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Hydrocalumite Thin Films for Polyphenol
Biosensor Elaboration

A. Soussou, I. Gammoudi, A. Kalboussi, C. Grauby-Heywang, T. Cohen-Bouhacina, and Z. M. Baccar

Abstract —Hybrid thin films based on Hydrocalu-
mite (Ca2AlCl layered double hydroxide LDH) and
tyrosinaseenzyme have been used for the elaboration
of a high sensitive amperometric biosensor detecting
polyphenols extracted from green tea. Structural properties
of LDH nanomaterials were characterized by X-ray powder
diffraction and Infra-Red spectroscopy, confirming its
crystalline phase and chemical composition. Ca2AlCl-
LDHs-thin films were deposited by spin-coating, and
studied by atomic force microscopy to obtain information
about the surface morphology of this host matrix before
and after enzyme’s immobilization. Electrochemical study
using cyclic voltammetry and chronoamperometry shows
good performances of the built-in biosensor with a high
sensitivity for polyphenols concentrations ranging from
24 pM to 2.4 µM and a limit of detection of 1.2 pM.

Index Terms—Amperometric biosensor, layered double 
hydroxide, tyrosinase, hybrid nanomaterial, atomic force 
microscopy.

I. INTRODUCTION

OVER the past two decades, there has been an excep-
tionally rapid growth in publications associated to

hybrid nanocomposites resulting from the combination of
biomolecules and inorganic nanomaterials [1]. The two-
dimensional (2D) form of these nanomaterials has been used
to develop various biosensing devices thanks to their special
electronic, optical and mechanical properties [2]. Specifi-
cally, among the reported 2D bioinorganic nanomaterials,
the association of layered double hydroxides (LDHs) materials
and enzymes has emerged as one of the most powerful.
In fact, due to their particular structure (consisting of pos-
itively charged cation layers with charge balancing anions
and water molecules inserted between these layers), inorganic
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LDH matrixes have presented specific properties, such as
their high ion exchange capacity, their encapsulation ability
and their biocompatibility [3]. Many applications have been
proposed, based on the immobilization of different enzymes
into LDH like urease [4], cholesterol oxidase [5] and lactate
dehydrogenase [6].

In this work, tyrosinase enzyme was immobilized onto
Hydrocalumite (Ca2AlCl-LDH) thin films to elaborate a
biosensor for the detection of polyphenols extracted from
green tea. To our knowledge, it is the first time that Hydrocalu-
mite is used in this context. Tyrosinase catalyzes the oxidation
of monophenols and o-diphenols to quinones in the presence of
oxygen. The choice of the analyte is justified by the potentially
positive impact of polyphenol rich foods on human health,
these compounds playing a probable role in the prevention of
various diseases [7].

LDH, prepared by the co-precipitation method, was firstly
characterized by Fourier Transform InfraRed (FTIR) spec-
troscopy and X-ray diffraction (XRD) in order to vali-
date its composition and structure. Next, Ca2AlCl-LDH thin
films were morphologically optimized using atomic force
microscopy (AFM) and then deposited on gold screen-printed
electrode (AuSPE) surfaces. Surprisingly, AFM is rarely
used in such context, whereas this method is well-adapted.
Finally, electrochemical measurements (cyclic voltammetry
and chronoamperometry) were used to control the polyphenol
detection.

II. EXPERIMENTAL SECTION

A. Starting Materials

Ca2AlCl-LDH (details of synthesis are available in [8]),
glutaraldehyde, tyrosinase from mushroom (activity ≥
1000 units/mg), K3Fe(CN)6, K4Fe(CN)6.3H2O and phosphate
buffer saline PBS (10 mM, 0.137 M NaCl, pH 7.4) containing
potassium were purchased from Sigma-Aldrich. Polyphenols
from green tea (product number 193756) were provided by
MP Biomedicals LLC (France). Muscovite mica substrates for
AFM experiments were purchased from Electron Microscopy
Sciences (USA). AuSPEs for electrochemical studies were
purchased from Metrohm (ref. 061208210).

B. Biosensor Elaboration

The built-in steps of the biosensor are described in Fig. 1. 
Step 1 consist on the deposition of an ultra thin layer 
of LDH nanomaterial by spin coating a small volume of
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Fig. 1. Scheme of the immobilization of tyrosinase on a LDH film.

Ca2AlCl-LDH colloid (15–20 μL, at a concentration
of 0.75 mg/mL) onto mica or AuSPEs surface. Unbounded
LDH particles were removed by rinsing surfaces with milli-
Q ultrapure water. Then, tyrosinase (10 μL in buffer,
1.5 mg·mL−1) was self assembled (step (2)). After incubation
at 37 °C during 10 min, substrates were overnight-stored in
saturated PBS atmosphere at 4 °C. Finally, the enzyme mole-
cules were reticulated in saturated glutaraldehyde atmosphere
for 8 minutes and substrates were rinsed carefully with PBS.

C. Instruments

XRD measurements were performed on a Panalytical X’Pert
Pro diffractometer using CuKα radiation (λ = 1.5406 Å) at
40 kV, 30 mA.

FTIR spectra of LDHs (in powder) were recorded using
a Perkin Elmer spectrophotometer in reflexion mode in the
4000–400 cm−1 range. The final spectra correspond to the
average of 10 independent spectra.

AFM study was performed in tapping mode (except for
scratching experiments as mentioned in results) with a Mul-
tiMode NanoScope II apparatus (AFM imaging) on ambient
conditions (in air) using a silicon cantilever (with a nominal
spring constant of about 40 N·m−1) and at a scan rate between
0.1 and 0.5 Hz. AFM study was made systematically on three
independent samples and different zones were scanned for
each one. The surface roughness, which is an important com-
ponent of surface texture, was obtained using the NanoScope
setup after the average of 5 to 10 measurements for each scan.

Cyclic Voltammetry and chronoamperometry measure-
ments were carried out by using an Ivium CompactStat
10800 (Portable Electrochemical and Impedance Analyzer) at
room temperature. Gold screen-printed electrodes were used,

Fig. 2. Experimental XRD pattern (red circles), calculated pattern (solid 
black line), Bragg reflections (green ticks), and difference pro-files (solid 
blue line) for Ca2Al(OH)6Cl·2H2O.

Fig. 3. FTIR (a) spectra of Ca2AlCl-LDH (powder).

including a gold working electrode of 4.0 mm diameter,
an auxiliary electrode of carbon and a Ag/AgCl electrode
as reference electrode. All cyclic voltammetry measurements
were carried out at a scanrate of 50mV.s−1 in PBS solution
(10 mM, 0.137 M NaCl, pH 7.4). For each test, a series
of 10 continuous cycles was carried out to ensure the stability
and the reversibility of the system. After each serial of
measurements, modified electrode were stored in PBS solution
at 4° C.

III. RESULTS

A. Structure and Composition of Ca2AlCl-LDH

Ca2AlCl-LDH powder XRD pattern, shown in Fig. 2 
(red circles) exhibit the characteristic diffraction peaks 
(002, 004, 202, and 040) of pure LDH compounds [9]. The 
Rietveld refinement (Fig. 2) shows that the structure symmetry 
is R3 m rhombohedral with refined lattice parameters of 
a=b=0.304 nm and c =2.390 nm. The composition of the 
Hydrocalumite super cells is Ca2Al(OH)6Cl.2H2O with a ratio 
Ca:Al of 2.

As shown in Fig. 3, FTIR spectrum of Ca2AlCl-LDH 
exhibits the presence of significant bands: vibrations at 
521 cm−1, 712 cm−1 and 850 cm−1 can be assigned to 
metal-oxide (Ca and Al-O bonds) and metal-hydroxyl vibra-
tion modes, respectively. Bands observed at 1409 cm−1 is 
assigned to the symmetric stretching of carbonate anions, 
coming from CO2 molecules physisorbed onto the surface [9].
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×Fig. 4. 3D AFM images (5 µm 5 µm) in tapping mode of two
Ca2AlCl-LDH films (CLDH = 0.75 mg.mL-1): (a) sample 1; (b) sample 2
(a) (c) and (d)height profiles extracted from cross-sections indicated
in (a) and (b).

Fig. 5. AFM topographic images (5µm × 5µm) of a Ca2AlCl-LDH thin 
film, (a) before scratching; (b) after scratching at the level of the square 
area; (c) principle of a scratching experiment; (d) section performed along 
the line shown in (b).

Bands observed at 1625 cm−1 corresponds to the bending
mode of water molecules poorly bounded in the interlayer
of the LDH powder [9]. At last, at higher wavenumber,
the broad band centered at 3457 cm−1 corresponds to the
stretching modes of hydroxyl groups, revealing the pres-
ence of hydrogen-bonded interlayer water, usually observed
around 3300 cm−1 [10].

B. Morphological Characterization of the 
Ca2AlCl-LDH/Tyrosinase Thin Films

Firstly, Ca2AlCl-LDH films were deposited on mica using 
the spin-coating method (conditions described in Fig. 1). 
Their surfaces are relatively homogenous (Fig. 4, Fig. 5a 
and Fig. 6a) containing some dispersed aggregates resulted 
from the deposition of the suspended LDH-nanoparticles. The 
average surface roughness is around 8 nm.

×
Fig. 6. AFM topographic images (20µm × 20µm) of: (a) Ca2AlCl-LDH 
film; (b) Ca2AlCl-LDH/ tyrosinase film. (c) and (d) the 3D zoom-in (5 µm 
5 µm) of the selected areas indicated by squares
on (a) and (b). CLDH = 0.75 mg.mL-1 and Ctyrosinase = 1.5 mg mL-1.

Moreover, the Ca2AlCl-LDH films present a multilay-
ers structure like shown by the two LDH samples in 
Fig. 4a and b. The thicknesses vary between 0.5 nm and 10 nm 
(Fig. 4c and d), the minimum value being estimated as the 
thickness of a single layer.

Scratching experiments were performed on different zones 
of these samples, in order to determine the total thickness of 
the LDH thin films (Fig. 5). Such experiments are achieved in 
the contact mode with a high applied load on the AFM 
cantilever (around 80 nN, 10 times greater than that used for 
imaging). In this case, when the tip scans a small area (typ-
ically, a surface of 1 μm × 1μm, Fig. 5a), it removes locally 
the LDH layer (Fig. 5b) [26]. Height sections (Fig. 5d) 
performed between intact and scratched areas estimate a film 
thickness of about 20 nm, assuming that the lower surface is 
mica. This was verified using other complementary data (the 
phase images not shown here).

Fig. 6 shows the AFM topographic images of Ca2AlCl-LDH 
films deposited on mica before and after the deposition of 
tyrosinase. After tyrosinase immobilisation (Fig. 6b and d), 
obvious transformations are observed on the film topography. 
The aggregates of the tyrosinase film are more massive and 
cause a change in the image contrast. The roughness and the 
thickness increase also notably, being estimated (using the 
scratching method, data not shown) to around 10 and 40 nm, 
respectively. These data confirm the modification of Ca2AlCl-
LDH films, validating the presence of the tyrosinase and the 
functionnalization procedure. The same protocol deposition 
conditions were afterwards applied to the AuSPE surface.

C. Electrochemical Characterization

Electrochemical properties resulting from the different 
AuSPE modification steps were first analyzed by cyclic 
voltammetry (CV) in order to confirm previous results 
observed by AFM. CV curves shown in Fig. 7 illustrate the 
presence of two redox peaks at 0.06V and 0.18V assigned to
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Fig. 7. CV curves of (a) nude AuSPE; (b) AuSPE modified by the depo-
sition of the Ca2AlCl-LDH film; (c)AuSPE modified by the 
immobilization of tyrosinase on the Ca2AlCl-LDH film. Experiments 
were carried out in PBS containing the Fe(II)/Fe(III) couple (0.03mM), at 
room temperature.

the Fe(CN)−3/−4
6 couple [11]. They also show that the pres-

ence of the LDH film amplifies the current of the redox peaks,
whereas its functionnalization by the enzyme reduces its inten-
sity of the current and modifies the CV shape. These results
in agreement with previous work in litterature [12] and [13]
confirm the deposition of Ca2AlCl-LDH/ tyrosinase hybrid
film onto the electrode surface and the well conformation of
the immobilized enzyme for polyphenol catalysis.

After this first step, detection of polyphenols was studied.
When adding different volumes of polyphenols, the enzymatic
reaction [14] between tyrosinase and polyphenols mole-
cules starts: firstly polyphenols are enzymatically oxidized in
o-diphenols; secondly, these compounds are oxidized by
tyrosinase in o-quinones; at last, o-quinones are electrochem-
ically reduced at the active surface, the all process being
schematized by the following equation where Tyr represents
tyrosinase:

polyphenol
T yr−→ ...

T yr−→ o − quinone
Red .−→ o − di phenol

Fig. 8 shows the amperometric response of Ca2AlCl-LDH/
tyrosinase biosensor to polyphenols at −0.2V. This potential 
value is assigned to the reduction on the electrode surface 
of o-quinones species generated by tyrosinase, as previously 
mentioned [14]–[16]. Successive amounts of polyphenols were 
added in PBS, with final concentrations ranging from 0 to 
2000 ng/mL. Each adding was separated by 100 s or 200 s 
respecting the stability of the current. The response of the 
biosensor was fast (Fig. 8a), since after adding the first volume 
of polyphenols (at time =100 s), 95% of the current transition 
occurs after less than 2 s.

The corresponding calibration curve presented in Fig. 8b 
gives the absolute value of the current variation δI= |Im-I0| at a 
potential of −0.2V, where I0 and Im are the currents measured 
in the absence of polyphenol or in their presence at a given 
concentration, respectively, versus polyphenol concentration, 
in logarithmic scale.

The variation of the current intensity seems to increases
linearly with polyphenol concentration within the range

Fig. 8. a) Amperometric response of Ca2AlCl-LDH/tyrosinase biosen-
sor to polyphenols successive additions in the concentration range 
of 0.01–1000 ng/mL in PBS. b) Calibration curve corresponding to 
two additions per decade. The error bars are determined from five 
measurements.

0.01–1000 ng/mL (or 2.4 10−5 − 2.4 μM, taking into account
a mean molecular mass of 415 g.mol−1 estimated from mean
molecular masses of polyphenols present in green tea and
their respective amounts [17]), as shown by corresponding
calibration curve.

The biosensor is characterized by a high sensitivity
of 1.5 μA/ng·mL−1 and a low limit of detection of 0.5 pg/mL
(1.2 pM) estimated using the standard deviation method.

To characterize the kinetic relation between enzyme and
substrate we used the graphical method of “Lineweaver
Burk” [27]. In our case, the equation is:

1

I
=

(
Km

Imax

) (
1

[polyphenols]

)
+ 1

Imax

At −0.2 V, the graph giving the inverse of the current as 
a function of the inverse of the polyphenols concentration is 
linear (Fig. 9). This curve gives the apparent constant of 
Michaelis-Menten Km (estimated here to 21.0 μM) and the 
maximum value of detected current Imax (−26.3μA).

The obtained Km value is compatible with the most reported 
Km values in the case of immobilized tyrosinase on biosensor 
surfaces [14], [28]–[32]. This value indicates that the substrate 
concentration localized at the active surface of the biosensor 
is more important than in solution [31], leading to a good 
sensibility. At last, Fig. 9 suggests that the concentration range 
where the biosensor response is linear is slightly narrower than 
the range determined from calibration curve (Fig. 8b), since 
current saturates at a concentration of 1000 ng/mL.
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Fig. 9. Lineweaver Burk representation of the degradation reac-
tion of polyphenols by the tyrosinase-enzyme immobilized on the
AuSPE/Ca2AlCl system. The error bars are determined from five mea-
surements.

Fig. 10. Study of the lifetime of the AuSPE/Ca2AlCl/tyrosinase 
biosensor stored in PBS at 4 °C by following the relative sensitivity 
(ratio between the measured sensitivity and the initial one as reference) 
at a potential of −0.2V with time. Error bars are determined from five 
measurements.

In the end, the stability and the repeatability of the biosensor 
were studied (Fig. 10).

One test (on the complete concentration range) per day has 
been done for five consecutive days, and then every 5 days, 
for 25 to 30 days. Samples were kept in PBS at 4 °C between 
each test. Fig. 10 shows that our biosensor is characterized by 
a high stability, since it retains 90 % and 60 % of its original 
response after 20 days and one month, respectively.

Finally, our results prove that the biosensor built in this
work is highly competitive with previous ones already reported
for tyrosinase-based systems. Indeed, our biosensor is char-
acterized by a linear range of 0–2.4 μM, leading to the
conclusion that it is particularly well-adapted to the detection
of low concentrations, whereas typical limits of detection and

linear ranges usually range from nM to hundreds of μM in
the case of tyrosinase-baed biosensors. In the context of tea
polyphenol detection, our maximal concentrations for a linear
biosensor response are also coherent with those obtained in
tea decoctions, which are around 2–5μM [14], [15], [18]–[25],
[29]–[31], [33]–[37].

IV. CONCLUSION

This work, benefiting from complementary methods, shows
the efficiency of Ca2 AlCl-LDH for tyrosinase immobilization,
since the immobilized enzyme maintains its activity and func-
tionality. Ca2 AlCl-LDH is thus an appropriate host matrix
for tyrosinase immobilization on solid supports. The resulting
biosensor shows remarkable properties such as high sensitivity
within a dynamic concentration range of [0–2.4μM], a very
low limit of detection (LOD) of 1.2 pM and 3 weeks stability.
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