients replaced by F4-coefficients.

Therefore Ker(Ext∗(ϕ)) has Poincaré series 1+t3

(1−t)2 and the exact sequence

0→ Ker(Ext∗(ϕ))→ H∗(E2,F4)⊕H∗(E′2,F4)→
2∏
i=0

H∗(ωiC2ω
−1,F4)→ Coker(Ext∗(ϕ))→ 0

shows that Coker(Ext∗(ϕ)) has Poincaré series χC given by

χC :=
1 + t3

(1− t)2
+

3

1− t
− 2

(1− t)2
=
t3 + 3(1− t)− 1

(1− t)2
=
t3 − 3t+ 2

(1− t)2
= t+ 2 .

Now we turn towards analyzing Ext∗(ψ) and we consider the exact sequence (4.3)

0→ Coker(Ext∗(ε))→ Ext∗(N1)→ Ker(Ext∗+1(ε))→ 0 .

Because εϕ is trivial Ext∗(ϕ) factors through Coker(Ext∗(ε)) and the restriction of Ext∗(ψ) to
the submodule Coker(Ext∗(ε)) is induced by Ext∗(ϕ). If χK is the Poincaré series of the kernel
of this restriction then we have an identity

χK +
∑
n≥0

dimF4
Extn(W ↑PG1

2

C4
)tn = χC + dimF4

Coker(Extn(ε))tn

We have just seen that χC = t + 2 and therefore Lemma 4.6 implies the following identity of
Poincaré series

χC +
∑
n≥0

dimF4
Coker(Extn(ε))tn = t+ 2 +

1 + t+ t2

1− t
=

3

1− t
=
∑
n≥0

dimF4(Extn(W↑PG1
2

C4
))tn .

and this shows that χK = 0. In other words, the restriction of Ext∗(ψ) to Coker(Ext∗(ε)) is
injective. Part a) will therefore follow if we can show that there are elements x̃ ∈ Ext0(N1)
respectively ỹ ∈ Ext1(N1) which are both in the kernel of Ext∗(ψ) and which project in the exact
sequence (4.3) to non-trivial elements in Ext1(Ker(ε)) = F4 respectively in Ext2(Ker(ε)) = F4.

The short exact sequence (4.3) is a sequence of Galois-twisted PG1
2/PS

1
2 = S3-modules and

we know from Lemma 4.6 that Ker(Ext∗+1(ε)) is trivial unless ∗ = 0 or ∗ = 1 and in this case
its value is F4. The Galois-twisting arises from the canonical homomorphism G1

2 → Gal which
induces a homomorphism PG1

2/PS
1
2
∼= S3 → Gal with kernel C3 cyclic of order 3. Therefore

Corollary 4.2 shows that the short exact sequences

0→ Coker(Ext0(ε)) = F4 → Ext0(N1)→ Ker(Ext1(ε)) = F4 → 0

and

0→ Coker(Ext1(ε)) = F2
4 → Ext1(N1)→ Ker(Ext2(ε)) = F4 → 0

are split exact as sequences of Galois-twisted F4[S3]-modules. In particular Ext0(N1) is iso-
morphic to the trivial Galois-twisted module F4 ⊕ F4. On the other hand it is clear that as

F4[S3]-module Ext0(W↑PG1
2

C4
) is isomorphic to F4[S3/Gal] and therefore its C3-invariants are

isomorphic to F4. The image of Ext0(ϕ) is isomorphic to F4 and therefore necessarily equal
to these invariants. Hence the image of Ext0(ϕ) must agree with the image of Ext0(ψ) be-

cause otherwise Ext0(W↑PG1
2

C4
) would contain a F4[C3]-submodule of dimension 2 with trivial

action of C3. This shows the existence of x̃ and proves part (b) because we have just seen that
Coker(Ext0(ψ)) is isomorphic to the cokernel of the inclusion

F4 = F4[S3/Gal]C3 → F4[S3/Gal] .
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Finally we use that for each profinite W[[PG1
2]]-module M the short exact sequence of trivial

Galois-twisted W[[PG1
2]]-modules

0→W/(2)
×2−→W/(4)→W/(2)→ 0

induces a connecting homomorphism

δ : Ext∗(M) = Ext∗W[[PS1
2 ]](M,W/(2))→ Ext∗+1

W[[PS1
2 ]]

(M,W/(2)) = Ext∗+1(M)

which is functorial in M and commutes with the connecting homomorphisms associated to
short exact sequences 0 → M1 → M2 → M3 in the first variable of Ext. If M = W is the
trivial module then part c) of Theorem 3.11 says that this connecting homomorphism induces
an isomorphism between the kernel of Ext1(ε) and the kernel of Ext2(ε). In the exact sequence
(4.3) for ∗ = 0 we have just seen that we can choose a lift of a generator x ∈ Ext1(Ker(ε)) to an
element x̃ ∈ Ext0(N1) such that x̃ is in the kernel of Ext0(ψ). Then ỹ := δ(x̃) is in the kernel
of Ext1(ψ) and projects to a non-trivial element in Ker(Ext2(ε)). �

Lemma 4.9. There is a short exact sequence of Galois-twisted profinite PG1
2-modules

(4.6) 0→ N2 → P1 := W↑PG1
2

C4
⊕W↑PG1

2

S3

ρ−→ N1 → 0

such that the Poincaré series χ2 :=
∑
n≥0 dimF4

(Extn(N2))tn is given by

χ2 = 3 + t .

and such that there is an isomorphism of Galois-twisted F4[PG1
2/PS

1
2 ] = F4[S3]-modules

Ext0(N2) ∼= F4[S3/Gal] .

Proof. By the isomorphisms of (4.1) we have Coker(Tor0(ψ)) ∼= Ker(Ext0(ψ)) and by the
previous lemma this is isomorphic to the necessarily trivial Galois-twisted module F4.

By Corollary 4.2 W is a projective Galois-twisted W[S3]-module. Hence, the canonical
epimorphism W→ F4 can be lifted against the canonical projection

N1 → Tor0(N1)→ Coker(Tor0(ψ)) ∼= F4

to a W[[PG1
2]]-linear homomorphism

ψ′ : W↑PG1
2

S3
→ N1 .

Then the homomorphism

ρ : P1 = W↑PG1
2

C4
⊕W↑PG1

2

S3
→ N1

is defined via its restriction to the two summands given by ψ and ψ′. By construction the
map ρ induces an epimorphism on Tor0(−). By Lemma 4.4 it is therefore surjective and N2 is
defined as its kernel and we have established the short exact sequence (4.6).

The long exact sequence in Ext∗(−) associated to the short exact sequence (4.6) gives a short
exact sequence

(4.7) 0→ Coker(Ext∗(ρ))→ Ext∗(N2)→ Ker(Ext∗+1(ρ))→ 0 .

Because W↑PG1
2

S3
is isomorphic to W[[PS1

2 ]] as PS1
2 -module we get Ext∗(W↑PG1

2

S3
) ∼= F4 concen-

trated in degree 0 and hence Ext∗(ρ) agrees with Ext∗(ψ) for ∗ > 0. For ∗ = 0 the difference is
that

Ext0(ρ) : Ext0(N1) ∼= F4 ⊕ F4 → Ext(P1) = (F2)4

is injective with cokernel isomorphic to the cokernel of Ext0(ψ) while

Ext0(ψ) : Ext0(N1) ∼= F4 ⊕ F4 → Ext(W↑PG1
2

C4
) = (F4)3

has kernel F4. It follows that χ2 = 3 + t as claimed.
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For the last statement we use that the short exact sequence (4.7) for ∗ = 0 is one of Galois-
twisted F4[S3]-modules and identifies by part b) of Lemma 4.8 with the sequence

0→ Coker(F4 → F4[S3/Gal])→ Ext0(N2)→ Ker(Ext1(ρ)) = F4 → 0 .

By Proposition 4.1 the sequence is split just as the sequence

0→ F4
∼= F4[S3/Gal]C3 → F4[S3/Gal]→ Coker(F4[S3/Gal]→ F4[S3/Gal])→ 0

and this implies Ext0(N2) ∼= F4 ⊕ Coker(F4 → F4[S3/Gal]) ∼= F4[S3/Gal]. �

Lemma 4.10. There is a short exact sequence of Galois-twisted profinite PG1
2-modules

(4.8) 0→ P3 := W↑PG1
2

S3
→ P2 := W↑PS12

Gal → N2 → 0 .

Proof. By Proposition 4.1 the Galois-twisted S3-module W[S3/Gal] is projective. Hence the
canonical epimorphism W[S3/Gal]→ F4[S3/Gal] can be lifted against the canonical projection

N2 → Tor0(N2) ∼= F4[S3/Gal]

to a W[[PG1
2]]-linear homomorphism

W↑PG1
2

Gal = (W↑S3

Gal) ↑
PG1

2

S3
→ N2 .

Then the homomorphism P2 → N2 induces an epimorphism on Tor0(−). By Lemma 4.4 it is
therefore surjective. Let N3 be its kernel so that (4.8) is a short exact sequence.

By the isomorphisms of (4.1) and by the previous lemma the induced map in Ext∗(−) is a
monomorphism with cokernel F4 concentrated in degree 1. Therefore, if N3 is the kernel of our
map P2 → N2, then by the isomorphisms of (4.1) we have

Torq(N3) =

{
F4 q = 0

0 q > 0
.

By Corollary 4.2 the Galois-twisted S3-module W is again projective. Hence the canonical epi-
morphism of Galois twisted S3-modules W→ F4 can be lifted against the canonical projection

N3 → Tor0(N3) ∼= F4

to a W[[PG1
2]]-linear homomorphism of Galois-twisted profinite PG1

2-modules

ψ′ : W↑PG1
2

S3
→ N3 .

By construction the map induces an isomorphism on Torq(−) for all q and by Lemma 4.4 it is
therefore an isomorphism. �

Lemma 4.11. The exact complexes of Galois-twisted profinite PG1
2-modules respectively G1

2-
modules of Theorem 4.5 are F-resolutions of the trivial Galois-twisted module W.

Proof. By the obvious analogue of Lemma 14 of [18] it suffices to consider the case of PG1
2.

Furthermore it suffices to show that the sequence is split after restriction to any finite subgroup
F and for this it is enough that the short exact sequences of Lemma 4.6, Lemma 4.9 and Lemma
4.10 are split exact after restriction to F . Furthermore it suffices to consider to restrict attention
to maximal finite 2-subgroups which are given by S4 and S′4 (cf. the discussion around (2.5)).
The maps

W→W↑PG1
2

S4
⊕W↑PG1

2

S′4

given by sending x to (xS4, 0) resp. x to (0, xS′4) are clearly W[S4] resp. W[S′4]-linear and
provide splittings of ε. Then Lemma 4.3 shows that for any finite subgroup F of PG1

2 the exact
sequence of Lemma 4.10 is split as sequence of W[F ]-modules. In particular, as W[F ]-module
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N2 is a direct summand in W↑PG1
2

Gal and therefore N2 is projective as W[F ]-module. So Lemma
4.3 also applies to the exact sequence of Lemma 4.9 and this completes the proof. �

Finally we turn towards the construction of an F-resolution for the trivial Galois-twisted
profinite G-module W for G = G2 resp. G = PG2. We oberserve that because of G2/G1

2
∼=

PG2/PG2
∼= Z2 there is a short exact sequence of Galois-twisted profinite G2 resp. G1

2-modules

(4.9) 0→W[[Z2]]
g−e−→W[[Z2]]→W→ 0

where g is a topological generator of the group Z2. In fact, for every prime p here is a well
known isomorphism Zp[[T ]] → Zp[[Zp]] which sends T to g − e where g is any topological
generator of Zp and this extends to an isomorphism W[[T ]] → W[[Zp]]. Via this isomorphism
the augmentation is just given by the map which sends T to 0.

By the analogue of Lemma 15 of [18] induction of the F-resolutions of Theorem 4.5 from
PG1

2 to PG2 gives an F-resolution of the W[[PG2]]-module W[[PG2/PG1
2]] of the form

(4.10) 0→ Q3
∂3−→ Q2

∂2−→ Q1
∂1−→ Q0

ε−→W↑PG2

PG1
2
→ 0

with

Q3 = W↑PG2

S3
, Q2 = W↑PG2

Gal , Q1 = W↑PG2

S3
⊕W↑PG2

C4
, Q0 = W↑PG2

S4
⊕W↑PG2

S′4

and the monomorphism of the exact sequence (4.10) can be covered by a map of complexes

(4.11)

0 → Q3
∂3−→ Q2

∂2−→ Q1
∂1−→ Q0

ε−→ W↑PG2

PG1
2
→ 0

↓ ↓ ↓ ↓ ↓ g − e
0 → Q3

∂3−→ Q2
∂2−→ Q1

∂1−→ Q0
ε−→ W↑PG2

PG1
2
→ 0 .

The following result is a more precise form of Theorem 1.1.

Theorem 4.12. The total complex of the double complex Q∗,∗ of (4.11) is a Galois-twisted
F-resolution of the trivial W[[PG2]]-module W.

Proof. It is clear that Tot(C)∗ is an exact comple of F-projective modules. The fact that the
complexes HomW[[G]](P,Qi,∗) are exact for i = 1, 0 and each F-projective module P implies
that the complex HomW[[G]](P, Tot(Q)∗) is exact for each F-projective module P . �

5. Realizing the centralizer resolutions

5.1. Preliminaries on Morava modules.

By the Goerss-Hopkins-Miller theorem the extended Morava stabilizer group Gn(Γ) acts on
the spectrum En(Γ) (see [12], [28]) ; we recall that En(Γ) is a Landweber exact spectrum given
by a 2-periodic theory with coefficients π∗(En(Γ)) = π0(En)[u±1] (with u ∈ π−2(E2)) whose
associated formal group law over π0(En(Γ)) is a universal deformation of Γ in the sense of
Lubin and Tate [LT]. In particular there is a (non-canonical) isomorphism between π0(En(Γ))
and W[[u1, . . . , un−1]], the ring of formal power series over W in the variables u1, . . . , un−1. The
maximal ideal (p, u1, . . . , un−1) of this power series ring will be denoted m. To avoid cluttered
notation we will abbreviate in this section En(Γ) simply by En and Gn(Γ) by Gn.

For the purposes of this paper, a Morava module is a complete (En)∗-module M equipped
with a continuous Gn-action (continuous with respect to the m-adic topology on M and the
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profinite topology on Gn) such that for g ∈ Gn, a ∈ π∗En, λ ∈W and x ∈M we have

g(ax) = g(a)g(x) and g(λx) = gλg(x) .

So a Morava module is a Galois-twisted module but it need not be p-profinite and therefore not
be a module over the (twisted) group algebra W[[Gn]]. The category of Morava modules will be
denoted EGn. A morphism in this category is an (En)∗-linear map M → M ′ which commutes
with the action of Gn. We note that such a map will be automatically continuous with respect
to the m-adic topologies on M1 and M2.

The Morava module of a spectrum X is defined as

(En)∗X = π∗LK(n)(En ∧X) .

This is an (En)∗-module which is complete but not necessarily Hausdorff with respect to the
m-adic topology if m denotes the maximal ideal of π0(En). All Morava modules in this paper
will be Hausdorff, in fact they will all be pro-discrete.

For the Honda formal group law the following result is folklore and can be found in [10] or
in [31]. We give a proof which is very close to that in [31].

Proposition 5.1. Let En be the Lubin-Tate spectrum associated to a deformation of a formal
group law Γ over Fq which is already defined over Fp. Assume that the Frobenius endomorphism
ξΓ defined by ξΓ(x) = xp satisfies an equation ξnΓ = pu in the endomorphism ring of Γ (over
Fp) where u is a p-adic unit. Then there is an isomorphism

(5.1) φ : π∗LK(n)(En ∧ En) ∼= mapcts(Gn, (En)∗)

which is adjoint to the map

Gn × π∗LK(n)(En ∧ En)→ π∗(En)

given by

(x : Sn → En ∧ En, g ∈ Gn) 7→ (S0 x−→ En ∧ En
1∧g−→ En ∧ En

µ−→ En)

where µ is multiplication on En.

We prepare the proof of the proposition with two remarks, one on formal group laws and
another one on q-Boolean algebras.

Remark 5.2. a) Let q = pn and let k be a field which contains Fq. The endomorphism ξnF
commutes with an endomorphism

∑
i aix

i ∈ Endk(Γ) if and only if aqi = ai for all i, i.e. ai ∈ Fq
for all i. Hence the canonical map

EndFq
(Γ)→ Endk(Γ)

is an isomorphism if and ony if ξnF is central in which case it must satisfy an equation ξnΓ = pu
in the endomorphism ring of Γ (over Fp) for some p-adic unit.

b) More generally, if k is a finite field of order pm then the endomorphism ring over k is
isomorphic to the centralizer of ξmF in Endk(Γ).

Remark 5.3. a) Let Γ be any formal group law over Fq and consider as in the proof of Theorem
12 of [31] the functor which sends an Fq-algebra A to the set of pairs (β, f) where α : Fq → A
is is the ring homomorphim defining the Fq-algebra structure on A, β : Fq → A is any other
ring homomorphism and f is an isomorphism β∗Γ → α∗Γ of formal group laws. This functor
is corepresented by the Fq algebra

B(Γ) := Fq ⊗L L[t0, t1, . . .]⊗L Fq
where the Fq-algebra structure comes from the first tensor factor Fq, L is the Lazard ring,
Fq is considered as an L-algebra via the homomorphism classifying Γ and L[t0, t1, . . .] is an
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L-algebra via the usual units ηL and ηR in the Hopf-algebroid (L,L[t0, , t1, . . .]). The algebra B
is generated over Fq ⊗ Fq by the elements ti, i = 0, 1, . . ., with respect to complicated relations
determined by ηR and Γ.

Now assume that the formal group law Γ is already defined over Fp. Then we have β∗Γ = α∗Γ
because there is only one algebra homomorphism Fp → A and then f is an automorphism of
β∗Γ = α∗Γ. If furthermore ζnΓ = pu then for any endomorphism

∑
i aix

i ∈ EndA(Γ) we have
aqi = ai and the complicated relations must include the relations tqi = ti for all i. Therefore
B(Γ) is a q-Boolean algebra, i.e an Fq-algebra which satisfies xq = x for any x ∈ B.

b) Let B be a q-Boolean algebra. A q-Boolean algebra which is an integral domain only has
q solutions to the equation xq = x, hence any prime ideal in such a B is maximal and is the
kernel of a unique Fq-algebra morphism B → Fq. So we can identify the spectrum spec(B) with
HomFq−alg(B,Fq). Furthermore B is the colimit of its finite Fq-subalgebras and this defines a
profinite topology on its spectrum spec(B). The structure theorem for q-Boolean algebra says
that the evaluation map from B to the algebra of continuous functions on its spectrum

B → mapcts(spec(B),Fq), x 7→ (ϕ 7→ ϕ(x))

is an isomorphism. In fact, if x ∈ B is any element then xq−1 is idempotent. Hence, if xq−1 6= 1
then B is the product of the ideals generated by xq−1 and 1 − xq−1. From this one sees
immediately that the evaluation map is an isomorphism if B is finite. The general case follows
by observing that for a profinite set S = limiSi with Si finite, the set of continuous functions
mapcts(S,Fq) is equal to colimimap(Si,Fq).

We are now ready for the proof of Proposition 5.1.

Proof. It is enough to prove the isomorphism in degree 0 after reducing modulo the ideal
generated by the maximal ideal m in π0(E). The Fq-algebra (En)0En/m agrees with the algebra
B(Γ) considered in part a) of the previous remark. By the assumption on Γ and part b) of
the preceeding remark (En)0En/m is an Fq-Boolean algebra and is therefore isomorphic to the
ring of continuous functions on its spectrum. The spectrum of (En)0En/m identifies with the
profinite set of pairs (β, f) and this is exactly equal to Gn(Γ). �

In the remainder of this section we assume that Γ satisfies the assumption of Proposition
5.1.

The group Gn × Gn acts on π∗(LK(n)(En ∧ En)). The action of the left hand factor is the
one used in the definition of the Morava module of π∗(LK(n)(En ∧En)). We will also need the
action of the right hand factor and we need to know how this action translates to the right
hand side of the isomorphism (5.1). We record this in the following lemma whose proof is
straightforward.

Lemma 5.4. Let g, h1 and h2 be elements of Gn and x be an element of π∗(LK(n)En ∧ En).
Then

φ((h1, h2)x)(g) = h1φ(x)(h−1
1 gh2) .

In other words, the action on the left hand copy of En corresponds to the diagonal action on
the set of continuous maps while the action on the right hand copy of En corresponds to the
action on Gn on the right. �

The results of [10] on homotopy fixed points will now carry over to the case of En = En(Γ)
if Γ satisfies the assumptions of Proposition 5.1. In particular we have the following result.
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Corollary 5.5. Let K be a closed subgroup of Gn. Then there is an isomophism of Morava
modules

(En)∗(E
hK
n ) ∼= mapcts(Gn/K, (En)∗) ∼= HomW[Gal]−cts(W[[Gn/K]], (En)∗)

if Gn acts diagonally on the set of continuous maps respectively continuous Galois-twisted ho-
momorphisms. �

Let M be a Morava module and let x ∈ M . If α : M → (En)∗ is an (En)∗-linear map let
Φ(α) : M → mapcts(Gn, (En)∗) be given by

(Φ(α)(x))(g) = gα(g−1x) .

Conversely, let β : M → mapcts(Gn, (En)∗) be a morphism of Morava modules where Gn acts
on mapcts(Gn, (En)∗) diagonally. Then let Ψ(β) : M → (En)∗ be given by

Ψ(β)(x) = (β(x))(e) .

For h ∈ Gn let h ∗ β : M → mapcts(Gn, (En)∗) and h ∗ α : M → (En)∗ be given by

(h ∗ β(x))(g) = (β(x))(gh) and (h ∗ α)(x) = hα(h−1x) .

The proof of the following lemma is straightforward and left to the reader.

Lemma 5.6.

a) Φ(α) is a homomorphism of Morava modules.

b) Ψ(β) is (En)∗-linear.

c) The map

Φ : Hom(En)∗(M, (En)∗)→ HomEGn(M,mapcts(Gn, (En)∗)), α 7→ Φ(α)

is an isomorphism with inverse given by

Ψ : HomEGn(M,mapcts(Gn, (En)∗))→ Hom(En)∗(M, (En)∗), β 7→ Ψ(β) .

d) The action of Gn on π∗LK(n)(En ∧En) on the right hand smash factor translates via the
isomorphism of Proposition 5.1 and of the isomorphisms Φ and Ψ of part c) into the diagonal
action, i.e. for h ∈ Gn we have Φ(h ∗ α) = h ∗ Φ(α) and Ψ(h ∗ β) = h ∗Ψ(β). �

The following two results are taken from [14]. There they were crucial in realizing the duality
resolution at n = 2 and p = 3 and here they are crucial for constructing the centralizer resolution
for n = p = 2. In these results we use the following notation: if E is a spectrum and X = limiXi

is an inverse limit of a sequence of finite sets then E[[X]] is defined as holimiE ∧ (Xi)+. We
observe that if X is such a profinite set with a continuous action of a finite group K and if E
is a K-spectrum then E[[X]] is a K-spectrum via the diagonal action. If X and Y are spectra
then we denote the function spectrum by F (X,Y ).

Proposition 5.7 ([GHMR1, Prop. 2.6]).

a) Let K1 be a closed subgroup and K2 a finite subgroup of Gn. Then there is a natural
equivalence (where the homotopy fixed points on the left hand side are formed with respect to
the diagonal action of K2)

En[[Gn/K1]]hK2 ' F (EhK1
n , EhK2

n ) .

b) If K1 is also an open subgroup then there is a natural decomposition

En[[Gn/K1]]hK2 '
∏

K2\Gn/K1

EhKx
n
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where Kx = K2∩xK1x
−1 is the isotropy subgroup of the coset xK1 and K2\Gn/K1 is the finite

set of double cosets.

c) If K1 is a closed subgroup and K1 =
⋂
i Ui for a decreasing sequence of open subgroups Ui

then

F (EhK1
n , EhK2

n ) ' holimiEn[[Gn/Ui]]hK2 ' holimi

∏
K2\Gn/Ui

EhKx,i
n

where Kx,i = K2 ∩ xUix−1 is, as before, the isotropy subgroup of the coset xUi. �

The following remark is taken from section 1.3 of [18].

Remark 5.8. If Ui ⊂ Uj then the map∏
K2\Gn/Ui

EhKx,i
n →

∏
K2\Gn/Uj

EhKx,j
n

in the inverse system of part (c) of the proposition can be described as follows: if x ∈ Gn/Ui
has isotropy group Kx,i and its image x′ ∈ Gn/Uj has isotropy group Kx′,j then the restriction

of the map to the factor determined by x sends E
hKx,i
n via the transfer to the factor E

hKx′,j
n

determined by x. Because K2 is finite this implies that on homotopy groups the inverse system
is Mittag-Leffler.

Proposition 5.9 ([GHMR1, Prop. 2.7]). Let K1 and K2 be closed subgroups of Gn and suppose
that K2 is finite. Then there is an isomorphism(

(En)∗[[Gn/K1]]
)K2 ∼=−→HomEGn((En)∗E

hK1
n , (En)∗E

hK2
n )

such that the following diagram commutes

π∗En[[Gn/K1]]hK2 −→
(
(En)∗[[Gn/K1]]

)K2y ∼= y ∼=
π∗F (EhK1

n , EhK2
n ) −→ HomEGn((En)∗E

hK1
n , (En)∗E

hK2
n )

where the top horizontal map is the edge homomorphism in the homotopy fixed point spectral
sequence, the left-hand vertical map is the isomorphism given by Proposition 5.7 and the bottom
horizontal map is the En-Hurewicz homomorphism. �

We will also need the following result from section 1 of [5].

Lemma 5.10. Let K ⊂ Gn be a closed subgroup and let K0 = K ∩ Sn. Suppose the canonical
map

K/K0 → Gn/Sn ∼= Gal

is an isomorphism.

a) There is a Gal-equivariant equivalence

Gal+ ∧ EhK → EhK0 .

b) For any profinite Morava module M we have isomorphisms

H∗(K,M) ∼= H∗(K0,M)Gal, H∗(K0,M) ∼= W⊗Zp
H∗(K,M) . �
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5.2. Realizing the centralizer resolution for G1
2 and for G2.

The construction of the topological centralizer resolutions of Theorem 1.4 and Theorem 1.5
comes in two steps. In Proposition 5.11 we first construct a complex of spectra X• such that the
complex of Morava modules (E2)∗(X•) is isomorphic to the complex HomW[Gal]−cts(P•, (E2)∗)
if P• denotes the complexes of Theorem 1.1 resp. of Theorem 1.2. Here HomW[Gal]−cts denotes
continuous homomorphisms of Galois-twisted continuous Gal-modules. This part is analogous
to the first step in the construction of the duality resolution at n = 2 and p = 3 in [14] and
the centralizer resolutions in [18]. In the second step we refine the complex of spectra to a
resolution, i.e. we construct the necessary factorisations of the maps αi. This step follows
the strategy used in the proof of Theorem 25 and Theorem 26 of [18]. The crucial result is
Proposition 5.12. We give details of the proof of Theorem 1.5. The proof of Theorem 1.4 is
completely analogous with details which are less complicated.

Proposition 5.11. There is a complex of spectra

X• : ∗ → LK(2)S
0 → E

hG48(Γ)
2 ∨ EhG

′
48(Γ)

2 → E
hG12(Γ)
2 ∨ EhC8

2 ∨ EhG48(Γ)
2 ∨ EhG

′
48(Γ)

2

→ EC2×Gal
2 ∨ EhG12(Γ)

2 ∨ EhC8
2 → E

hG12(Γ)
2 ∨ EC2×Gal

2 → E
hG12(Γ)
2 → ∗

such that the complex of Morava modules (E2)∗(X•) is isomorphic to the complex of Morava
modules HomW[Gal]−cts(P•, (E2)∗) if P• denotes the complex given by Theorem 1.1 respectively
Theorem 4.12.

Proof. By Corollary 5.5 we can choose Xi as the explicit (wedges of) homotopy fixed point
spectra appearing in the statement of the theorem such that we have isomorphisms of Morava
modules

(E2)∗(Xi) = HomW[Gal](Pi, (E2)∗)

for i = −1, 0, 1, 2, 3, 4. It is therefore enough to show that the E2-Hurewicz homomorphisms

(5.2) π0F (Xi, Xi+1)→ HomEG2((E2)∗Xi, (E2)∗Xi+1)

are surjective for i = −1, 0, 1, 2, 3 and the E2-Hurewicz homomorphisms

(5.3) π0F (Xi, Xi+2)→ HomEG2((E2)∗Xi, (E2)∗Xi+2)

are injective for i = −1, 0, 1, 2. In fact, we will see that in most cases these homomorphisms are
even isomorphisms.

By the explicit nature of the spectra Xi it is enough to show that the E2-Hurewicz homo-
morphisms

(5.4) π0F (EhK1
2 , EhK2

2 )→ HomEG2((E2)∗E
hK1
2 , (E2)∗E

hK2
2 )

are isomorphisms for every combination of H1 and H2 with H1 running through G2, G48(Γ),
G′48(Γ) C8, G12(Γ), C2 × Gal and H2 running through G48(Γ), G′48(Γ) C8, G12(Γ), C2 × Gal,
except possibly in the case that H1 and H2 are equal to either G48(Γ) or G′48(Γ). In this case
we will see that we still have at least a surjection and this is good enough.

In fact, by Proposition 5.9 it is enough to show that the edge homomorphisms

π0(E2[[G2/H1]])hH2 → π0(E2[[G2/H1]])H2

of the descent spectral sequences is an isomorphism for every combination of H1 and H2. except
if H1, H2 ∈ {G48(Γ), G′48(Γ)} and that in this case it is still surjective.

For this we use Proposition 5.7 and the usual lim-lim1-sequence. First we note that the

lim1-terms lim1∏
H2\Gn/Ui

π1(E
hHx,i

2 ) and lim1∏
H2\Gn/Ui

π1(E2)Hx,i arising from part c) of

Proposition 5.7 are trivial. For the second lim1-term this is trivial because π1(E2) = 0 and
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for the first lim1-term this follows from Remark 5.8 because the inverse system satisfies the
Mittag-Leffler condition.

Therefore we get the desired isomorphisms in (5.2) respectively the surjection in (5.3) if for
every Hx,i the edge homomorphism

(5.5) π0(E
hHx,i

2 )→ π0(E2)Hx,i

of the homotopy fixed point spectral sequence is an isomorphism in degree 0 respectively sur-
jective in degree 0. The groups Hx,i always contain the central C2. Furthermore, by Lemma
5.10 it is enough to assume that H2 is contained in S2. The relevant groups are then G24, Q8,
C6, C4 and C2, and by Lemma 5.10 the edge homomorphism is a surjection for G24 if and only
if this is the case for G48(Γ).

The relevant calculations can be found in [1] and [11] in the case of G48(ΓE), in [25] in
the case of C6, in [8] in the case of C4, and in [5] in the case of C2. In these cases the edge
homomorphism is always an isomorphism. So it remains to consider the case of Q8. The
homotopy fixed point spectrum EhG24

2 is 192-periodic with periodicity generator given by ∆8

where the modular form ∆ is the algebraic periodicity generator for the G24-module (E2)∗.

With respect to the action of Q8 there is an invariant ∆̃ such that ∆̃3 = ∆ (cf. Theorem A.4 of

[3]). Then EhQ8

2 will be 64-periodic with periodicity generator ∆̃8 and there is an equivalence

EhQ8

2
∼= EhG24

2 ∨ Σ64EhG24
2 ∨ Σ128EhG24

2 .

So we need to understand the edge homomorphism

πk(EhG24
2 )→ πk(E2)G24

not only for k = 0 but also for k = 128 and k = 64. The calculations in [1] and [11] show that this
is still an isomorphism for k = 64 while for k = 128 it is only surjective with kernel isomorphic to
F4 and given by a class denoted ∆5ε. The case ofQ8 can only arise ifH1, H2 ∈ {G48(Γ), G′48(Γ)};
in case H1 = Gn all Hx,i are equal to H2. �

To complete the proof of Theorem 1.5 it remains to construct the factorizations Xi−1
βi−→

Wi
γi−→ Xi of αi for i = 1, 2, 3, 4, such eachWi−1

γi−1−→ Xi−1
βi−→Wi is a cofibration. We note that

these factorisations will realize the splitting of the exact complex of Morava modules (E2)∗(X•)
into the usual short exact sequences. In particular, this will show that γ4 : (E2)∗W4 → (E2)∗X4

is an isomorphism, hence γ4 is an equivalence and the resolution is of length 4.

The factorizations are constructed inductively. In the case i = 1 we simply use that the
composition α1α0 is null homotopic. Now let 2 ≤ i ≤ 4 and suppose that for 0 ≤ r < i we have

already constructed factorizations Xr−1
βr−→ Wr

γr−→ Xr of αr such that Wr−1
γr−1−→ Xr−1

βr−→
Wr is a cofibration. In order to factor αi it is enough to show that the composition αiγi−1

considered as element in π0F (Wi−1, Xi) is null homotopic.

The already constructed cofibrations can be used to analyze π∗F (Wi−1, Xi). In fact, if Z
is any spectrum then these cofibrations determine a finitely convergent Adams type spectral
sequence which has the form

(5.6) Es,t1 (Wi−1, Z) =⇒ πt−sF (Wi−1, Z)

with differentials ds,tr : Es,tr (Wi−1, Z)→ Es+r,t+r−1
r (Wi−1, Z) and

Es,t1 (Wi−1, Z) =

{
πtF (Xi−2−s, Z) 0 ≤ s < i

0 s ≥ i .
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Clearly αiγi−1 is in the kernel of β∗i−1 : π0(F (Wi−1, Xi)) → π0(F (Xi−2, Xi)). This implies
that αiγi−1 must be detected in higher filtration, i.e. in one of the groups Es,s∞ (Wi−1, Xi) for
s > 0. By the following result these groups are trivial, so the factorization exists and the
induction step is complete.

Proposition 5.12. Let i ∈ {2, 3, 4}. If Z = Xi then in the spectral sequences (5.6) we have
Es,s2 (Wi−1, Xi) = 0 for all s > 0.

Proof. If s ≥ i then we already have Es,s1 (Wi−1, Xi) = 0. The d1-differentials are induced by
the maps αi and hence we need to show that for 1 ≤ s < i− 1 the sequences

(5.7) πsF (Xi−1−s, Xi)
α∗i−s−→ πsF (Xi−2−s, Xi)

α∗i−s−1−→ πsF (Xi−3−s, Xi)

are exact in the middle and that for s = i− 1

(5.8) α∗0 : πsF (X0, Xi)→ πsF (X−1, Xi)

is onto. The following two lemmas imply Proposition 5.12. �

Lemma 5.13. E3,t
2 (W3, X4) = 0 for every t.

Proof. In this case Proposition 5.7 shows that

F (X−1, X4) ' EhG12(Γ)
2 and F (X0, X4) ' (E2[[G2/G48(Γ)]] ∨ E2[[G2/G

′
48(Γ)]])hG12(Γ)

and the map F (X0, X4)→ F (X−1, X4) corresponds to the map

(E2[[G2/G48(Γ)]] ∨ E2[[G2/G
′
48(Γ)]])hG12(Γ) → E2[[G2/G2]]hG12(Γ)

induced by the canonical maps G2/G48(Γ)
∐

G2/G
′
48(Γ) → G2/G2. The latter map has a

G12(Γ)-equivariant section and this implies that the map

π∗(E2[[G2/G48(Γ)]] ∨ E2[[G2/G
′
48(Γ)]])hG12(Γ) → π∗E2[[G2/G2]]hG12(Γ)

is split surjective and hence

α∗0 : πtF (X0, Xi)→ πtF (X−1, Xi)

is surjective for every t. �

Lemma 5.14. Let i ∈ {2, 3, 4}, t ∈ {0, 1, 2} and s > 0. Then Es,t2 (Wi−1, Xi) = 0.

Proof. The spectrum Xi is a wedge of homotopy fixed point spectra E
hFi,j

2 for certain explicitly
given finite subgroups Fi,j , j = 1, . . . ,mi

Xi =

mi∨
j=1

E
hFi,j

2 .

Then, for any spectrum Y we have a homotopy equivalence natural in Y

(5.9) F (Y,Xi) '
mi∨
j=1

F (Y,E
hFi,j

2 ) '
mi∨
j=1

F (Y,E2)hFi,j .

If Y = Xi−2−s then Y is again a a finite wedge of homotopy fixed point spectra E
hGs,j

2 with
explicitly given closed subgroups Gs,j , j = 1, . . . , ns. For each of these wedge summands
Proposition 5.9 (with K2 is the trivial group) gives an isomorphism

π∗F (E
hGs,j

2 , E2) ∼= HomEG2((E2)∗E
hGs,j

2 , (E2)∗E2)

and because (E2)∗E2
∼= Homcts(G2, (E2)∗) is coinduced this simplifies by Lemma 5.6 to an

isomorphism

π∗F (E
hGs,j

2 , E2) ∼= Hom(E2)∗((E2)∗E
hGs,j

2 , (E2)∗) .
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These isomorphisms combine to give an isomorphism

(5.10) π∗F (Xi−2−s, E2) ∼= Hom(E2)∗((E2)∗Xi−2−s, (E2)∗) .

Again by Lemma 5.6 this isomorphism is compatible with the action of G2 which acts on the
left hand side via its action on E2 and on the right hand side diagonally.

From (5.9) and (5.10) we get a (direct sum of) descent spectral sequence(s) converging to
πq−pF (Xi−2−s, Xi) with E2-term given by

(5.11) Ep,q2 (s, i) :=

mi⊕
j=1

Hp
(
Fi,j ,Hom(E2)∗((E2)∗+qXi−2−s, (E2)∗) =⇒ πp−qF (Xi−2−s, Xi) .

From the isomorphism of complexes (E2)∗(X•) ∼= HomW[Gal]−cts(C•, (E2)∗) and the fact that
the complex

0→ Ni → Ci → . . . C0 → Zp → 0

is W[F ]-split3 for every finite subgroup of G2 we deduce that the complex

0→ (E2)∗X−1 → (E2)∗X0 → . . .→ (E2)∗Xi−1 → (E2)∗Wi → 0

is (E2)∗[F ]-split.

Now let i ≤ 4, s ≤ i− 1 and t ∈ {0, 1, 2}. By the following Lemma there are isomorphisms

Es,t1 (Wi−1, Xi) = πtF (Xi−2−s, Xi) ∼=
mi⊕
j=1

Ht
(
Fi,j ,Hom(E2)∗((E2)∗+2tXi−2−s, (E2)∗))

and the differential ds,t1 : Es,t1 (Wi−1, Xi) → Es+1,t
1 (Wi−1, Xi) is induced by the map αi−s−1 :

(E2)∗Xi−2−s → (E2)∗Xi−3−s (with X−2 = ∗). Because the complex

0→ (E2)∗X−1 → (E2)∗X0 → . . .→ (E2)∗Xi−2 → (E2)∗Wi−1 → 0

is π∗E2[Fi,j ]-split we deduce that for t ∈ {0, 1, 2}

Es,t2 (Wi−1, Xi) = Hs(E
∗,t
1 , d∗,t1 ) ∼=

{⊕mi

j=1H
t
(
Fi,j ,Hom(E2)∗((E2)∗+2tWi−1, (E2)∗)) s = 0

0 s > 0

as claimed. �

Lemma 5.15. Let i ∈ {2, 3, 4}, s and t be integers, 0 ≤ s < i and t ∈ {0, 1, 2}. In the spectral
sequences (5.11) we have

Et,2t2 (s, i) ∼= Et,2t∞ (s, i) ∼= πtF (Xi−2−s, Xi) .

Proof. If H1 is a closed subgroup and H2 is a finite subgroup of G2 then Proposition 5.7 gives
an equivalence

F (EhH1
2 , EhH2

2 ) ' E2[[G2/H1]]hH2 ,

in particular an isomorphism

π∗F (EhH1
2 , E2) ∼= π∗E2[[G2/H1]]) .

The spectrum Xi−2−s is a wedge of homotopy fixed point spectra with respect to explicitly
known closed subgroups Gs,j , j = 1, . . . , ns and Xi is also a wedge of homotopy fixed point
spectra with respect to explicitly known closed subgroups Fi,j , j = 1, . . . , ni. Therefore the
E2-term of the spectral sequence (5.11) can be rewritten as

Ep,q2 (s, i) =

mi⊕
j=1

ns⊕
k=1

Hp(Fi,j , πqE2[[G2/Gs,k]]) =⇒ πq−pF (Xi−1−s, Xi+1)

3We use this opportunity to point out an annoying typo on line 2 of page 164 of [18]. Instead of “Zp-split”

it should have read “Zp[F ]-split”.
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This spectral sequence is the direct sum of spectral sequences indexed by j and k.

If H1 is an open subgroup of G2 and H2 is a finite subgroup of G2 then by part b) of

Proposition 2.6 of [14] the function spectrum F (EhH1
2 , EhH2

2 ) is identified with E[[G2/H1]]hH2

and this is a finite product of homotopy fixed point spectra of the form EhF2 where F is always
a subgroup of H2. In our case H2 is one of the groups C2 × Gal, C8 or G12(Γ) and the
homotopy groups πt for t = 0, 1, 2 of the homotopy fixed point spectra EhF2 are always given
by Ht,2t(F, (E2)∗). In fact, as in the proof of Proposition 5.11 one sees that because of Lemma
5.10 it is enough to consider the cases that F is either C2, C4 or C6 and then the necessary
information is provided by [25], [8] and [5].

Therefore for t = 0, t = 1 and t = 2 and H1 open we get isomorphisms

(5.12) πt(F (EhH1
2 , EhH2

2 )) ∼= Ht,2t(H2;π∗(E2[[G2/H1]])) .

A general closed subgroup H1 can be written as an intersection of a decreasing sequence of
open subgroups Ui and then

F (EhH1
2 , EhH2

2 ) ' holimiF (EhUi
2 EhH2

2 )

and Remark 5.8 show that for t = 0, 1, 2 the sources of the isomorphisms of (5.12) are given as
the obvious inverse limit. For the target one uses that

π∗(E2[[G2/H1]]) = limiπ∗(E2[[G2/Ui]])

if H1 =
⋂
i Ui for Ui a decreasing sequence of open subgroups of G2. Because the inverse limit

is an exact functor on the category of profinite abelian groups we find that H∗(F,−) commutes
with inverse limits of profinite coefficient modules and thus the case of open subgroups implies
the case of closed subgroups. �
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Ph.D.thesis, Université de Strasbourg (2013). Available at hal.archives-ouvertes.fr/tel-00875761

25. M. Mahowald and C. Rezk, “Topological modular forms of level 3”, Pure Appl. Math. Q., 5, Special
Issue: In honor of Friedrich Hirzebruch. Part 1: 853–872, 2009.

26. D. Quillen, “The spectrum of an equivariant cohomology ring I, II”, Ann. of Math. 94 (1971), 549-572,

573–602
27. D. Ravenel, “The cohomology of Morava stabilizer groups”, Math. Zeit. 152 (1977), 287–297

28. C. Rezk, “ Notes on the Hopkins-Miller theorem”, in Homotopy Theory via Algebraic Geometry and
Group Representations (Evanston, IL, 1997), 313–366, Amer. Math. Soc., Providence, RI, 1998.

29. K. Shimomura and A. Yabe, The homotopy groups π∗(L2S0), Topology 34 (1995), 261–289.

30. J. Silverman, ”The arithmetic of elliptic curves”, volume 106 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1986

31. N. Strickland, “Gross-Hopkins duality”, Topology, 39 (2000), 1021–1033.
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