
HAL Id: hal-01697331
https://hal.science/hal-01697331v1

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Normalized cuts for predominant melodic source
separation

Mathieu Lagrange, Luis Gustavo Martins, Jennifer Murdoch, George
Tzanetakis

To cite this version:
Mathieu Lagrange, Luis Gustavo Martins, Jennifer Murdoch, George Tzanetakis. Normalized cuts for
predominant melodic source separation. IEEE/ACM Transactions on Audio, Speech and Language
Processing, 2008, 16 (2). �hal-01697331�

https://hal.science/hal-01697331v1
https://hal.archives-ouvertes.fr


JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 1

Normalized Cuts for Predominant Melodic Source
Separation

Mathieu Lagrange, Member, IEEE, Luis Gustavo Martins, Jennifer Murdoch, Student Member, IEEE,
and George Tzanetakis, Member, IEEE

Abstract— The predominant melodic source, frequently the
singing voice, is an important component of musical signals.
In this paper we describe a method for extracting the pre-
dominant source and corresponding melody from “real-world”
polyphonic music. The proposed method is inspired by ideas
from Computational Auditory Scene Analysis. We formulate
predominant melodic source tracking and formation as a graph
partitioning problem and solve it using the normalized cut
which is a global criterion for segmenting graphs that has
been used in Computer Vision. Sinusoidal modeling is used as
the underlying representation. A novel harmonicity cue which
we term Harmonically Wrapped Peak Similarity is introduced.
Experimental results supporting the use of this cue are presented.
In addition we show results for automatic melody extraction using
the proposed approach.

Index Terms— AUD CONT,AUD SSEN (EDICS), music infor-
mation retrieval, computational auditory scene analysis, sinu-
soidal modeling, normalized cut

I. INTRODUCTION

THE voice and melodic characteristics of singers are some
of the primary features of music to which listeners relate

to. Most listeners, independently of their music education, are
capable of identifying specific singers even in recordings they
have not heard before. In addition, especially in pop and rock
music the singing voice carries the main melodic line that can
be used to identify a particular song of interest.

Music Information Retrieval (MIR) is a field that has been
rapidly evolving over the past few years. It encompasses a
wide variety of ideas, algorithms, tools, and systems that
have been proposed to handle the increasingly large and
varied amounts of musical data available digitally. Typical
MIR systems for music signals in audio format represent
statistically the entire polyphonic sound mixture [1], [2]. There
is some evidence that this approach has reached a “glass
ceiling” [3] in terms of retrieval performance.

One obvious direction for further progress is to attempt to
individually characterize the different sound sources compris-
ing the polyphonic mixture. The singing voice is arguably
one of the most important of these sources and its separation
and characterization of the singing voice has a large number
of applications in MIR. Most existing query-by-humming
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systems [4], [5] can only retrieve songs from a database
containing music in symbolic format. By performing pitch
extraction on the extracted voice signals, it is possible to
perform query-by-humming in databases of audio signals.
Another potential application is singer identification that is
independent of the instrumentation or the “album” effect [6].
Other possible applications include automatic accompaniment,
music transcription, and lyrics alignment.

There has been limited work on singing voice separation
from monaural recordings. Many existing systems require
predominant pitch detection in order to perform separation
[7] or rely on prior source models [8]. Other approaches are
based on statistical methods such as Independent Component
Analysis (ICA) and Non-Negative Matrix Factorization (NMF)
[9]. The non-stationarity of the singing voice and music signals
as well as their heavy computational requirements are some of
the challenges of applying statistical methods to this problem.
Another related research area is predominant pitch estimation
and melody transcription in polyphonic audio [10] in which
only the pitch of the predominant melody or singing voice is
estimated.

In contrast, our approach attempts to directly separate the
prominent melodic source without first estimating the pre-
dominant pitch based on basic perceptually-inspired grouping
cues inspired by ideas from Auditory Scene Analysis [11]. A
separation of the leading voice is achieved by this approach
since the singing voice (if any) is usually the most prominent
source of the mixture. A description of an earlier version of the
algorithm and some of the experiments described in section
III-B appear in [12].

A fundamental characteristic of the human hearing system
is the ability to selectively attend to different sound sources
in complex mixtures of sounds such as music. The goal
of computational auditory scene analysis (CASA) [13] is to
create computer systems that can take as input a mixture of
sounds and form packages of acoustic evidence such that each
package most likely has arisen from a single sound source.
Humans use a variety of cues for perceptual grouping in hear-
ing such as similarity, proximity, harmonicity and common
fate. For example, sound components that change frequency
by the same amount are more likely to be grouped together
as belonging to the same sound source (common fate) than
if they are changing independently. As another example, two
notes played by the same type of instrument are more likely
to be grouped together than two notes played on different
instruments (similarity). An excellent overview of the current
state of the art in CASA is provided in [14].
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Many of the computational issues of perceptual grouping
for hearing are still unsolved. In particular, considering the
several perceptual cues altogether is still an open issue [15],
[16]. We propose in this paper to cast this problem into a
graph cut formulation using the normalized cut criterion. This
global criterion for graph partitioning has been proposed for
solving similar grouping problems in computer vision [17].

The normalized cut is a representative example of spectral
clustering techniques which use an affinity matrix to encode
topological knowledge about a problem. Spectral clustering
approaches have been used in a variety of applications includ-
ing high performance computing, web mining, biological data,
image segmentation and motion tracking.

To the best of our knowledge there are few applications
of spectral clustering to audio processing. It has been used
for the unsupervised clustering of similar sounding segments
of audio [18], [19]. In these approaches, each audio frame
is characterized by a feature vector and a self-similarity
matrix across frames is constructed and used for clustering.
This approach has also been linked to the singular value
decomposition of feature matrices to form audio basis vectors
[20]. These approaches characterize the overall audio mixture
without using spectral clustering to form and track individual
sound sources.

Spectral clustering has also been used for blind one-
microphone speech separation [21], [22]. Rather than building
specific speech models, the authors show how the system
can separate mixtures of two speech signals by learning the
parameters of affinity matrices based on various harmonic and
non-harmonic cues. The entire STFT magnitude spectrum is
used as the underlying representation.

Closer to our approach, harmonicity relationships and com-
mon fate cues underlie a short-term spectra-based similarity
measure presented by Srinivasan [23]. To integrate time con-
straints, it is alternatively proposed in [24] to cluster previously
tracked partials to form auditory “blobs” according to onset
cues. Normalized cut clustering is then carried out on these
blobs. In contrast, a short-term sinusoidal modeling framework
is used in our approach. It results in more accurate and robust
similarity relations as well as significantly smaller affinity
matrices that are computationally more tractable.

Sinusoidal modeling is a technique for analysis and syn-
thesis whereby sound is modeled as the summation of sine
waves parameterized by time-varying amplitudes, frequencies
and phases. In the classic McAulay and Quatieri method [25],
these time varying quantities are estimated by performing a
short-time Fourier transform (STFT) and locating the peaks
of the magnitude spectrum. Partial tracking algorithms track
the sinusoidal parameters from frame to frame, and determine
when new partials begin and existing ones terminate [26]. If
the goal is to identify potential sound sources then a separate
stage of partial grouping is needed. Typically grouping cues
such as common onsets and spectral proximity are used.

In this paper we use the term sound source tracking and for-
mation to refer to these two processes of connecting peaks over
time to form partials (tracking) and grouping them to form
potential sound sources (formation). They roughly correspond
to the sequential and simultaneous aspects of organization

described by Bregman [11]. Although frequently implemented
as separate stages as in [23], [24], these two organizational
principles directly influence one another. For example, if we
have knowledge that a set of peaks belong to the same source,
then their correspondence with the next frame is easier to find.
Similarly, the formation of sound sources is easier if peaks can
be tracked perfectly over time. Methods that apply these two
stages in a fixed order tend to be brittle as they are sensitive
to errors and ambiguity.

To cope with this chicken-and-egg problem, we show how
both sound source tracking and formation can be jointly
optimized within a unified framework using the normalized
cut criterion. We model the problem as a weighted undirected
graph, where the nodes of the graph are the peaks of the mag-
nitude spectrum and an edge is formed between each pair of
nodes. The edge weight is a function of the similarity between
nodes and utilizes various grouping cues such as frequency,
amplitude proximity and harmonicity. We also propose a novel
harmonicity criterion that we term Harmonically Wrapped
Peak Similarity (HWPS), that is described in section II-D.
Clustering is performed in the same way for all peaks within a
longer “texture window” independently of whether they belong
to the same frame or not. The resulting algorithm can be used
to separate the singing voice or predominant melody from
complex polyphonic mixtures of “real-world” music signals.
The algorithm is computationally efficient, causal, and real-
time. Another important aspect of our method is that it is
data-driven, without requiring a priori models of specific sound
sources as many existing approaches to separation do [15].

The remainder of the paper is organized as follows. In
the next section, singing voice tracking and formation is
formulated as a spectral clustering problem using sinusoidal
peaks as the underlying representation. Using this formulation
several perceptual grouping criteria such as amplitude proxim-
ity, frequency proximity and harmonicity are integrated into a
unified framework. Section III describes experimental results
demonstrating the potential of the proposed algorithm as a
front end for MIR tasks, and conclusions are given in Section
IV.

II. SINGING VOICE FORMATION AND TRACKING USING
THE NORMALIZED CUT

A. System Overview

In this section we provide an overview of our proposed
method and define the terminology used in the remainder of
this article. Figure 1 shows a block diagram of the process;
each step of the process is described in more detail in the
following subsections. The following terms are important for
understanding these descriptions.

• Frames or analysis windows are used to estimate sinu-
soidal peaks from the complex spectrum computed using
a Short Time Fourier Transform. For the experiments
described in this paper a frame size corresponding to 46
ms and a hop size of 11 ms are used.

• Peaks are the output of the sinusoidal modeling stage. For
each frame, a variable number of peaks corresponding to
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Fig. 1. Block-diagram of the voice segregation chain.

the local maxima of the spectrum are estimated. Each
peak is characterized by amplitude, frequency and phase.

• Texture windows correspond to an integer number of
frames. Clustering of peaks across both frequency and
time is performed for each texture window rather than
per frame. For the experiments described in this paper a
texture window corresponding to 10 frames (≈ 150 ms)
is used.

• Similarity cues are used to calculate the similarity be-
tween sinusoidal peaks belonging to the same texture
window. These cues are inspired by perceptual grouping
cues [11] such as amplitude and frequency proximity, and
harmonicity.

• The similarity or affinity matrix is calculated by con-
sidering the similarity of every peak to every peak within
a texture window. Hence, the similarity matrix represents
the similarity between peaks within the same frame
(simultaneous integration) and across time (sequential
integration) within the “texture window”.

• Clusters are groups of peaks that are likely to orig-
inate from the same sound source. By approximately
optimizing the normalized cut criterion, the overall peak
similarity within a cluster is maximized and the similarity
between clusters is minimized. The audio corresponding
to any set of peaks (one or more clusters) can be
conveniently resynthesized using a bank of sinusoidal
oscillators.

• Source Formation is the process of approximately recon-
structing a particular sound source from a decomposition
of the polyphonic mixture.

B. Sinusoidal Modeling

Sinusoidal modeling aims to represent a sound signal as
a sum of sinusoids characterized by amplitudes, frequencies,
and phases. A common approach is to segment the signal into
successive frames of small duration so that the parameters can
be considered as constant within the frame. The discrete signal

xk(n) at frame index k is then modeled as follows:

xk(n) =
Lk∑
l=1

ak
l cos

(
2π

Fs
fk

l · n + φk
l

)
(1)

where Fs is the sampling frequency, φk
l is the phase at

the beginning of the frame of the l-th component of Lk

sinusoids, and fk
l and ak

l are respectively the frequency and the
amplitude. Both are considered as constant within the frame.

For each frame k, a set of sinusoidal parameters Sk =
{pk

1 , · · · , pk
Lk} is estimated. The system parameters of this

Short-Term Sinusoidal (STS) model Sk are the Lk triplets
pk

l = {fk
l , ak

l , φk
l }, often called peaks. These parameters can

be efficiently estimated by picking some local maxima from
a Short-Term Fourier Transform (STFT).

We further improve the precision of these estimates by
using phase-based frequency estimators which utilize the re-
lationship between phases of successive frames [27], [28],
[29]. Assuming that the frequencies of the pseudo-periodic
components of the analysed signal are constant during the
time-interval between two successive short-term spectra, with
a hop size of H samples, the frequency can be estimated from
the phase difference:

ω̂ =
1

2πH
∆φ (2)

The smaller the hop size the more accurate is this assump-
tion. We consider two successive short-term spectra separated
by one sample. The frequency is estimated directly from the
phase difference ∆φ ensuring that the phase is unwrapped so
that the difference is never negative. The resulting estimator,
known as the difference estimator, is:

fk
l =

Fs

2π
(∠S[ml, nk + 1]− ∠S[ml, nk])unwrap (3)

where ∠S denotes the phase of the complex spectrum S, ml

is the frequency bin index of the peak pk
l within the spectrum,

and nk is the index of the first sample of analysis frame k. The
frame index k is omitted in the remainder of this subsection.
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During the analysis of natural sounds, presence of several
frequency components in the same spectral bin or noise may
lead to incoherent estimates. If the frequency fl of a local
maximum located at bin ml is closer to the frequency of
another bin, the local maximum should have been located
at this bin. Therefore, a local maximum with an estimated
frequency that does not satisfy the following condition is
discarded: |N/Fs · fl −ml| ≤ 0.5.

Since that the power spectrum of an ideal sinusoid signal
has the shape of the power spectrum of the analysis window,
centered around the sinusoid frequency, the increase of fre-
quency precision can be used to estimate more precisely the
amplitude:

al = 2
|S[ml]|

|WH(fl −ml Fs/N)|
(4)

where |S[ml]| is the magnitude of the complex spectrum,
WH(f) is the spectrum of the Hann window used for the STFT
computation, f being the frequency in Hz. These more precise
estimates of frequency and amplitude parameters are important
for calculating more accurate similarity relations between
peaks. Other frequency estimation methods can also be used,
such as parabolic interpolation [30] or subspace methods [31].
The importance of more precise frequency estimation for our
method compared to the basic approach of directly converting
the FFT frequency bin number to frequency is explored in
some of the experiments in Section III.

Sinusoidal modeling is particularly suited for sustained
sounds with a definite pitch and harmonic structure such as the
vowels of a singing voice. Consonants can still be represented
but require a large number of sinusoidal components to be
represented accurately [25]. Vowels in singing voices tend
to last much longer than in speech therefore in practice
a sinusoidal model can capture most of the singing voice
information that is useful for MIR applications such as the
melodic line and the timbral characteristics.

C. Grouping Criteria

In order to simultaneously optimize partial tracking and
source formation we construct a graph over each “texture”
window. Unlike approaches based on local information [25],
we utilize the global normalized cut criterion to partition the
graph over the entire “texture” window. Edges are formed
both for peaks within a frame and peaks across frames. Each
partition is a set of peaks that are grouped together such
that the similarity within the partition is maximized and the
similarity between different partitions is minimized. If Lk is
the number of peaks in frame k, then the number of peaks
in a “texture” window is T resulting in a similarity matrix of
size T ∗ T :

T =
∑

k

Lk (5)

The maximum Lk used in our experiments is set to 20.
By picking the highest amplitude peaks of the spectrum,
we usually achieve fair resynthesis quality using a small
number of sinusoids per frame with a significant savings in
computation time. For example if the entire STFT spectrum

TABLE I
HARMONIC SOURCES USED FOR FIGURES 2, 3, 4, 5

A0 A1 A2 A3 A4,B3 B0 B1 B2 B4
f 440 880 1320 1760 2200 550 1100 1650 2750
a .8 .8 .6 .4 .4 1 .8 .6 .4

is used as in Bach [21] the similarity matrix for 10 analysis
frames of 512 samples would have a size of 5120 * 5120
whereas in our case would be have a maximum possible size
of 200 * 200.

In a first approach, the edge weight connecting two peaks
pk

l and pk+n
m depends on both frequency Wf and amplitude

Wa proximity (k is the frame index and l,m are peak indices,
n ∈ {0 . . . N − 1} is the frame offset between the peaks, and
N is the “texture” window size; n = 0 is used for peaks of
the same frame):

Wfa(pk
l , pk+n

m ) = Wf (pk
l , pk+n

m ) ∗Wa(pk
l , pk+n

m ) (6)

We use radial basis functions (RBFs) to model the frequency
and amplitude similarities:

Wfa(pk
l , pk+n

m ) = e
−
(

fk
l −fk+n

m
σf

)2

∗ e
−
(

ak
l −ak+n

m
σa

)2

(7)

The standard deviations of frequencies and amplitudes are
calculated separately for each texture window. For these two
similarities the amplitudes are measured in Decibels (dB) and
the frequencies are measured in Barks (approximately linear
below 500 Hz and logarithmic above). Amplitude and fre-
quency cues are not enough for multiple overlapping harmonic
sound sources. In the following subsection we describe a
harmonic similarity measure between peaks that works well
for these cases.

D. Harmonically Wrapped Peak Similarity

A wide variety of sounds produced by humans are harmonic,
from singing voice and speech vowels, to musical sounds.
As a result the harmonicity cue has been widely studied. As
explained by de Cheveigné in [14] for the case of multiple
fundamental frequency estimation, most approaches use an
iterative method whereby the fundamental frequency of the
dominant source is identified and then used to remove the
corresponding source from the mixture. Few studies have
focused on the identification of harmonic relations between
peaks without any prior fundamental frequency estimation.

The goal is to define a similarity measure between two
frequency components (peaks) that is high for harmonically
related peaks and low for peaks that are not harmonically
related. Most existing approaches [32], [23], [33], [34] use
the mathematical properties of the harmonically related fre-
quencies to build such a similarity measure for a single frame.
For example, Virtanen [32] considers whether the ratio of the
frequencies of the components is a ratio of small positive
integers, while Martins [34] selects peaks that are equally far
apart in frequency to form harmonic clusters.
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Fig. 2. Two sets of harmonically related peaks (same data as Table I). Used
for Figures 3,4,5.

There are several issues concerning these approaches, both
from the technical and perceptual points of view. First, these
type of measures can not be safely considered for peaks
belonging to different frames, which is a strong handicap
for our application. The reason of this restriction is that the
fundamental frequency of the source can change across frames.
Secondly, these mathematical conditions are not sufficient to
determine whether two peaks are part of an harmonic source.
From a perceptual point of view, two peaks are close on
the ”harmonic” axis if these peaks belong to a perceptible
compound of harmonically-related peaks in the spectrum.
This fact perhaps explains why most separation algorithms
first attempt to identify the pitch of the sounds within the
mixture by considering the spectral information globally, and
then assign frequency components to each estimated pitch. In
contrast, our proposed similarity measure works reasonably
well without estimating the underlying pitch.

To address these problems, we introduce a new similarity
measure that we term Harmonically Wrapped Peak Similarity
(HWPS). The main goal of the HWPS measure is to take ad-
vantage of the flexibility of an harmonically-related similarity
between peaks that not only considers each peak in isolation
but also the entire spectral information associated with the
remaining peaks. This measure can be used both for peaks
within the same frame and among peaks of different frames.

The basic mechanism behind the HWPS measure is to
assign each peak a spectral pattern. The pattern captures
information about the spectrum in relation to the specific
peak. The degree of matching between two spectral patterns
is used as a similarity measure between the two peaks thus
utilizing more spectral information than just the amplitude
and frequency of the two peaks. As the spectral pattern of
a peak might shift when changing frames and contains peaks
belonging to multiple harmonic sources we use a harmonically
wrapped frequency space to align the two spectral patterns
corresponding to the peaks. The goal is that the similarity
between peaks belonging to the “same” harmonic complex
is higher than the similarity of peaks belonging to different
harmonic complexes. The three steps of this process are
described below in more detail:

Shifted Spectral Pattern: Our approach relies on a descrip-
tion of the spectral content using estimates of the frequency
and amplitude of local maxima of the power spectrum, i.e. the
peaks. We therefore propose to assign to each peak, pk

l (l is the
peak index, and k is the frame index), a given spectral pattern,
F̃ k

l , based on the set of frequencies (in Hz), F k
l = {fk

i },
shifted within the frame k as follows:

F̃ k
l = {f̃k

i |f̃k
i = fk

i − fk
l ,∀i ∈ [1, Lk]} (8)

where Lk is the highest peak index of frame k.
The spectral pattern is essentially a shift of the set of peak

frequencies such that the frequency of the peak corresponding
to the pattern maps to 0 (when i is equal to l). One can
easily see that two peaks of different frames modeling the
same partial will have roughly similar spectral patterns under
the assumption that the spectral parameters evolve slowly with
time. This spectral pattern forms a peak-specific view of the
spectral content which is used to calculate a pitch invariant
representation using a wrapped frequency space as described
in the following subsection. The top graphs of Figures 3 and
4 show overlaid peak-specific spectral patterns for two pairs
of peaks from the harmonic mixture of Figure 2.

Wrapped Frequency Space: To estimate whether two peaks
pk

l and pk+n
m belong to the same harmonic source, we propose

to measure the correlation between the two spectral patterns
corresponding to the peaks. To achieve this, we would like
to transform the peak-specific spectral patterns in such a way
that when the peaks under consideration belong to the same
harmonic complex the correlation is higher than when they
belong to different harmonic sources. In order to achieve this
the following operations are performed: the energy distribution
of an harmonic source along the frequency axis can be seen as
a cyclic unfolding with periodicity equal to the fundamental
frequency of the source. To concentrate these energies as much
as possible before correlating them, we propose to wrap the
frequencies of each spectral pattern as follows:

f̂k
i = mod

(
f̃k

i

h
, 1

)
(9)

where h is the wrapping frequency function and mod is the real
modulo function. This wrapping operation would be perfect
with the prior knowledge of the fundamental frequency. With
this knowledge we can parametrize the wrapping operation
with:

h = min(f0k
l , f0k+n

m ) (10)

where f0k
l is the fundamental frequency of the source of the

peak pk
l . Without such prior, we consider a conservative ap-

proach which tends to over estimate the fundamental frequency
with:

h′ = min(fk
l , fk+n

m ) (11)

Notice that the value of the wrapping frequency function h
is the same for both patterns corresponding to the peaks un-
der consideration. Therefore the resulting wrapped frequency
spectra will be more similar if the peaks belong to the same
harmonic source. The resulting wrapped frequency spectra are
pitch invariant and can be seen in the middle plot of Figures 3
and 4.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 6

−500 0 500 1000 1500 2000 2500
0

1

2

Frequency (Hz)

A
m

pl
itu

de

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

Harmonically Wrapped Frequency

A
m

pl
itu

de

−0.2 0 0.2 0.4 0.6 0.8 1 1.2
0

2

4

Harmonically Wrapped Frequency

A
m

pl
itu

de

Fig. 3. HWPS calculation for peaks A0 ♦ and A1 ∗, from Figure 2. From
top to bottom: Shifted Spectral Pattern, Harmonically-Wrapped Frequency and
Histogram of Harmonically-Wrapped Frequency. Notice the high correlation
between the two histograms at the bottom of the figure.

Discrete Cosine Similarity: The last step is now to cor-
relate the two harmonically wrapped spectral patterns (F̂ k

l

and F̂ k+n
m ) to obtain the HWPS measure between the two

corresponding peaks. This correlation can be done using an
algorithmic approach as proposed in [35], but this was found
not to be reliable or robust in practice. Alternatively, we pro-
pose to discretize each harmonically wrapped spectral pattern
into an amplitude weighted histogram, Hk

l , corresponding to
each spectral pattern F̂ k

l . The contribution of each peak to
the histogram is equal to its amplitude and the range between
0 and 1 of the Harmonically-Wrapped Frequency is divided
into 20 equal-size bins. In addition, the harmonically wrapped
spectral patterns are also folded into an octave to form a pitch-
invariant chroma profile. For example, in Figure 3, the energy
of the spectral pattern in wrapped frequency 1 (all integer
multiples of the wrapping frequency) is mapped to histogram
bin 0.

The HWPS similarity between the peaks pk
l and pk+n

m is
then defined based on the cosine distance between the two
corresponding discretized histograms as follows:

Wh(pk
l , pk+n

m ) = e

(
c(Hk

l ,Hk+n
m )√

c(Hk
l

,Hk
l

)·c(H
k+n
m ,H

k+n
m )

)2

(12)

where

c(Hb
a,Hd

c ) =
∑

i

Hb
a(i) ∗Hd

c (i). (13)

One may notice that due to the wrapping operation of
Equation 9, the size of the histograms can be relatively small
(around 20), thus saving computational time.

To illustrate this, let us consider the case of the mixture
of two pitched sound sources, A and B, each composed of 4
harmonics with fundamental frequencies of 440 Hz and 550
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Fig. 4. HWPS calculation for peaks A1 ♦ and B1 ∗, from Figure 2. From
top to bottom: Shifted Spectral Pattern, Harmonically-Wrapped Frequency
and Histogram of Harmonically-Wrapped Frequency. Notice the lack of
correlation between the two histograms at the bottom of the figure.

Hz respectively, as presented in Table I and Figure 2. For
the experiments, random frequency deviations of a maximum
of 5 Hz are added to test the resilience of the algorithm
to frequency estimation errors. If we consider two peaks of
the same source A0 and A1, the quantized version of the
harmonically-wrapped sets of peaks are highly correlated, as
can be seen in the bottom of Figure 3. On the other hand,
if we consider two peaks of different sources, A1 and B0,
the correlation between the two discretized histograms is low
(see Figure 4). The correlation between two histograms of
harmonically related peaks still works (although to a lesser
extent) if instead of using the true fundamental f0 as the
wrapping frequency we use any harmonic of it.

Figure 5 (left) shows a HWPS similarity matrix computed
among the peaks of two overlapping harmonic sounds within
a frame (also shown in Figure 2) with perfect knowledge
of the fundamental frequency for each peak respectively. As
can be seen clearly from the figure, the similarity is high
for pairs of peaks belonging to the same source and low for
pairs belonging to different sources. Figure 5 (right) shows
the HWPS similarity matrix computed among the peaks of
the same two overlapping harmonic sounds within a frame
using the conservative approach to estimate the wrapping
frequency (basically considering the lower peak as the “wrap-
ping” frequency). As can be seen from the figure, although the
similarity matrix on the right is not as clearly defined as the
one on the left, it still clearly shows higher values for pairs of
peaks belonging to the same sound source.

E. Spectral Clustering and the Normalized Cut Criterion

The normalized cuts algorithm, presented in [17], aims to
partition an arbitrary set of data points into n clusters. The
data set is modeled as a complete weighted undirected graph
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Fig. 5. Harmonically-Wrapped Peak Similarity (HWPS) matrix for two har-
monic sources using the correct f0 estimates (left), and using the conservative
estimate of wrapping frequency (likely a harmonic of the “true” f0) (right).
High similarity values are mapped to black and low similarity values to white.

G = (V, E), the nodes V representing the data points and each
edge E weight, w(i, j), representing the relative similarity
between the two nodes i and j. The graph is represented
internally by an affinity matrix, W , that specifies all edge
weights. The partitioning is achieved by recursively dividing
one of the connected components of the graph into two until
n complete components exist. The formulation of the Ncut
measure addresses the bias towards partitioning out small sets
of isolated nodes in a graph which is inherent in the simpler
minimal cut disassociation measure (cut) between two graph
partitions A,B:

cut(A,B) =
∑

u∈A,v∈B

w(u, v) (14)

The criterion that is minimized in order to establish the
optimal partitioning at any given level is the normalized cut
disassociation measure (Ncut):

Ncut(A,B) =
cut(A,B)
asso(A, V )

+
cut(A,B)

asso(B, V )
(15)

where asso(X, V ) =
∑

u∈X,t∈V w(u, t) is the total of the
weights from nodes in cluster X to all nodes in the graph. An
analogous measure of the association within clusters is the
following (Nasso):

Nasso(A,B) =
asso(A,A)
asso(A, V )

+
asso(B,B)
asso(B, V )

(16)

where asso(X, X) is the total weight of edges connecting
nodes within cluster X . We note the following relationship
between Ncut and Nasso:

Ncut(A,B) = 2− Nasso(A,B) (17)

Hence, the attempt to minimize the disassociation between
clusters is equivalent to maximizing the association within
the clusters. The hierarchical clustering of the data set via
the minimization of the Ncut measure, or the equivalent
maximization of the Nasso measure may be formulated as
the solution to an eigensystem. In particular, [17] show that
the problem is equivalent to searching for an indicator vector
y such that yiε{1, b} depending on which of the two sub-
partitions node i is assigned and b is a function of the sum
of total connections of the nodes. By relaxing y to take on

real values, we can find a partition that minimizes the Ncut
criterion by solving the generalized eigenvalue system:

(D−W)y = λDy (18)

where D is a N × N diagonal matrix with each element
of the diagonal d(i) being the total connection from node i
to all other nodes d(i) =

∑
j w(i, j), and W is a N × N

symmetrical matrix containing the edge weights. As described
in Shi and Malik [17] the second smallest eigenvector of the
generalized eigensystem of equation (18) is the real valued
solution to the Normalized Cut minimization. For discretizing
the eigenvectors to produce indicator vectors we search among
l evenly spaced splitting points within the eigenvector for
the one that produces a partition with the best (i.e. smallest)
Ncut(A,B) value. The graph is recursively sub-divided as
described above until n clusters of peaks have been extracted.

One of the advantages of the normalized cut criterion for
clustering over clustering algorithms such as K-means or mix-
tures of Gaussians estimated by the EM algorithm is that there
is no assumption of convex shapes in the feature representa-
tion. Furthermore, the divisive nature of the clustering does not
require a priori knowledge of the number of output clusters.
Finally, compared to point based clustering algorithms such
as K-means, the use of an affinity matrix as the underlying
representation enables expression of similarities that can not be
computed as a distance function of independently calculated
feature vectors. The Harmonically Wrapped Peak Similarity
measure proposed in this paper and described in section II-D,
is an example of such as a similarity measure.

F. Cluster Selection

Among the several clusters, Ci, identified using the nor-
malized cut clustering for each texture window, we want to
select the cluster that most likely contains the voice signal.
The proposed approach is straightforward and does not rely on
any prior knowledge of the voice characteristics. This criterion
is therefore more general and may apply to the selection of
any predominant harmonic source.

A cluster of peaks corresponding to a predominant harmonic
source should be dense in the feature space in which we
compute similarities. The reason is that peaks belonging to a
prominent harmonic audio source have more precise parameter
estimates and therefore comply better to the implicit model
expressed by the various similarity functions. The peaks of
a prominent source will therefore tend to be more similar
(mostly in terms of harmonicity) to peaks belonging to the
same source than to other sources. Thus, the intra-cluster
similarities should be high for this particular cluster. Let us
consider a cluster of peaks Pc of cardinality #Pc defined as
the set of peaks whose Ncut label is c:

Pc = {pk
m|label(pk

m) = c} (19)

We then consider the density criterion:

d(Pc) =
1

#Pc
2

∑
pk

l ∈Pc

∑
pj

m∈Pc

Wfah(pk
l , pj

m) (20)
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TABLE II
SDR VALUES FOR OLD+NEW EXPERIMENTS

XN XS VN VS CN CS
A+F 12.87 9.33 10.11 7.67 2.94 1.52

A+F+H 13.05 9.13 11.54 7.69 3.01 2.09

where k, j are the frame indices within the texture window and
l, m are respectively the peak indices within the frames k and
j. The function Wfah refers to the overall similarity weight
that takes into account frequency, amplitude, and harmonicity.
It is the product of the corresponding weights:

Wfah(pl, pm) = Wf (pl, pm)∗Wa(pl, pm)∗Wh(pl, pm) (21)

For the experiments described in section III we computed 3
clusters for each texture window and selected the two clusters
with the highest density as the ones corresponding to the voice
signal. The peaks corresponding to the selected clusters are
used to resynthesize the extracted voice signal using a bank
of sinusoidal oscillators.

III. EXPERIMENTAL EVALUATION

The main goal of the experiments described in the following
subsections is to demonstrate the potential of the proposed
method. The algorithm is efficient and requires no training or
prior knowledge. The source code of the algorithm is available
as part of Marsyas, a cross-platform open source software
framework for audio analysis and synthesis1. We hope that
making the algorithm publicly available will encourage other
researchers to use it and experiment with it. We have also made
available on a website2 more information about the method
(such as MATLAB code for the HWPS calculation), as well
as the audio datasets described in this section.

A. Corpus description and experimental setup

Three datasets were used for the experiments. The first
dataset was used for tuning the algorithm and the evaluation
of the HWPS similarity cue described in subsection III-
B. It consists of synthetically-created mixtures of isolated
instrument sounds, voice, harmonic sweeps and noise. Each
clip is approximately 1 second long.

The second dataset consists of 10 polyphonic music signals
for which we have the original vocal and music accom-
paniment tracks before mixing as well as the final mix.
Although relatively small, this dataset is diverse and covers
different styles of singing and music background. It contains
the following types of music: rock (6), celtic (3), hiphop
(1). In addition, we also evaluate melody extraction on the
corpus used for the series of MIREX audio melody extraction
evaluation exchanges; it consists of 23 clips of various styles
including instrumental and MIDI tracks, for which case we
estimate the dominant melodic voice.

1http://marsyas.sourceforge.net
2http://opihi.cs.uvic.ca/NormCutAudio

TABLE III
SDR VALUES USING “TEXTURE” WINDOWS

XN XS VN VS CN CS
A+F 9.79 3.09 3.29 6.50 3.01 3.01

A+F+H 7.33 5.03 4.73 5.35 3.08 3.07

B. Evaluation of the HWPS cue

The HWPS is a novel criterion for computing similarity
between sinusoidal peaks that are potentially harmonically
related. It is critical for separating harmonic sounds which are
particularly important for musical signals. In this subsection
we describe experiments showing the improvement in separa-
tion performance achieved by using the HWPS similarity cue
compared to two existing cues proposed in Srinivasan [23] and
Virtanen [32].

Existing Cues: Srinivasan consider an harmonicity map
that can be precomputed to estimate the harmonic similarity
between two spectral bins. Considering two bin indexes i and
j, the map is computed as follows:

hmap(i, j) = 1 if mod(i, j) = 0 or mod(j, i) = 0 (22)

This map is next smoothed to allow increasing level of
inharmonicity using a Gaussian function, normalized so that
the sum of its elements is unity. The standard deviation of the
Gaussian function is set to be 10% of its center frequency, see
[23] for further details. The similarity between peaks pl and
pm is then:

Ws(pl, pm) = shmap(Ml,Mm) (23)

where shmap is the smoothed and normalized version of hmap,
and Ml corresponding to the bin index of peak pl. The frames
indexes are omitted for clarity sake.

According to Virtanen [32], if two peaks pl and pm are
harmonically related, the ratio of their frequencies fl and fm is
a ratio of two small positive integers a and b (which correspond
to the harmonic rank of each peak, respectively). By assuming
that the fundamental frequency cannot be below the minimum
frequency found by the sinusoidal modeling front-end (i.e.
fmin = 50 Hz), it is possible to obtain an upper limit for
a and b, respectively a <

⌊
fl

fmin

⌋
and b <

⌊
fm

fmin

⌋
. A harmonic

distance measure can be defined:

Wv(pl, pm) = 1− mina,b

∣∣∣∣log
(

fl/fm

a/b

)∣∣∣∣ (24)

by considering all the ratios for possible a and b and choosing
the closest to the ratio of the frequencies.

Evaluation criteria: To compare our proposed cue with the
existing ones, we use the signal-to-distortion ratio (SDR) as
a simple measure of the distortion caused by the separation
algorithm [36]. It is defined in decibels as:

SDR[dB] = 10 log10

∑
t s(t)2∑

t[ŝ(t)− s(t)]2
(25)

where s(t) is the reference signal with the original separated
source and ŝ(t) is the extracted source. The main use of the
SDR measure in this section is to evaluate the relative improve-
ment in separation performance achieved by the use of the
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TABLE IV
SDR MEASUREMENTS OF POLYPHONIC MUSIC SEPARATION USING

DIFFERENT SIMILARITY MEASURES

Track Title AF HS HV rHWPS HWPS
bentOutOfShape 2.66 1.19 1.17 5.65 8.03
intoTheUnknown 0.65 3.24 0.81 3.29 4.05
isThisIt 1.94 2.71 2.07 2.18 2.65
landingGear 1.29 5.29 0.81 4.40 6.37
schizosonic 0.57 3.11 0.59 2.86 3.96
smashed 0.22 1.15 0.29 1.17 1.54
chavalierBran 4.25 7.21 1.6 4.02 6.83
laFee 7.7 6.62 2.48 4.88 6.93
lePub 0.23 0.48 0.23 0.38 0.47
rockOn 0.96 1.78 0.79 1.60 1.74

HWPS cue. The SDR is only an approximate measure of the
perceptual quality of the separated signals. We also encourage
the readers to listen to the examples on the provided webpage.
No post-processing of the extracted signals was performed
in order to provide better insight about the algorithm and its
limitations. For example a dominant cluster is always selected
independently of the presence of a singing voice.

For the first set of experiments we utilize an experimen-
tal setup inspired by the “old+new” heuristic described by
Bregman [11]. Similar experiments were described in [12].
Each sample is created by mixing two sound sources in the
following way: for the first part of the sound only the “old”
sound source is played followed by the addition of the “new”
sound source (old+new) in the second part of the sample.
Normalized cut clustering is performed over the entire duration
of the clip. The clusters that contain peaks in the initial “old”-
only part are selected as the ones forming the separated source.
The remaining peaks are considered to be part of the “new”
sound source. The SDR measures the distortion/interference
caused by this “new” sound source to the separation algorithm.

Table II compares different mixtures of isolated sounds
separated using only frequency and amplitude similarities,
and also separated with the additional use of the HWPS
similarity. The following conventions are used in Table II: X is
saxophone, N is noise, V is violin, S is harmonic sweep, and
C is voice. A, F, H correspond to using amplitude, frequency
and HWPS similarities, respectively. As can be seen from the
table, in almost all cases the use of the HWPS improves the
SDR measure of separation performance.

For the second set of experiments shown in Table III the
“old+new” mixtures are separated directly using the approach
described in subsection II-F to select the dominant sound
source. Unlike the previous experiments, the spectral cluster-
ing is performed separately for each “texture” window and the
highest density cluster is selected as the separated voice. This
is a more realistic scenario as no knowledge of the individual
sound sources is utilized. As expected the SDR values are
lower but again the use of the HWPS improves separation
performance in most cases.

The third set of experiments, shown in Table IV, illustrate
the improvement in separation performance using the HWPS
cue for the case of singing voice extraction from monau-
ral polyphonic audio recordings. As a reference signal for
computing the SDR we use a sinusoidal representation of

the original voice-only track using 20 sinusoidal peaks per
analysis frame. This way the SDR comparison is between
similar representations and therefore more meaningful. This
representation of the reference signal is perceptually very
similar to the original voice-only signal and captures the most
important information about the singing voice, such as the
identity of the singer, pitch, vibrato, etc. The first column of
Table IV shows the performance of our approach using only
the amplitude and frequency similarities. The other columns
show the performance of using the three different harmonicity
similarities in addition to amplitude and frequency. All the
configurations utilize the same parameters for the Normalized
Cut algorithm and the only thing that changes is the definition
of the similarity function. As can be seen, in most cases
the HWPS similarity provides better results than the Virtanen
similarity (HV) and the Srinivasan similarity (HS) and behave
similarly otherwise. Finally the last two column show the
importance of precise frequency estimation (HWPS) described
in section II-B compared to rough frequency estimation di-
rectly from FFT bins (rHWPS). A similar drop in performance
between rough and precise estimation was also observed for
HV and HS but not included in the table.

C. Melodic Pitch Extraction

The melodic line is a critical piece of information for
describing music and is very influential in the identity of
a musical piece. A common approach to automatic melody
extraction is to attempt multiple pitch extraction on the poly-
phonic mixture and select the predominant pitch candidate as
the pitch of the signing voice [7], [37]. The detected pitch can
then be used to inform source separation algorithms. In our
method the singing voice is first separated and the melodic
pitch is subsequently extracted directly from the separated
audio.

For each song in our dataset of 10 songs (for which the
original voice-only tracks are available) the pitch contours
were calculated for three configurations: the original clean
vocal signal, the polyphonic recording with both music and
vocals (V M ), and the vocal signal separated by our algorithm
(V Sep). Two pitch extraction algorithms were utilized: a time
domain autocorrelation monophonic pitch extraction algorithm
implemented in Praat [38], and a recent multipitch estimation
algorithm developed by Klapuri [37]. Both approaches were
configured to estimate fundamental frequencies in the range
[40, 2200] Hz, using a hop size of 11ms and an analysis
window with a length of about 46ms.

The pitch contours estimated using Praat from the poly-
phonic recordings with both music and vocals will be referred
in the text, figures, and tables as V Mpraat, while the ones ex-
tracted using Klapuri’s algorithm will be referred as V Mklap.
Similarly, for the separated vocal signals we use V Seppraat.
For ground truth we extract a reference pitch contour using
Praat from the original voice-only track of each song. We
confirmed that this ground truth is correct by listening to the
generated contours.

For the purpose of this specific evaluation we only consider
the singing segments of each song, identified as the segments
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TABLE V
NORMALIZED PITCH ERRORS AND GROSS ERRORS ACROSS CORPUS

NE NEchr GE(%) GE − 8ve(%)
V Mpraat 8.62 0.51 82.44 66.00
V Seppraat 3.89 0.35 64.45 55.23
V Mklap 0.55 0.26 55.70 48.68

in the ground truth pitch contours that present non-zero
frequency values. For each pitch contour we compute at each
frame the normalized pitch error as follows:

NE[k] =
∣∣∣∣log2

f [k]
fref[k]

∣∣∣∣ (26)

where fref [k] corresponds to the frequency values of the
ground truth pitch contour, measured in Hertz, and k is the
frame index. f [k] is either related to the frequency value
of the pitch contour extracted from the mixed signal (i.e.
V Mpraat or V Mklap), or to the pitch contour extracted using
the vocal track separated by our algorithm (i.e. V Seppraat).
The normalized error NE is zero when the pitch estimation
is correct, and an integer number for octave errors (i.e. when
f [k] = 2n × fref [k], n ∈ N). Since we are only considering
the singing segments of the signals, both f [k] and fref [k] will
never be zero.

Given that this evaluation is related to (musical) pitch
estimation, we also defined a chroma-based error measure
NEchr derived from NE, where errors are folded into a single
octave as follows:

NEchr[k] =


0 if NE[k] = 0
1 if NE[k] 6= 0 ∧ mod(NE[k], 1) = 0
mod(NE[k], 1) otherwise

(27)
where mod() is the real modulo function. This allows bringing
to evidence the chromatic distribution of the errors, wrapping
all pitch inaccuracies into the interval [0, 1], where 0 corre-
sponds to no pitch estimation error and 1 accumulates all the
octave-related errors.

Table V shows the normalized pitch errors across our dataset
of 10 songs for the different evaluation scenarios. It also
presents the gross error (GE) for each case, defined as the sum
of all errors bigger than half a semitone (i.e. for NE > 1

24 ).
This tolerance allows accepting estimated frequencies inside a
one semitone interval centered around the true pitch as correct
estimates. Also presented is the gross error excluding all
octave errors (GE−8ve). Octave ambiguities can be accepted
as having smaller impact than other errors for many musical
applications.

From the results obtained from the V Mpraat evaluation,
a GE in excess of 82% confirms the expected inability of
monophonic pitch detectors such as the Praat algorithm to
accurately estimate the most prominent pitch on polyphonic
music recordings. However, if using the same exact pitch esti-
mation technique on the voice signal separated by our system
(i.e. V Seppraat), the results demonstrate a clear improvement,
reducing the gross error rate GE to about 64%. Although
the proposed scheme do not compare favourably to the state-
of-the-art multipitch algorithm by Klapuri (GE of 55.7%), it
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Fig. 6. Distribution of errors as percentages of total pitch estimates across
corpus. The top plot presents a segment of the normalized error distribution,
NE (no significant error values exist outside the plotted ranges), while
the bottom plot depicts the corresponding octave wrapped error distribution,
NEchr . The pitch errors from using Praat on the separated voice signals are
represented in black colour, while its use on mixed signals is represented by
the slashed line and white bars. The multiple pitch approach of Klapuri is
represented in gray.

shows the ability of our method to simplify the acoustic scene
by focusing on the dominant harmonic source.

It is also interesting to look at the distribution of errors.
Figure 6 shows the distribution of the normalized and octave
wrapped errors as percentages over the total number of es-
timated pitch frames (the upper plot presents the significant
section of the NE distribution while the lower plot shows
the NEchr distribution). All three evaluations presented in the
plots show a similar tendency to output one-octave ambiguities
(i.e. about 6% for NE = 1). V Mpraat presents several
additional high-valued error peaks caused by incorrect pitches
estimated due to the presence of multiple overlapping notes
from the musical background. These errors are significantly
reduced in the case of the pitch estimation on the separated
signal using our method. When compared to V Mklap most of
the pitch estimation errors from V Seppraat result from octave
and perfect-fifth (i.e NEchr = 7/12) ambiguities.

We also conducted similar experiments using the corpus
used for the MIREX automatic melody extraction evaluation
exchange3. In this case we had no access to the original
melody-only tracks, but ground truth pitch contours were
provided for the evaluation. The MIREX examples include
some synthesized MIDI pieces, which are simpler to separate
as they do not include reverberation and other artifacts found
in realworld signals. Most of the examples also have a more
pronounced vocal line or dominant melody than the corpus
used for the previous experiments, and therefore most of the
results were better. Table VI shows the normalized pitch errors
and gross errors for the MIREX corpus. The distribution of
the normalized errors are depicted in Figure 7.

3http://www.music-ir.org/mirex2005/index.php/Main_
Page
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TABLE VI
NORMALIZED PITCH ERRORS AND GROSS ERRORS FOR MIREX DATASET

NE NEchr GE(%) GE − 8ve(%)
V Mpraat 3.29 0.48 76.02 55.87
V Seppraat 1.34 0.36 54.12 34.97
V Mklap 0.34 0.15 34.27 29.77
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Fig. 7. Distribution of errors over the MIREX audio melody extraction
dataset. The top plot presents a segment of the normalized error distribution,
NE (no significant error values exist outside the plotted range), while the
bottom plot depicts the corresponding octave wrapped error distribution,
NEchr . The pitch errors from using Praat on the separated voice signals
are represented in black colour, while its use on mixed signals is represented
by the slashed line and white bars. The multiple pitch approach of Klapuri is
represented in gray.

D. Voicing Detection

Voicing detection refers to the process of identifying
whether a given time frame contains a “melody” pitch or not.
The goal of the experiments described in this subsection was
to determine whether the proposed voice separation algorithm
can be used to improve voicing detection accuracy in monaural
polyphonic recordings. The dataset of the 10 polyphonic music
pieces for which we have the original separate vocal track
was used for the experiments. The voiced/unvoiced decisions
extracted using Praat [38] from the original vocal track were
used as the ground truth. A supervised learning approach was
used to train voiced/unvoiced classifiers for three configu-
rations: V MMFCC refers to using Mel-Frequency Cepstral
Coefficients (MFCC) [39] calculated over the mixed voice and
music signal, V SepMFCC refers to MFCC calculated over
the automatically separated voice signal, and V SepCPR refers
to using the cluster peak ratio (CPR), a feature that can be
directly calculated on each extracted clusters of peaks. It is
defined as:

CPR =
max(Ak)
mean(Ak)

(28)

where Ak are the extracted peak amplitudes for frame k.
Voiced frames tend to have more pronounced peaks than
unvoiced frames and therefore higher CPR values.

TABLE VII
VOICING DETECTION PERCENTAGE ACCURACY

ZeroR NB SVM
V MMFCC 55 69 69
V SepMFCC 55 77 86
V SepCPR 55 73 74

The experiments were performed using the Weka machine
learning framework, where NB refers to a Naive Bayes clas-
sifier and SVM to a support vector machine trained using
the sequential minimal optimization (SMO) [40]. The ZeroR
classifier classifies everything as voiced and was used as a
baseline. The goal was to evaluate the relative improvement
in classification performance when using the separated voice
signal rather than building an optimal voicing detector. No
smoothing of the predictions was performed.

Table VII shows the classification accuracy (i.e the percent-
age of frames correctly classified using these 3 configurations).
All the results were computed using 10-fold cross-validation
over features extracted from the entire corpus. In 10-fold
cross-validation the feature matrix is shuffled and partitioned
into 10 “folds”. The classification accuracy is calculated by
using 9 of the folds for training and 1 fold for testing
and the process is repeated 10 times so that all partitions
become the testing set once. The classification results are
averaged. 10-fold cross-validation is used to provide a more
balanced estimate of classification accuracy that is not as
sensitive to a particular choice of training and testing sets [40].
Using the automatically separated voice results in significant
improvements in voicing detection accuracy. Additionally, the
use of the simple and direct CPR feature still outperforms a
more complex classifier trained on the mixed data.

IV. CONCLUSIONS AND FUTURE WORK

We described how spectral clustering using the normalized
cut criterion for graph partitioning can be used for predominant
melodic source separation. Our proposed method is based on a
sinusoidal peak representation which enables close to real-time
computation due to its sparse nature. Grouping cues based on
amplitude, frequency and harmonicity are incorporated in a
unified optimization framework. Harmonically-Wrapped Peak
Similarity (HWPS), a novel harmonicity similarity measure
was also proposed. Experimental results evaluating HWPS and
the proposed method in the context of mixture separation,
audio melody extraction and voicing detection were presented.
The proposed algorithm is causal, efficient and doesn’t require
any prior knowledge or song-specific parameter tuning.

There are many possible directions for future work. Al-
though not necessary for the operation of the algorithm,
prior knowledge such as sound source models or score rep-
resentations could easily be incorporated into the similarity
calculation. For example the likelihood that two peaks belong
to the same sound source model [15] could be used as an
additional similarity cue. Additional cues such as common
amplitude and frequency modulation as well as the use of
timing information such as onsets are interesting possibilities
for future work. Another interesting possibility is the addition
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of common panning cues for stereo signals as proposed in
[41], [42].

Limitations of the current method suggest other directions
of future work. Even though some grouping of components
corresponding to consonants is achieved by the amplitude
and frequency similarity cues, the sinusoidal representation
is not particularly suited for non-pitched sounds such as
consonants sounds. Alternative analysis front-ends such as
perceptually-informed filterbanks or sinusoids+transient rep-
resentations could be a way to address this limitation.

In the current system, the cluster selection and resynthesis
are performed for the entire song independently of whether
a singing voice is present or not. The use of a singing voice
detector to guide the resynthesis would surely result in better
results. Implementing such a singing voice detector directly
based on properties of the detected cluster is an interesting
possibility. The resynthesis also suffers from artifacts that
result from the limitations of the sinusoidal representation.
An interesting alternative would be to retain the sinusoidal
modeling front-end for grouping but use the entire STFT
spectrum for the resynthesis of the extracted voice. As studied
in [43], such a resynthesis stage is more flexible and reduces
artifacts.

Finally, in the current implementation, clustering and clus-
ter selection are performed independently for each “texture”
window. In the future we plan to explore cluster continuity
constraints (for example neighbouring clusters in time cor-
responding to the same source should have similar overall
characteristics) as well as more sophisticated methods of
cluster selection.

We believe our work shows the potential of spectral clus-
tering methods for sound source formation and tracking. We
hope it will stimulate more research in this area as it can have
significant impact in many MIR applications such as singer
identification, music transcription and lyrics alignment.
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