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A rheological constitutive law is developed for a suspension of rigid rods in a Bingham fluid for
volume fractions ranging up to the semiconcentrated regime. Based on a cell model approach, which
allows expressing the shear stress on the particle surface, the particle stress contribution is derived and
involves additional yield stress terms related to an ensemble average orientation distribution of the
rods. As a first approach, a von Mises criterion is used to describe the composite flow threshold, which
is found to be anisotropic in the sense that it depends on the rod orientation. A rod dynamics equation
is also proposed and incorporates some diffusion/perturbation due to yielded regions encountered
throughout the suspension. In parallel, an equivalent kinetic theory is also developed. The model
provides good agreement with shear stress experiments for kaolin pastes filled with steel fibers of two
different aspect ratios. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4995436]

I. INTRODUCTION

The modeling of suspension rheology is a topic of much
interest due to the wide range of applications of such systems
in various areas of engineering. Fluids encountered in real-life
situations generally exhibit complex behavior and the addition
of particles amplifies this complexity. Although rather simplis-
tic, the solid and fluid terms are still used to classify the ability
of a material to flow when subjected to an external stress. Cer-
tain materials can flow when the applied stress is large enough
but behave like a solid when this stress is small. The stress
threshold between these two regimes is called the yield stress
and the simplest model known to describe this behavior is
the Bingham model, solely defined by a plastic viscosity and a
yield stress. When particles are added to a purely viscous fluid,
the suspension may exhibit a Bingham behavior. The existence
of a yield stress depends on the volume fraction of particles,
their geometry, and possible interactions between them. When
increasing volume fraction, frictional and short-range forces
between particles become large enough to create a network
with solid-like behavior. This network can be destroyed if
the applied stress exceeds the yield stress and the suspension
then exhibits a fluid-like behavior. When added to a molten
thermoplastic, a volume fraction of about 10% of microscale,
high aspect ratio fibers is necessary in order to induce the
appearance of a yield stress,1 whereas only a few percent of
nanotubes lead to a solid-like behavior.2 At the red blood cell
scale, plasma filled with microscale elements is considered
as a homogeneous fluid and can be modeled by a Bingham
model.3 For a cement paste containing fibers, it is observed
that the relative yield stress increases with the relative packing
fraction.4 Ouari et al.5 found that the yield stress was affected
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at smaller fiber contents than expected. Hence, it is desirable
to understand the behavior of a Bingham fluid when modified
with particles.

Building materials are increasingly filled with fibers in
order to improve their stiffness and reduce cracks into the mate-
rial after solidification. These materials can be considered as
a combination of a yield stress fluid filled with fibers. Since in
this case the suspending fluid is itself a yield stress fluid, it is
interesting to understand how the addition of fibers modifies
the behavior of Bingham fluids. Thus, cement pastes can be
considered as homogeneous at microscale,6 when short fibers
are introduced to reinforce the material. Numerous papers
describe the rheological behavior and the flow of these mate-
rials in terms of experiments and numerical simulations. A
slump test is often used to characterize building materials.
Ferrara et al.7,8 proposed a model for a self-compacting con-
crete filled with steel fibers and applied it to model the slump
test. To test this model, numerical simulations have been devel-
oped using a smooth particle hydrodynamics (SPH) method9,10

or lattice Boltzmann approaches,11 in which the composite
is assumed to follow a Bingham model. The other rheologi-
cal tests used are compression tests or rotational rheometry in
vane geometries. Chalencon et al.12 performed compression
tests on fiber-filled mortar with various fiber volume frac-
tions and aspect ratios. They developed a model taking into
account properties of the matrix and fiber orientation statistics.
Derakhshandeh et al.13,14 used a vane rheometer to charac-
terize the behavior of pulp suspensions exhibiting Bingham
behavior and determined the rheological coefficients of the
Herschel-Bulkley model for different fiber volume fractions.
It was shown that both the yield stress and the consistency
viscosity increase with volume fraction while the power law
index decreases. Finally, the modeling of fiber-filled concrete
flows has also been investigated. Kang and Kim15 simulated
the flow of a fiber-filled concrete in a molding process and
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analyzed fiber orientation evolution using the Jeffery model.16

Fiber orientation has been improved in the pipe extrusion pro-
cess,17 which has been applied to the fabrication of concrete
pipes reinforced with steel fibers.18 Zhou and Li19 used the ram
extrusion to study fiber reinforced cementitious materials. In
their work, a numerical simulation using the Herschel-Bulkley
model was developed to model the process.

Most models developed for fiber suspensions assume a
Newtonian fluid matrix. The pioneering work of Jeffery16 on
the dynamics of fiber suspensions was followed by those of
Batchelor,20 Hinch and Leal,21 and many others, but these
studies were restricted to dilute suspensions. Later, Dinh and
Armstrong22 developed a model accounting for interactions
amongst randomly oriented fibers immersed in a Newtonian
fluid. Following Jeffery,16 Hand,23 and Giesekus,24 Lipscomb
et al.25 proposed a constitutive equation for dilute suspensions
of ellipsoidal particles with large aspect ratio. Note that cer-
tain models have been developed for power-law or viscoelastic
matrices. Gibson and Toll26 extended the theory of Dinh and
Armstrong22 to propose a model for the fiber dynamics with a
non-Newtonian matrix. Souloumiac and Vincent27 established
a stress expression that takes into account the shear-thinning
behavior of the matrix, represented by a power-law viscosity.
They determined the contribution of the fibers to the stress
tensor using a cell model28 and assumed that hydrodynamic
interactions between the fibers are weak. The effect of the fluid
viscoelastic properties on rod dynamics was first investigated
by Leal29 and Brunn30 using second-order fluids. These works
allow for the development of a model for the fiber dynam-
ics, which is impacted by the fluid viscoelasticity. Recently,
Kagarise31 investigated the rheology of nanofiber-filled molten
polystyrene and they proposed a microstructure-based con-
stitutive model, which predicts the rheological behavior
observed experimentally and the evolution of nanofiber ori-
entation well. The addition of non-spherical particles into
a matrix leads to a material with non-isotropic behavior.
Thus, White et al.32 and Robinson et al.33 developed a
model for a transversely isotropic viscoplastic fluid. Finally, a
model has been proposed by Férec et al.34 for suspensions
of rigid fibers in a non-Newtonian fluid exhibiting a yield
stress by taking into account hydrodynamic and fiber-fiber
interactions.

The purpose of this paper is to derive a constitutive equa-
tion for rod suspensions in fluids that exhibit a yield stress,
in particular Bingham fluids, by using an approach based on
the cell model. Following Batchelor28 and Goddard,35,36 who
considered the stress generated in a non-dilute suspension of
rods by pure straining motion for Newtonian and power-law
fluids, respectively, we first determine the contribution to the
macroscopic stress due to the presence of elongated rods in
a Bingham liquid. Then, the yield surface in terms of rod
orientations is investigated. In order to validate the model,
a comparison is performed on kaolin pastes filled with steel
fibers. Finally, a rod dynamics equation is proposed.

II. DEFINITIONS AND HYPOTHESES

The rod is represented by a straight cylinder of length
L having a circular cross section of radius R (or equiva-

lently of diameter D) and is assumed to be a slender body.
Its large aspect ratio, defined by ar = L/D � 1, allows us
to neglect the particle end-effects. The cell model consists in
coaxially embedding a test rod into a cylindrical fluid cell
of radius h and of the same length as the particle (Fig. 1).
It is assumed that the effect of one particle on its neighbors
can be approximated by an equivalent cylindrical boundary
around the test rod and therefore simplifies the problem to a
single-particle theory. Rod interactions are taken into account
by solving a boundary value problem in the annular region,
between the rod and the outer envelope. A velocity gradient
results from this boundary-value problem that aims at mod-
eling an interparticle interaction by conceptually restricting
the fibre dynamics to a reptation-like motion in a constrain-
ing space. A dimensional analysis with the assumption of
inertialess motion suggests that a quasi-steady and shear-
dominated flow occurs in the near field of the slender particle;
this implies the validity of a viscometric flow representation
for the fluid rheology.28,35–37 The rod suspension is assumed
to be subjected to an unperturbed linearly varying bulk flow
defined by u = κ · r, where κ is the transpose of the veloc-
ity gradient tensor38 and r is the position vector. The fluid
motion is considered steady and Brownian motion effects are
neglected.

One manner in which rod suspensions can be character-
ized is via concentration regimes.22 A rod suspension is said
to be dilute if on average, less than one rod is found in a spher-
ical volume of diameter equal to the rod length, i.e., 1/a2

r < φ,
where φ is the volume fraction of rods. On the contrary, if the
spacing between rods is O(D), then the particle motion is hin-
dered. Doi and Edwards39,40 showed that φ ≈ O(1/ar) for a
suspension of randomly oriented rods where the average dis-
tance between particles is D. When all rods are parallel to one
another, the average spacing between them reduces and there-
fore enhances the volume fraction up to φ ≈ O(1). Thus, the
concentration limits of interest in this work are given in terms
of the rod factor, φar , such that 1/ar < φar < 1 for random
rods and 1/ar < φar < ar for aligned rods.

Among the various models of viscoplastic fluids,41 which
constitute an important class of non-Newtonian materials, the
Bingham plastic model42 appears to be one of the simplest.
In 3D, the constitutive equation for a Bingham fluid takes the
form43

τ =
τ0

|γ̇ |
γ̇ + ηBγ̇ for |τ | > τ0, (1a)

γ̇ = 0 for |τ | ≤ τ0. (1b)

FIG. 1. Geometry of the cell surrounding the test rod.
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In the above, τ0 is the yield stress and ηB is a con-
stant plastic viscosity. |γ̇ | represents the effective deformation
rate of the strain rate tensor γ̇ (γ̇ = κ + κ t , where the super-
script t denotes the transpose operator), which is given by |γ̇ |

=

√
1
2 γ̇ : γ̇ (i.e., equal to the shear rate in a simple shear flow).

Similarly, |τ | is the magnitude of the extra stress tensor τ.
An unyielded zone is formed when the stress |τ | falls below
τ0.

III. CELL MODEL APPROACH
A. Velocity profiles through the cell

The cell model provides a useful approximation in the
particle near field, with constant velocity gradients along the
rod.28,35–37 Hence for this axisymmetric problem, the axial
velocity uz satisfies the following equation of motion in terms
of stress in cylindrical coordinates (r, θ, and z):

1
r
∂

∂r
(rτrz) = 0, (2)

where τrz represents the shear stress. If a Bingham model
with a viscosity ηB and a yield stress τ0 is used to char-
acterize the rheological behavior of the fluid, such as the
one given in Eq. (1a), Eq. (2) can be integrated twice to
yield

uz =
A
ηB

log(r) −
τ0

ηB
r + B, (3)

where A and B are two constants of integration and are deter-
mined with the assignment of two velocity boundary condi-
tions. At the rod surface, a no-slip condition is presumed, that
is, uz(R) = 0, whereas at r = h a relative fluid velocity with
respect to the one of the particle is introduced. More precisely,
the fluid velocity at a distance zp from the center of mass of the
rod is zκ ·p (where p is a unit vector directed along the main par-
ticle axis) and the rod velocity at the same location is zṗ, which
is normal to p. Hence, the relative velocity component along
the z-direction is found to be uz(h) = zγ̇ : pp/2. As the bound-
ary conditions are fixed in terms of velocities, flow may occur
and thus the axial velocity uz will exhibit a Newtonian veloc-
ity profile in the yielded region, followed by a plug-flow in the
unyielded region. The yield radius, h0, is introduced to sepa-
rate the regions where the yield stress has exceeded or not. In
Fig. 1, the shaded area represents the unyielded region in which
a plug-flow exists. Therefore, two velocity profiles have to be
distinguished:

• Case (a) deals with a flow where the unyielded region is
outside the cell, that is, h0 ≥ h (Fig. 1). By applying the
above velocity boundary conditions, the axial velocity
is found to be

uz =
z
2
γ̇ : pp

log(r/R)
log(h/R)

+
τ0

ηB

log(r/R)
log(h/R)

(h − R)

−
τ0

ηB
(r − R). (4)

Obviously when the yield stress goes to zero, the above
result simplifies to the expression given for an effective
Newtonian medium.37

• Case (b) involves a plug-flow in the region inside the
cell where the yield stress is not exceeded (h0 < r < h).

Here, analytical solutions for the velocity distribution
are given by

uz =
z
2
γ̇ : pp

log(r/R)
log(h0/R)

+
τ0

ηB

log(r/R)
log(h0/R)

(h0 − R)

−
τ0

ηB
(r − R) for R ≤ r < h0, (5a)

uz =
z
2
γ̇ : pp for h0 ≤ r ≤ h. (5b)

The expression for h0 is found by setting the velocity gra-
dient to zero at r = h0 in Eq. (5a), which yields after a long but
straightforward calculation

h0(z) = R exp
[
1 + W0 (χ(z))

]
. (6)

In the above, W0 is the single-valued function (the prin-
cipal branch) of the Lambert W -function.44 χ(z) is given by
χ(z) = az + b, in which a = (ηB |γ̇ : pp|) / (2eτ0R) and b
= �1/e, where e = exp(1) represents the Euler number. As
the principal branch of the Lambert W -function is defined
for χ(z) ≥ −1/e, an absolute value for γ̇ : pp is imposed in
the expression for a. By setting h0 = h in Eq. (6), one can
define a limiting abscissa, z0, which separates cases (a) and
(b) (see Fig. 1) and whose calculation leads to the following
relation:

z0 =
2R

| ˜̇γ : pp|
Bn

[
1 +

h
R

(log(h/R) − 1)

]
, (7)

where ˜̇γ is the dimensionless strain-rate tensor. The Bingham
number Bn = τ0/ηB |γ̇ |, representing the importance of the yield
stress relative to viscous stress, is also introduced and depend-
ing on its value, three flow regimes can be defined as shown
in Fig. 2.

B. Drag force determination

The shear stress on the rod surface, τR, is obtained by tak-
ing the derivative for the axial velocity in Eqs. (4) and (5a) with
respect to r and then evaluating the stress using the constitutive
law for a Bingham fluid. It is found that

τR |(a) =
z
2
γ̇ : pp

ηB

R log(h/R)
+
τ0(h − R)

R log(h/R)
(8)

FIG. 2. Different flow regimes inside the cell. The shaded region represents
the unyielded zone. (a) Bn � 1. (b) Bn ≈ 1. (c) Bn � 1.
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for case (a) and

τR |(b) =
z
2
γ̇ : pp

ηB

R log(h0/R)
+
τ0(h0 − R)

R log(h0/R)
(9)

for case (b). Both results are similar, except that case (a)
involves h and case (b) requires h0, which we recall to be
a function of z. Note that the z-dependency for h0, represented
by the bracketed z in Eq. (6), has been removed for clarity.
Finally, an elementary force balance on the particle leads to
the drag force per unit length f (z) = 2πRτR for both cases.

IV. TOTAL STRESS TENSOR

Constitutive equations for rod-filled systems may gener-
ally be written by considering them as two-component flu-
ids, in which the total stress in the composite is assumed to
be

σ = −Pδ + τm + τp. (10)

In the above equation, P is the hydrostatic pressure and
δ is the identity tensor. τm represents the matrix contribution,
which is given by Eq. (1) and the particle contribution to the
extra stress tensor, τp, remains to be expressed.

A. Particle stress contribution

The Kramer expression45 is used to derive the rod stress
tensor, in which the volume fraction of particles, φ, takes into
account the contribution of each particle contained in a given
volume. Hence, the extra stress due to the particle contribution
is

τp =
φ

V

〈
p
∫ z=L/2

z=−L/2
f(z)dz

〉
, (11)

where V = πR2L represents the rod volume and the angu-
lar brackets denote the ensemble average with respect to the
distribution function of p. Batchelor28 argued that the tension
force exerted by the fluid, f(z), is parallel to the unit vector p as
the components normal to the rod make no contribution to the
stress in the case of a particle on which no external force or cou-
ple act. Hence, f(z)= f̄ (z)p, where the tension magnitude, f̄ (z),
is related to the drag force, f (z), by f̄ (z) = − ∫

z
z=−L/2 f (z)dz.

The above results are then substituted into Eq. (11) and after
application of the integration by parts formula, the following
expression is obtained:

τp =
2φ

πR2L

〈
pp

∫ z=L/2

z=0
zf (z)dz

〉
. (12)

To derive Eq. (12), note that the integration in Eq. (11)
can be performed over the half length of the rod due to the
problem symmetry and the fact that only the hydrodynamic
force applied all along the rod length has been used, that is,
∫

z=L/2
z=−L/2 f (z)dz = 0. Finally, the rod stress tensor has to be

expressed for the three cases depicted in Fig. 2.

B. Bn � 1

For Bn� 1, the unyielded region inside the cell can be
neglected, leading us to consider the velocity field given by
Eq. (4). Substitution of the drag force derived from the shear
stress on the rod surface into Eq. (12) yields

τp =
2φ

πR2L

〈
pp

∫ z=L/2

z=0
z(2πRτR |(a))dz

〉
. (13)

Integration can be performed very simply and results in

τp = ηBφ
a2

r

3 log(h/R)
γ̇ : 〈pppp〉 + τ0φ

ar(h/R − 1)
log(h/R)

〈pp〉, (14)

where terms in angular brackets represent the well-known ori-
entation tensors46 and describe the rod orientation statistics in
a representative elementary volume in an efficient and concise
way.

In order to tackle cases in dilute regimes (i.e., φ < 1/a2
r ),

Batchelor28 proposed that the cell radius h can be replaced
by L, the rod length, which corresponds to allowing a par-
ticle to rotate freely without encountering any neighbor.
Under this assumption, coupling coefficients in front of
〈pppp〉 and 〈pp〉 are given by ηBφa2

r /3 log(2ar) and τ0φar(2ar

− 1)/ log(2ar), respectively. In their theory for semiconcen-
trated fiber suspensions, Dinh and Armstrong22 related the
ratio h/R to the average lateral spacing between the parti-
cles. Two estimates for h/R are available in the literature39,40

depending on the rod orientation state: h/R =
√
π/φ is obtained

by considering that the rods are all parallel and fully aligned
while h/R = π/(2φar) assumes a random orientation. Note
that the last term in Eq. (14) points out that the yield stress of
the suspending matrix induces an additional yield stress to the
particle stress contribution. Therefore, the total stress tensor
for the composite is found to be

σ = −Pδ +
τ0

|γ̇ |
γ̇ + ηBγ̇ + ηBφ

a2
r

3 log(h/R)
γ̇ : 〈pppp〉

+ τ0φ
ar(h/R − 1)

log(h/R)
〈pp〉 for |τ | > |τy |, (15a)

γ̇ = 0 for |τ | ≤ |τy |. (15b)

Equation (15a) represents a rheological constitutive equa-
tion for slender rods in Bingham fluids and reduces to the
expression of Dinh and Armstrong22 obtained for semi-
concentrated fiber suspensions in Newtonian fluids if the yield
stress, τ0, is set to zero. It is interesting to note that the yield
stress involves two contributions (terms proportional to τ0):
the standard one comes from the unfilled matrix, i.e., the sec-
ond term in Eq. (15a), and an additional part due the presence
of the rods, i.e., the last term in Eq. (15a). Moreover, this
last expression is directly related to the particle orientation
state, 〈pp〉, and therefore leads to an anisotropic effective yield
stress. To the best of our knowledge, it is the first time that this
kind of result is derived. If the yield stress contribution is pre-
sumed to be independent of the hydrostatic pressure, it is given
by

τy =
τ0

|γ̇ |
γ̇ + τ0φ

ar(h/R − 1)
log(h/R)

〈pp〉. (16)

For weak flows, where the velocity gradient is O(ε), it is
possible to approximate the second-order orientation tensor.
Based on the work of Hinch and Leal,47 we can derive the
following expression for the yield stress:

τy =
τ0

|γ̇ |
γ̇ + ηBφ

a2
r

15 log(h/R)
γ̇. (17)
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In order to investigate the effect of rod orientation on
the yield surface, we consider the response under a shear-
ing/elongational flow as follows:

γ̇ =



2ε̇ γ̇ 0
γ̇ −ε̇ 0
0 0 −ε̇

 (e1e2e3)

, (18)

which superimposes a simple shear flow in the 1-2 plane
with a uniaxial elongation in the 1-direction (for ε̇ > 0) or
a biaxial stretching flow (ε̇ < 0), where γ̇ and ε̇ represent
the shear and elongation rates, respectively. The anisotropy
parameters that are the components of the orientation tensor,
〈pp〉, are material constants and relate to a fixed degree of
anisotropy. As further discussed below, these scalars need to
be considered as state variables each having an evolutionary
equation coupled with the flow equations and ranging between
two limiting orientation states (3D random and fully aligned
rod orientations). Different yield criteria have been used,48

the most common for 3D constitutive relation being the von
Mises criterion, |τy |, which predicts that the material flows
and deforms significantly only when the second invariant of

the stress tensor exceeds the yield stress, |τy | =

√
1
2 (τy : τy);

otherwise the material behaves like a strained solid. Appli-
cation of an anisotropic criterion is left as a topic of future
research.

Figure 3 depicts the threshold curves with varying degrees
of anisotropy (i.e., different rod orientation states). For a sus-
pension with a 3D isotropic distribution of rods (Iso.), that
is, 〈pp〉 = δ/3, it is not surprising that the size of the elastic
domain increases monotonically in contrast with the unfilled
matrix (Mat.). Perfect alignment of rods with the 1-direction
(Ali.), which corresponds to the stretching direction for the
uniaxial elongational flow, leads to 〈pp〉 = e1e1. The thresh-
old curve exhibits a significant anisotropy, which cannot be
described by a quadratic criterion. Yield stress maxima are
observed when the uniaxial elongational flow field is domi-
nant and minima occur for a prevalent biaxial flow field. For
a simple shear flow, it can be observed that the yield stress
value is significantly larger with a perfect alignment of rods

FIG. 3. Dimensionless yield surface for different systems: unfilled matrix
(Mat.) and suspensions with isotropic (Iso.), aligned (Ali.), and artificial (Art.)
rod orientation states. A simple shear flow is superimposed with a biaxial
stretching flow on the left side of the vertical axis, whereas a simple shear
flow is superimposed with a uniaxial elongation flow on the right side.

along the shear flow direction (Ali.) when compared with an
isotropic rod orientation state (Iso.). This may be explained
by considering the average distance between rods, h, for these
both orientation states. Following the definition given previ-
ously, it results that the inverse of h for a random orientation
state is larger than the one for a perfect alignment of rods.
According to Eq. (2), the local shear stress, τrz, is found to be
proportional to 1

/
r, the inverse of a distance. If this length is

now replaced by h, it results that the local shear stress for an
aligned configuration is lower than the one for a random ori-
entation state. Hence, the flow threshold will first be exceeded
for a random rod configuration, explaining the observed model
prediction that the yield stress value is the largest for a per-
fect alignment of rods along the shear flow direction. Fur-
thermore, under transient conditions where the rods may ini-
tially be randomly orientated and convected with the flow,
this suggests that the yield surface will evolve and there-
fore the suspension can stop flowing (see Subsection V C).
Finally, for the following artificial rod distribution state
(Art.):

〈pp〉 =



0.7 0.1 0

0.1 0.2 0

0 0 0.1

 (e1e2e3)

, (19)

it is found that the threshold curve lies between the two limits
for the rod orientation distribution.

The influence of the rod aspect ratio, ar , the particle vol-
ume fraction, φ, and more precisely of the rod factor, φar ,
on the dimensionless shear yield stress is illustrated in Fig. 4.
The vertical dashed-dotted lines denote the limits of valid-
ity of the theory for both limits of the orientation distribu-
tions. Note that a differentiation is made between the two
curves (Ali. ar = 20 and Ali. φ= 0.1): the first one consid-
ers a constant aspect ratio of 20, whereas the second one
assumes a fixed value of 0.1 for the particle volume frac-
tion. An asymptotic analysis for large aspect ratios leads
to

FIG. 4. Dimensionless shear yield stress as a function of the rod factor for
different rod distributions: isotropic (Iso.), aligned in the shear flow direction
with a constant aspect ratio (Ali. ar = 20) and aligned in the shear flow direction
with a constant particle volume fraction (Ali. φ = 0.1). The vertical dashed-
dotted lines denote the limits of validity of the theory for random and aligned
orientation distributions.
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τIso = τ0φ
(ar − π/2φ)

√
6 ��log(π/2φar)��

+ O(1/ar), (20a)

τAli = τ0φ

√
2ar

(√
π/φ − 1

)
log(π/φ)

+ O(1/ar), (20b)

which is also reported in Fig. 4.
It is now interesting to test the proposed model against

some experimental results. Fig. 5 depicts the dimensionless
shear yield stresses for kaolin pastes filled with steel fibers of
aspect ratios ar = 37.5 and ar = 81, respectively. The mea-
sured yield stress values of the unfilled kaolin pastes are found
to be 404 ± 32 Pa and 521 ± 14 Pa for the first and sec-
ond suspensions, respectively. The experimental results are
taken from the work of Férec et al.34 and fiber orientation
distribution is presumed to be isotropic for both systems.
The model predictions for the two extreme orientation states
(i.e., perfectly aligned and randomized rods) are also reported
in Fig. 5 by considering the fiber properties. For the lowest
rod factor values, good agreement is observed. Although the
rod orientation for the systems are assumed to be isotropic,
model predictions assuming a perfect alignment of the rods
appear to be closer to the experimental data for cases involving
larger rod factors. Unfortunately, the viscosity for kaolin pastes
was not measured and the Bingham number for both systems

FIG. 5. Dimensionless shear yield stress as a function of the fiber factor:
comparison between model predictions for the two extreme orientation distri-
butions and experimental data.34 The vertical dashed-dotted lines denote the
limits of validity of the theory for both limits of the orientation distributions.
(a) Rods with ar = 37:5. (b) Rods with ar = 81.

cannot be evaluated; this could also explain the observed dis-
crepancies. We remind the reader that the present theory is
valid for Bn � 1.

C. Bn ≈ 1

When Bn ≈ 1, an unyielded region occurs inside the cell
up to the abscissa z0 but disappears before reaching the edge
of the rod. In this context, the integration involved in Eq. (12)
requires the use of the additivity rule on intervals and then the
rod stress tensor obtained is

τp =
2φ

πR2L

〈
pp

∫ z=z0

z=0
z(2πRτR |(b))dz

+ pp
∫ z=L/2

z=z0

z(2πRτR |(a))dz

〉
. (21)

Note that the first integrand involves h0, which is a func-
tion of z. Therefore, after some long and tedious calculations
(some details of which are found in Appendix A), Eq. (21)
becomes

τp = ηBφ
a2

r

3 log(h/R)
γ̇ : 〈pppp〉 + τ0φ

ar(h/R − 1)
log(h/R)

〈pp〉

+ τ0φ
B2

n

ar

〈
Θ

(
˜̇γ, p

)
pp

〉
, (22)

where Θ
(
˜̇γ, p

)
is a function of the dimensionless strain-rate

tensor, ˜̇γ, and the unit vector directed along the main par-
ticle axis, p. When compared with Eq. (14), the last term
proportional to Θ

(
˜̇γ, p

)
represents an additional contribution

to the yield stress. The function Θ
(
˜̇γ, p

)
involves some inde-

terminate forms and therefore its resolution is left as a topic
of future research. Nevertheless, pre-factors in the two yield
stress contributions suggest that the last term in Eq. (22) may
be negligible. Indeed, it is proportional to 1

/
ar as compared to

ar for the other one. With this assumption, the above equation
may reduce to Eq. (14) if components of

〈
Θ

(
˜̇γ, p

)
pp

〉
are

O(1).

D. Bn � 1

It remains to deal with the case corresponding to Bn �

1, for which an unyielded region is observed throughout the
whole cell. Hence, the shear stress at the rod surface given in
Eq. (9) is used to express the drag force leading to the following
extra stress tensor for the particle contribution:

τp =
2φ

πR2L

〈
pp

∫ z=L/2

z=0
z(2πRτR |(b))dz

〉
. (23)

The calculations described in Appendix B result in the
following extra stress due to the particle:

τp = ηBφ
a2

r

3 log(h/R)
γ̇ : 〈pppp〉 + τ0φ

ar(h/R − 1)
log(h/R)

〈pp〉

+ τ0φ
B2

n

ar

〈
Φ

(
˜̇γ, p

)
pp

〉
, (24)

where the function, Φ
(
˜̇γ, p

)
, is once more related to the

dimensionless strain-rate tensor and the unit vector directed
along the rod. This function Φ differs from Θ but suffers from
the same indeterminacy. We do not pursue this any further.
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Note however that the pre-factor to Φ is similar to the one
of the second term on the right-hand side and is likely to be
non-negligible, or at least of the same order as the second
term.

V. ROD ORIENTATION DYNAMICS
A. Expression for the evolution equation

In order to derive the evolution equation for the rod
microstructure described by the second-order orientation ten-
sor 〈pp〉, we make use of the ingenious method to determine
the stress tensor proposed by Giesekus24 (which is frequently
used in the kinetic theory of polymer solutions and melts45).
Known as the Giesekus stress tensor, this result can be used
to derive the extra stress due to the particle contribution and is
given by

τp = −
4φζ

πR2L

D〈pp〉
Dt

, (25)

where ζ is a drag coefficient and D/Dt denotes the convected
derivative of the contravariant components of a second-order
tensor, ∆, such that

D∆

Dt
=

D∆
Dt

+
1
2

(ω · ∆ − ∆ · ω) −
1
2

(γ̇ · ∆ + ∆ · γ̇) , (26)

in whichω represents the vorticity tensor. Therefore, by equat-
ing Eqs. (14) and (25), the convected derivative for 〈pp〉 (i.e.,
the time evolution for the rod orientation) can be expressed as

D〈pp〉
Dt

= −γ̇ : 〈pppp〉 − τ0
3(h/R − 1)

arηB
〈pp〉, (27)

and the drag coefficient is found to be

ζ =
ηBπL3

3 log(h/R)
. (28)

It is well known that the trace of 〈pp〉 must remain con-
stant and equal to one,46 which is not guaranteed by Eq. (27)
because the trace of the material derivative, D〈pp〉/Dt, is not
null. To overcome this inconsistency, a Lagrange multiplier is
incorporated into Eq. (27) to enforce a spatial constraint related
to the fact that rods are rigid and therefore cannot stretch. Thus,
Eq. (27) becomes

D〈pp〉
Dt

= −γ̇ : 〈pppp〉 + τ0
(h/R − 1)

arηB
(δ − 3〈pp〉) . (29)

The first term on the right-hand side of Eq. (29) stands for
the hydrodynamic contribution, whereas the last part is a diffu-
sion term related to the yield stress of the suspending fluid, τ0.
This suggests that under flow, rods will tend to align along the
streamlines but will be perturbed by some unyielded regions
encountered throughout the suspension. This last part shares
some similarities with the one found when taking into account
particle interactions, except that in the present case, the pro-
portionality term is not a function of the effective deformation
rate.49

In this form, Eq. (29) suggests that with no flow (i.e.,
γ̇ = 0), a randomizing effect will occur leading to a final
isotropic orientation state for the rods. This is obviously impos-
sible as the particles are considered non-Brownian; therefore,
the equation for the rod orientation dynamics, Eq. (29), should

be split into two contributions (similar to the definition for a
Bingham fluid),

D〈pp〉
Dt

= −γ̇ : 〈pppp〉 + Bn |γ̇ |
(h/R − 1)

ar
(δ − 3〈pp〉)

for |τ | > |τy |, (30a)

D〈pp〉
Dt

= 0 for |τ | ≤ |τy |. (30b)

Note that when the Bingham number is introduced, the
effective deformation rate appears in the diffusive contribution,
as illustrated in Eq. (30a).

B. Equivalent kinetic theory

The proposed model for rod dynamics is developed by
means of moment-tensor equations, that is, at the macro-
scopic level, as typically used in process modeling. On the
other hand, most models for rod suspensions are initially
derived at the particle scale via the kinetic theory, which con-
tains explicit expressions for a single rod evolution, and then
provides a Fokker-Planck equation that describes the dynam-
ics for a population of rods. Note however that obtaining
numerical solutions for the Fokker-Planck equation is gen-
erally difficult and computationally expensive, and therefore,
moments of the probability distribution function are statisti-
cal tools usually used to efficiently describe the microstruc-
ture properties. However, moment-tensor equations always
require closure approximations, while kinetic theories do not.
Thus, kinetic-theory equations provide important informa-
tion for the development and validation of closure approx-
imations. Hence, it is worth wondering if there is a kinetic
theory that corresponds to the proposed model. Prelimi-
nary work shows that the following rod orientation evolution
equation could answer this question (see Appendix C for
details):

Dp
Dt
= −

1
2
γ̇ : ppp − Bn |γ̇ |

(h/R − 1)
2arψp

∂ψp

∂p

for |τ | > |τy |, (31a)

Dp
Dt
= 0 for |τ | ≤ |τy |, (31b)

where D/Dt denotes the convected derivative of the con-
travariant components of a vector and ψp is the probability
distribution function from which the ensemble averages are
performed. It is interesting to note that the first term in Eq. (31a)
is the Jeffery equation expressed in terms of slender bodies and
the last part leads to some diffusivity/perturbation induced
by some unyielded regions encountered throughout the
suspension.

C. Orientation predictions in a transient shear flow

The predictions for the orientation evolution have been
calculated for a single point in simple shear for a sequence of
creep tests. When compared with a stress growth experiment
that consists in applying a constant shear rate, a creep test
imposes a constant shear stress, which in terms of constitutive
equations is more difficult to address. Indeed a minimization
procedure must be used to find the optimum shear rate leading
the desired shear stress for a given orientation before being
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subsequently updated. As discussed above, a closure approxi-
mation is necessary to express 〈pppp〉 in terms of 〈pp〉 and can
be done with the ORW3 closure approximation (orthotropic
fitted closure approximation for wide interaction coefficient
values with third-order polynomial expansions) developed by
Chung and Kwon.50 Although a refined calculation could be
made giving h as a function of 〈pp〉 (see, for example, Ref. 51),
such a refinement is not investigated here and we simply set
h/R =

√
π/φ. The other parameters used for the simulation are

arbitrarily chosen as ηB = 100 Pa · s, ar = 50, φ = 10%, and
τ0 = 10 Pa.

The test consists in applying three successive constant
shear stress:σ12 = 60 Pa for 20 s, thenσ12 = 100 Pa for 100 s,
and finally, again σ12 = 60 Pa for 20 s as shown in Fig. 6(a).
The initial value for the shear stress is chosen so that it is
contained between the two extreme limits of the magnitude of
the yield stress contribution, namely, for isotropic and aligned
rod orientation states. With regards to Fig. 3, this shear stress is
symbolically represented by a pentagram on the vertical axis
between the blue curve (i.e., isotropic orientation state) and
the green curve (i.e., perfectly alignment orientation state).
Before starting the flow simulation, the initial rod orientation
is assumed to be isotropic.

For the first sequence, 0 < t < 20 s, Fig. 6(b) reports
the time evolution for the components 〈p1p1〉, 〈p2p2〉, and
〈p1p2〉, where subscripts 1 and 2 stand for flow and velocity
gradient directions, respectively. It is observed that the initial
random orientation is destroyed before remaining in a fixed
state at a time value close to 14 s. As reported in Fig. 6(a), the
yield stress increases with rod orientation to ultimately join
the shear stress and lead to the cessation of the microstructure

evolution. In terms of Fig. 3, the location of the pentagram
remains unchanged but the yield surface defined by the blue
curve increases as the rod orientation until the boundary attains
the pentagram. Figure 6(c) shows that the first and second nor-
mal stress differences go initially from zero to positive values
until the cessation of the microstructure evolution. Thus, in this
yielded state, the first normal stress difference exhibits a con-
stant positive value, and a constant negative value is observed
for the second normal stress difference. These non-zero nor-
mal stress differences arise from the last term in Eq. (16) as
〈pp〉 is no longer isotropic.

For the second sequence comprised between 20 and 120 s,
the applied shear stress (σ12 = 100 Pa) is much higher than the
yield stress value, as depicts in Fig. 6(a). When looking back
to Fig. 3, this test sequence consists in moving the pentagram
vertically in the positive direction beyond the green curve.
Hence, a “standard” rod evolution starting from the previous
orientation state is observed before reaching a steady-state [see
Fig. 6(b)]. Figure 6(c) reports a large increase before reaching
a steady-state for the first normal stress difference without
exhibiting overshoot (at least, with this set of parameters) and
a decrease to a constant negative value close to zero for the
second normal stress difference.

Finally, the test finishes when the applied shear stress goes
back to 60 Pa for 20 s [see Fig. 6(a)]. With the help of Fig. 3,
the pentagram reaches a position inside both yield surfaces
defined by the blue and green curves. Thus, a second yielded
state is reached as the effective yield stress of the composite
is higher than the applied shear stress, as depicted in Fig. 6(a).
The internal microstructure defined by the rod orientation state
remains unchanged, as shown in Fig. 6(b). As for both normal

FIG. 6. System responses when apply-
ing a sequence of creep tests. (a)
Sequence of applied shear stress with
magnitudes of σ12 = 60, 100 and 60 Pa,
respectively. |τy | represents the mag-
nitude of the yield stress contribution
given by Eq. (16). (b) Orientation com-
ponents as functions of time. (c) First
and second normal stress differences as
functions of time.
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stress differences reported in Fig. 6(c), they exhibit constant
values, positive for σ11−σ22 and negative for σ22−σ33. Note
that their magnitudes differ from the first yielded state as the
rod orientation has evolved during the second sequence.

VI. CONCLUSION

In this work, a cell model is used to derive a constitutive
equation for rod suspensions in a Bingham fluid without intro-
ducing tuning parameters. Three expressions for the particle
stress are proposed depending on the Bingham number. For
Bingham numbers less than unity, a straightforward relation-
ship is obtained in terms of the moments for the orientation
distribution probability, known as the orientation tensors. It is
found that the presence of rods leads to an increase in the yield
stress values and more significantly, it is related to the aver-
age particle orientation. The effect of rod orientation on the
yield stress surface is investigated by considering the response
under a shear/elongational flow. It appears that the shear yield
stress for randomly oriented rods is lower than the one for the
case where all particles are aligned with the flow direction. The
model predictions are tested against shear stress experiments
for kaolin pastes filled with steel fibers having two different
aspect ratios. Good agreement is observed since the model
predictions give qualitative and quantitative bounds for yield
stresses of both suspensions. For Bingham numbers close to
and larger than one, some unresolved issues are encountered
and suggest more specific works.

Particle dynamics in a Bingham fluid was also determined:
the Jeffery solution expressed in terms of slender bodies (that
is, ar � 1), in which a diffusivity

/
perturbation term propor-

tional to the yield stress of the unfilled matrix is introduced, is
found to be suitable. Hence, a similar moment-tensor equation,
which is useful at the macroscopic level, is obtained from the
Giesekus stress tensor and from the kinetic-theory. It is also
found that the rod microstructure will evolve with the flow if
the applied stress exceeds the threshold stress and will oth-
erwise remain unchanged. Since a kinetic-theory form of the
proposed model is given, it can be used to perform closure-free
calculations and to test closure approximations for its moment-
tensor form. As rod suspensions exhibit non-zero normal stress
differences, the model is also able to predict yield surface for
the first and second normal stress coefficients although this
aspect of rod suspension behavior deserves more experimental
investigation.

APPENDIX A: INTEGRATION CALCULATIONS
INVOLVED FOR Bn ≈ 1

Equation (21) involves two integrands, called I and J,
respectively, and are defined by

I =
∫ z=z0

z=0
z(2πRτR |(b))dz (A1)

and

J =
∫ z=L/2

z=z0

z(2πRτR |(a))dz. (A2)

First, our attention is focused on Eq. (A1), which involves
the dependency of h on z and therefore requires some specific

mathematical operations. Hence, by inserting the expression
for the shear stress at the rod surface in Eq. (A1), I can be split
into two sums, I = I1 + I2, such that

I1 = πηBγ̇ : pp
∫ z=z0

z=0

z2dz
log (h0/R)

(A3)

and

I2 = 2πRτ0

∫ z=z0

z=0

z(h0/R − 1)dz
log(h0/R)

. (A4)

Following Eq. (6), log (h0/R) is replaced by
[
1

+W0 (az + b)
]

and therefore, a change of variable involving w
= W0 (az + b) or equivalently z = (wew − b)/a is used to
rearrange I1 and I2 such as

I1 =
πηBγ̇ : pp

a3

∫ W0(az0+b)

−1
(wew − b)2ewdw (A5)

and

I2 =
2πRτ0

a2

∫ W0(az0+b)

−1
(wew − b)(ew+1 − 1)ewdw. (A6)

Hence, integrations can be performed more easily and
yields after some simplifications

I1 =
πηBγ̇ : pp

a3

[
1

27

(
2e3w − 6we3w + 9w2e3w

)
−

e2w−1

2
+ we2w−1 + ew−2

]W0(az0+b)

−1
(A7)

and

I2 = −
2πRτ0

a2

[
e3w+1

9
+
w

2
e2w −

3
4

e2w

−
w

3
e3w+1 + ew−1

]W0(az0+b)

−1
. (A8)

And, by continuing the calculation with the fact that
W0(az0 + b) has been replaced by W0 and az0 + b by J
= h

eR

[
log(h/R) − 1

]
, one obtains

I1 = πR3τ0B2
n

˜̇γ : pp
��� ˜̇γ : pp���

3
A1, (A9)

where A1 =

[
− 28

27 + 8e3

27

(
2 J3

W3
0
− 6 J3

W2
0

+ 9 J3

W0

)
− 4e2 J2

W2
0

+ 8e2 J2

W0

+ 8e J
W0

]
, and

I2 = πR3τ0B2
n

1
��� ˜̇γ : pp���

2
A2, (A10)

where A2 =

[
14
9 −

8e3

9
J3

W3
0
− 4e2 J2

W0
+ 6e2 J2

W2
0

+ 8e3

3
J3

W2
0
− 8e J

W0

]
.

The above results can be summed up to give the expression
for I,

I = πR3τ0B2
n

*..
,
A1

˜̇γ : pp
��� ˜̇γ : pp���

3
+ A2

1
��� ˜̇γ : pp���

2

+//
-

. (A11)
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Integrands involved in Eq. (A2) can be performed more
easily as h is independent of z. Hence, Eq. (A2) is found to be

J =
πηB

log(h/R)
γ̇ : pp



L3

24
−

z3
0

3



+ 2πRτ0
(h/R − 1)
log(h/R)



L2

8
−

z2
0

2


. (A12)

By noting that z0 = DBn(1 + eJ)/ ��� ˜̇γ : pp���, J becomes

J =
πηBL3

24 log(h/R)
γ̇ : pp + πRL2τ0

(h/R − 1)
log(h/R)

−
πL3τ0B2

n

8a3
r

*..
,
B1

˜̇γ : pp
��� ˜̇γ : pp���

3
+ B2

1
��� ˜̇γ : pp���

2

+//
-

, (A13)

where B1 = 8(1 + eJ)3/3 log(h/R) and B2 = 4(1 + eJ)2(h/
R − 1)/ log(h/R).

Finally, the rod stress tensor given by Eq. (21) can be
rewritten as

τp =
2φ

πR2L
〈ppI + ppJ〉, (A14)

which yields after the substitutions of I and J

τp = ηBφ
a2

r

3 log(h/R)
γ̇ : 〈pppp〉 + τ0φ

ar(h/R − 1)
log(h/R)

〈pp〉

+ τ0φ
B2

n

ar


(A1 − B1)

〈 ˜̇γ : pppp
��� ˜̇γ : pp���

3

〉

+ (A2 − B2)

〈
pp

��� ˜̇γ : pp���
2

〉
. (A15)

By using an abbreviated notation for the last term in
Eq. (A15), the above equation becomes

τp = ηBφ
a2

r

3 log(h/R)
γ̇ : 〈pppp〉 + τ0φ

ar(h/R − 1)
log(h/R)

〈pp〉

+ τ0φ
B2

n

ar

〈
Θ

(
˜̇γ, p

)
pp

〉
, (A16)

where Θ
(
˜̇γ, p

)
is a function of the dimensionless strain-rate

tensor, ˜̇γ, and the unit vector directed along the main particle
axis, p.

APPENDIX B: INTEGRATION CALCULATIONS
INVOLVED FOR Bn � 1

The integration in Eq. (23) means to determine I given in
Eq. (A1) by replacing the upper limit with z = L/2. Thus, in
what follows, I will be denoted by I ′. Thanks to the change
of variable used to express I1 and I2 in Eqs. (A5) and (A6),
respectively, the upper limit becomes

W0(aL/2 + b) = W0



1
e

*.
,

ar
��� ˜̇γ : pp���
2Bn

− 1+/
-


. (B1)

By using the fact that Bn � 1 and ar � 1, we can rewrite
Eq. (B1) as WK = W0(K), where K = ��� ˜̇γ : pp��� /2e. Hence, the

integration in Eq. (23) is found to be

I ′ = πR3τ0B2
n

*..
,
A′1

˜̇γ : pp
��� ˜̇γ : pp���

3
+ A′2

1
��� ˜̇γ : pp���

2

+//
-

, (B2)

where A′1 =

[
− 28

27 + 8e3

27

(
2 K3

W3
K
− 6 K3

W2
K

+ 9 K3

WK

)
− 4e2 K2

W2
K

+ 8e2 K2

WK
+ 8e K

WK

]
and A′2 =

[
14
9 −

8e3

9
K3

W3
K
− 4e2 K2

WK
+ 6e2 K2

W2
K

+ 8e3

3
K3

W2
K
− 8e K

WK

]
. Thus, after substituting I ′ in the definition

for the particle stress tensor, one obtains

τp = ηBφ
a2

r

3 log(h/R)
γ̇ : 〈pppp〉 + τ0φ

ar(h/R − 1)
log(h/R)

〈pp〉

+ τ0φ
B2

n

ar

〈
Φ

(
˜̇γ, p

)
pp

〉
, (B3)

where Φ
(
˜̇γ, p

)
is a function of the dimensionless strain-rate

tensor, ˜̇γ, and the unit vector, p.

APPENDIX C: DERIVATION FOR THE EQUATION
OF CHANGE OF 〈pp〉

In this part, we would like to show that Eq. (30a), express-
ing the time evolution for the second-order orientation 〈pp〉,
can also be obtained by considering the dynamics for a sin-
gle rod given by Eq. (31a). Hence, by extending the upper
convected derivative for each components of 〈pp〉, one gets

D〈pp〉
Dt

=

〈
Dp
Dt

p
〉

+

〈
p
Dp
Dt

〉
. (C1)

The substitution of Eq. (31a) in Eq. (C1) results in

D〈pp〉
Dt

= 〈−γ̇ : ppp〉 − τ0
(h/R − 1)

2arηB

〈
∂ψp

ψp∂p
p + p

∂ψp

ψp∂p

〉
.

(C2)
As γ̇ is not a function of p, it can be brought outside

the averaging brackets. Furthermore, by using the following

formulas,
〈
∂ψp

ψp∂p p
〉
=

〈
p ∂ψp

ψp∂p

〉
= 3〈pp〉 − δ,45 one obtains

D〈pp〉
Dt

= −γ̇ : 〈pppp〉 + τ0
(h/R − 1)

arηB
(δ − 3〈pp〉) , (C3)

which is exactly Eq. (30a).
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