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Polynomial Ring Transforms for Efficient XOR-based Erasure Coding

Jonathan Detchart, Jérôme Lacan

ISAE-Supaéro, Université de Toulouse, France

Abstract—The complexity of software implementations of MDS
erasure codes mainly depends on the efficiency of the finite field
operations implementation. In this paper, we propose a method
to reduce the complexity of the finite field multiplication by
using simple transforms between a field and a ring to perform
the multiplication in a ring. We show that moving to a ring
reduces the complexity of the operations. Then, we show that
this construction allows the use of simple scheduling to reduce
the number of operations.

I. INTRODUCTION

Most of practical Maximum Distance Separable (MDS)

packet erasure codes are implemented in software. In the

various applications like packet erasure channels [1] or dis-

tributed storage systems [2], the coding/decoding process

performs operations over finite fields. The efficiency of the

implementation of these finite field operations is thus critical

for these applications.

To speedup this operation, [1] described an implementation

of finite field multiplications which only uses simple xor
operations, contrarily to classic software multiplications which

are based on lookup tables (LUT). The complexity of multiply-

ing by an element, i.e. the number of xor operations, depends

on the size of the finite field and also on the element itself.

This kind of complexity is studied for Maximum-Distance

Separable (MDS) codes in [3]. Other work has been done to

reduce redundant xor operations by applying scheduling [4].

Independently, in the context of large finite field for cryp-

tographic applications, [5] proposed a xor-based method to

perform fast hardware implementations of multiplications by

transforming each element of a field into an element of a

larger ring. In this polynomial ring, where the operations on

polynomials are done modulo xn + 1, the multiplication by

a monomial is much simpler as the modulo is just a cyclic

shift. The authors identified two classes of fields based on

irreducible polynomials with binary coefficients allowing to

transform each field element into a ring element by adding

additional ”ghost bits”.

In this paper, we extend their approach to define fast

software implementations of xor-based erasure codes. We

propose an original method called PYRIT (PolYnomial RIng

Transform) to perform operations between elements of a finite

field into a bigger ring by using simple transforms between

these two structures. Working in such a ring is much easier

than working in a finite field. Firstly, it reduces the coding

complexity by design. And secondly, it allows the use of

simple scheduling to reduce the number of operations thanks

to the properties of the ring structure.

The next section presents the algebraic framework allowing

to define the various transforms between the finite field and

some subsets of the ring. Then we discuss about the choice of

these transforms and their properties. We also detail the com-

plexity analysis before introducing some scheduling results.

II. ALGEBRAIC CONTEXT

The algebraic context of this paper is finite fields and ring

theory. More detailed presentation of this context including

the proofs of the following propositions can be found in [6]

or [7].

Definition 1. Let Fqw be the finite field with qw elements.

Definition 2. Let Rq,n = Fq[x]/(x
n − 1) denote the quotient

ring of polynomials of the polynomial ring F2[x] quotiented
by the ideal generated by the polynomial xn − 1.

Definition 3. Let pu1
1 (x)pu2

2 (x) . . . pur
r (x) = xn − 1 be the

decomposition of xn−1 into irreducible polynomials over Fq .

When n and q are relatively prime, it can be shown that

u1 = u2 = . . . = un = 1 (see [7]). In other words, if q = 2,

and n is odd, we simply have p1(x)p2(x) . . . pr(x) = xn− 1.

In the rest of this document, we assume that n and q are

relatively prime.

Proposition 1. The ring Rq,n is equal to the direct sum of its
r minimal ideals of Ai = ((xn − 1)/pi(x)) for i = 1, . . . , r.

Moreover, each minimal ideal contains a unique primitive

idempotent θi(x). A construction of this idempotent is given

in [6], Chap. 8, Theorem 6.

Since Fq[x]/(pi(x)) is isomorphic to the finite field Bi = Fqwi
,

where pi(x) is of degree wi, we have:

Proposition 2. Rq,n is isomorphic to the following Cartesian
product:

Rq,n � B1 ⊗B2 ⊗ . . . Br

For each i = 1, . . . , r, Ai is isomorphic to Bi. The isomor-
phism is:

φi :
Bi → Ai

b(x) → b(x)θi(x)
(1)

and the inverse isomorphism is:

φ−1
i :

Ai → Bi

a(x) → a(αi)
(2)

where αi is a root of pi(x).

Let us now assume that q = 2. Let us introduce a special

class of polynomials:

Definition 4. The All One Polynomial (AOP) of degree w is
defined as

p(x) = xw + xw−1 + xw−2 + . . .+ x+ 1



The AOP of degree w is irreducible over F2 if and only

if w + 1 is a prime and w generates F
∗
w+1, where F

∗
w+1

is the multiplicative group in Fw+1 [8]. The values w + 1,

such that the AOP of degree w is irreducible is the se-

quence A001122 in [9]. The first values of this sequence

are: 3, 5, 11, 13, 19, 29, . . .. In this paper, we only consider

irreducible AOP.

According to Proposition 2, R2,w+1 is equal to the direct

sum of its principal ideals A1 = ((xw+1 + 1)/p(x)) = (x +
1) and A2 = ((xw+1 + 1)/x + 1) = (p(x)) and R2,w+1 is

isomorphic to the direct product of B1 = F2[x]/(p(x)) = F2w

and B1 = F2[x]/(x+ 1) = F2.

It can be shown that the primitive idempotent of A1 is θ1 =
p(x) + 1. This idempotents is used to build the isomorphism

φ1 between A1 and B1.

III. TRANSFORMS BETWEEN THE FIELD AND THE RING

This section presents different transforms between the

field B1 = F2w = F2[x]/(p(x)) and the ring R2,w+1 =
F2[x]/(x

w+1 + 1).

A. Isomorphism transform

The first transform is simply the application of the basic

isomorphism between B1 and the ideal A1 of R2,w+1 (see

Prop. 2).

By definition of the isomorphism, we have:

φ−1
1 (φ1(u(x)).φ1(v(x))) = u(x).v(x)

So, φ1 can be used to send the elements of the field in the

ring, then, to perform the multiplication, and then, to come

back in the field. We show in the following Proposition that

the isomorphism admits a simplified version.

Let W (b(x)), the weight of b(x), defined as the number of

monomials in the polynomial representation of b(x).

Proposition 3.

φ1(bB(x)) = bA(x) =

{
bB(x) if W (bB(x)) is even

bB(x) + p(x) else

φ−1
i (bA(x)) = bB(x) =

{
bA(x) if bw = 0

bA(x) + p(x) else

where bw is the coefficient of the monomial of degree w of
bA(x).

Proof: For the first point, we have φ1(b(x)) =
b(x)θ1(x) = b(x)(p(x) + 1) = b(x)p(x) + b(x). We can

observe that b(x)p(x) = 0 when W (b(x)) is even and

b(x)p(x) = p(x) when W (b(x)) is odd. The first point is

thus obvious.

For the second point, it can be observed that, from the first

point of this proposition, if an element of A1 has a coefficient

bw �= 0, then it was necessarily obtained from the second rule,

i.e. by adding p(x). Then, its image into B1 can be obtained

by subtracting (adding in binary) p(x). If bw = 0, then nothing

has to be done to obtain bB(x).

B. Embedding transform

Let us denote by φE the embedding function which simply

consists in considering the element of the field as an element of

the ring without any transformation. This function was initially

proposed in [5].

Note that the images of the elements of B1 doesn’t neces-

sarily belong to A1. However, let us define the function φ̄−1
1

from R2,w+1 to A1 by φ̄−1
1 (bA(x)) = bA(α), where α is a

root of p(x). This function can be seen as an extension of the

function φ−1
1 to the whole ring.

Proposition 4. [5] For any u(x) and v(x) in B1, we have:

φ̄−1
1 (φE(u(x)).φE(v(x))) = u(x).v(x)

Proof. The embedding function corresponds to a multipli-

cation by 1 in the ring. In fact, 1 is equal to the sum of

the idempotents θi(x) of the ideals Ai, for i = 1, . . . , l [6,

chapter 8, thm. 7]. Thus, φE(u(x)) = u(x).
∑l

i=0 θi(x). Then,

φE(u(x)).φE(v(x)) is equal to u(x).v(x).(
∑l

i=0 θi(x))
2.

Thanks to the properties of idempotents, θi(x).θj(x) is equal

to θi(x) if i = j and 0 else. Thus, φE(u(x)).φE(v(x))
is equal to u(x).v(x).(

∑l
i=0 θi(x)). The function φ̄−1

i is

the computation of the remainder modulo pi(x). The irre-

ducible polynomial pi(x) corresponds to the ideal Ai. Thus

θi(x) mod p(x) is equal to 1 if i = 1 and 0 else.

This proposition proves that the Embedding function can be

used to perform a multiplication in the ring instead of doing

it in the field. The isomorphism also has this property, but the

complexities of the transforms between the field and the ring

are more complex.

C. Sparse transform

Let us define the transform φS from B1 to R2,w+1:

φS(bB(x)) = bA(x) = φ1(bB(x)) + δ.p(x)

where δ = 1 if W (φ1(bB(x)) + p(x)) < W (φ1(bB(x))) and

0 else.

Proposition 5. For any u(x) and v(x) in B1, we have:

φ̄−1
1 (φS(u(x)).φS(v(x))) = u(x).v(x)

Proof. As observed in the proof of Prop. 4, φ̄−1
i is just

the computation of the remainder modulo p(x). Moreover,

according to the definition of φS , φS(u(x)).φS(v(x)) is equal

to u(x).v(x) plus a multiple of p(x) (possibly equal to 0).

Thus, the remainder of φS(u(x)).φS(v(x)) modulo p(x) is

equal to u(x).v(x).

This proposition shows that φS can be used to perform the

multiplication in the ring. The main interest of this transform

is that the weight of the image of φS is small, which reduce

the complexity of the multiplication in the ring.



D. Parity transform

Proposition 6. The ideal A1 is composed of the set of elements
of R2,w+1 with even weight.

Proof: We can observe from Proposition 3 that all the

image of φ1 have even weight. Since the number of even-

weight element of R2,w+1 is equal to the number of elements

of A1, A1 is composed of the set of elements of R2,w+1 with

even weight.

Let us consider the function φP , from B1 to R2,w+1, which

adds a single parity bit to the vector corresponding to the finite

field element. The obtained element has an even weight (by

construction), and thus, according to the previous Proposition,

it belongs to A1.

Since the images by φP of two distinct elements are distinct,

φP is a bijection between B1 and A1. The inverse function,

φ−1
P , consists just in removing the last coefficient of the ring

element.

It should be noted that φP is not an isomorphism, but just

a bijection between B1 and A1. However it will be shown in

next Section that this function can be used in the context of

erasure codes.

IV. APPLICATION OF TRANSFORMS

In typical xor-based erasure coding systems [1], the encod-

ing process consists in multiplying an information vector by

the generator matrix. Since in software, xor are performed

using machine words of l bits, l interleaved codewords are

encoded in parallel.

We consider a system with k input data blocks and m output

parity blocks.

The total number of xor of the encoding is thus defined by

the generator matrix which must be as sparse as possible. First,

we use a k × (k +m)-systematic generator matrix built from

a k × k-identity matrix concatenated to a k ×m Generalized

Cauchy (GC) matrix [10]. A GC matrix generates a systematic

MDS code and it contains only 1 on its first row and on its

first column. Then, to improve the sparsity of the generator

matrix in the ring, we use the Sparse transform φS . This has

to be done only once since the ring matrix is the same for all

the codewords.

For the information vectors, it is not efficient to use φS

since the xors of machine words do not take into account

the sparsity of the xor-ed vectors. We thus use Embedding

or Parity transforms, which are less complex than φ1.

When Embedding is used for information vectors and

Sparse is used for the generator matrix, the obtained result

in the ring can be sent into the field by using φ−1
1 (proof

similar to the proofs of Propositions 4 or 5).

When Parity is used for the information vector, the image of

the vector in the ring only contains elements of the ideal A1.

Since these elements are multiplied by the generator matrix

(in the ring), the obtained result only contains elements of the

ideal A1. These elements have even weight, so it is not neces-

sary to keep the parity bit before sending them on the ”erasure

channel”. Since Parity transform is not an isomorphism, these

data can not be decoded by another method. Indeed, to decode,

it is necessary to apply φP (add the parity bit), then to decode

by multiplying by the inverse matrix, and then to to apply φ−1
P

(remove the parity bit on the correct information vector).

V. COMPLEXITY ANALYSIS

In this section, we determine the total number of xor
operations done in the coding and the decoding processes.

A. Coding complexity

The coding process is composed of three phases: the field

to ring transform, the matrix vector multiplication and the ring

to field transform. We assume that the information vector is a

vector of k elements of the field F2w .

For the first and the third phases, Table I gives the com-

plexities of Embedding and Parity transforms obtained from

their definition in Section III.

field to ring ring to field

Embedding 0 m.w
Parity bits k.w 0

TABLE I
NUMBER OF XOR FOR EMBEDDING AND PARITY TRANSFORMS

The choice between the two methods thus depends on the

values of the parameters: if k > m, Parity transform has lower

complexity. Else, ”Embedding” complexity is better.

For the matrix vector operation, let us first consider the

multiplication of two ring elements. As explained in the

previous section, the first element (which corresponds to an

information symbol) is managed by the software implementa-

tion by machine words. So the complexity of the multiplication

only depends on the weight of the second element, denoted by

w2 ∈ {0, 1, . . . , w+1}. The complexity of this multiplication

is thus (w + 1).w2.

Now, we can consider the specificities of the various trans-

forms. In the Parity transform, the last bit of the parity blocks

is not used ( i.e. it is not transmitted on the erasure channel). So

it is not necessary to compute it. It follows that the complexity

of the multiplication is only w.w2.

Similarly, for the Embedding transform, the last bit of

the input vector is always equal to 0. So, we also have a

complexity equal to w.w2.

To have an average number of operations done in the

multiplication of the generator matrix by the input data blocks,

we have to evaluate the average weight of the entries of the

generator matrix in the ring.

The generator matrix is a k ×m-GC matrix with the first

column and the first row are filled by 1. The other elements

can be considered as random non zero elements. They are

generated by φS which chooses the lowest ring element among

the two ones corresponding to the field element. Let us denote

their average weight by wφS
. For this case, the average number

of xors is thus:

(k +m− 1).w + (k − 1).(m− 1).w.wφS

This leads to the following general expression of the coding

complexity:

(min(k,m) + k +m− 1).w + (k − 1).(m− 1).w.wφS



To estimate the complexity on a practical example, we fix

the value of w to 4. Classic combinatorial evaluation (not

presented here) gives the average weight for nonzeros images

of φS :

wφS
=

w + 1

2w+1 − 2
.
(
2w −

(
w

w/2

))

So, wφS
= 1.66. We plot in Figure 1 the evolution of the factor

over optimal (used e.g. in [2], table III) which is the density

of the matrix normalized by the minimal density, k.m.w. We

vary the value of k for three values of m: 3, 5 and 7. For each

pair (k,m), we generate 10000 random GC matrices and keep

the best we found.

2 4 6 8 10 12 14
1

1.2

1.4

1.6

1.8

k

fa
ct

o
r

factor over optimal

m=3 m=5 m=7

best m=3 best m=5 best m=7

Fig. 1. Factor over optimal depending on m

We can observe that the values are very low. For example,

[2] gives the lowest density of Cauchy matrices for the field

F24 and we can observe that our values are always lower than

these ones.

To reduce the complexity in specific cases, we can observe

that the ring contains w elements whose the corresponding

matrix is optimal (one diagonal). By using these elements, we

can search by brute force MDS matrices built only with these

optimal elements. For example, let us consider the elements of

the field F24 sent into the ring R2,5. The Vandermonde matrix

defined by:

V =
(
xi.j

)
i=0,...,4;j=0,...,4

where x is a monomial in R2,5 has the minimal number of

1. It can be verified that this matrix can be used to build a

systematic a MDS code. For this matrix, the total number of

xors done in the generation of the parity packets (including

the field-to-ring and ring-to-field transforms) is

(min(k,m)+k+m−1).w+(k−1).(m−1).w = k.w+k.m.w

Its factor over optimal is equal to 1.2 which is lower than

the values given in Figure 1 and which is close to the lowest

bound given in [3].

B. Decoding complexity

As the decoding is a matrix inversion and a matrix vector

multiplication, we can use the same approach to perform the

multiplication. We first invert the sub-matrix in the field, then

we transform each entry of this matrix into ring elements.

Then, we perform the ring multiplication.
The complexity of the decoding thus depends on the com-

plexity of the matrix inversion and on the complexity of the

matrix vector multiplication.
The complexity of the matrix vector multiplication was

studied in the previous paragraph.
The complexity of the a r× r-matrix inversion is generally

in O(r3) operations in the field. But if the matrix has a Cauchy

structure, this complexity can be reduced to O(r2) [1].
Note that, contrarily to the matrix vector multiplication, the

matrix inversion complexity does not depend on the size of

the source and parity blocks. And thus, it becomes negligible

when the size of the blocks increase.

VI. SCHEDULING

An interesting optimization on MDS erasure codes under

xor-based representation is the scheduling of xor operations.
Such techniques are proposed in [11], [12], [2] and [13].

The general principle consists in ”factorizing” some xor
operations which are done several times to generate the parity

blocks.
We show in the two next paragraphs that these techniques

can be used very efficiently on the ring elements.
However, it can be observed that the matrices defined over

rings have two main advantages.

A. Complexity reduction
Over finite fields, the scheduling consists in searching

common patterns on the binary representation of the generator

matrices. The w × w-matrices representing the multiplication

by the field elements does not have particular structure and

thus, they must be entirely considered in the scheduling

algorithm.
This is not the case for the (w + 1) × (w + 1)-matrices

corresponding to a ring element because, thanks to the form

of the polynomial xw+1 + 1, they are composed of diagonals

either full of 0 or 1. This means that they can be represented

in the scheduling algorithm just by their first column or,

equivalently, by the ring polynomial.
This allows to drastically reduce the algorithm complexity

and thus to handle bigger matrices. From a polynomial point

of view, the search of scheduling just consist in finding some

common patterns in the equations generating the parity blocks.

Example . Let us assume that n = 5 and that three data

polynomials a0(x), a1(x) and a2(x) are combined to generate

the three parities p0(x) = (1+x4)a0(x)+x2a1(x)+x3a2(x),
p1(x) = a0(x) + x3a1(x) + (1 + x3)a2(x) and p2(x) =
a0(x) + a1(x) + x3a2(x).

In this case, the scheduling just consists in computing

p′(x) = a0(x) + x3a2(x) and then p0(x) = p′(x) +
x4a0(x) + x2a1(x), p1(x) = p′(x) + x3a1(x) + a2(x) and

p2 = p′(x) + a2(x).
To estimate the complexity, we can consider the number of

sums of polynomials. Without scheduling, we need 11 sums

(4 for p0(x), 4 for p1(x), and 3 for p2(x)) instead of with

scheduling, we only need 10 sums (2 for p′(x), 3 for p0(x),
3 for p1(x) and 2 for p2(x)). �



B. Additional patterns

Ring-based matrices allow to find more common patterns

than field-based matrices. The main idea is to observe that,

in the ring, we can ”factorize” not only common operations,

but also operations which are multiple by a monomial (i. e.
cyclic-shift) of operations done in some other equations. This

is possible only because the multiplications are done modulo

xw+1 + 1.

Example . Let us assume that n = 5 and that three data

polynomials a0(x), a1(x) and a2(x) are combined to generate

the parities p0(x) = a0(x) + x2a1(x) + (1 + x2)a2(x),
p1(x) = x2a0(x) + x3a1(x) + (x + x4)a2(x) and p2(x) =
x2a0(x)+a1(x)+ (x2+x3)a2(x). We can observe that, with

a ”simple” scheduling, it is not possible to factorize some

operations.

However, by rewriting the polynomials, we can reveal fac-

torizations: p1(x) = x2a0(x)+x(x2a1(x)+a2(x))+x4a2(x)
and p2(x) = x2a0(x) + x3(x2a1(x) + a2(x)) + x2a2(x).
So, if p′(x) = x2a1(x) + a2(x), we have p0(x) = p′(x) +
a0(x) + x2a2(x), p1(x) = xp′(x) + x2a0(x) + x2a2(x) and

p2(x) = x3p′(x) + x2a0(x) + x2a2(x).
To estimate the complexity by the same method than

in the previous example, we need 11 polynomial additions

with scheduling compared to 12 additions necessary without

scheduling. �

C. Scheduling results

To evaluate the potential gain of the scheduling, we have

implemented an exhaustive search of the best patterns on

generator matrices.

This algorithm was applied on several codes for the field

F24 . Table II presents the results in term of ”factor over

optimal” which is defined as the total number of 1 in the

matrix over the number of 1 for the optimal MDS matrix , i.e

k.m.w.

When working in a ring, we include to the complexity

the operations needed to apply the transforms. In this case,

Embedding transform has a lower complexity. So we added

m.w to the number of 1 in the matrix resulting from the

scheduling algorithm.

For each case, we have generated 100 random Generalized

Cauchy matrices.

The measured parameters are:

• average field matrix: average number of 1 in the GC

matrices divided by k.m.w
• best field matrix: lowest number of 1 among the GC

matrices divided by k.m.w
• average ring matrix: average number of 1 in the ring

matrices (without scheduling) + ring-field correspondence

divided by k.m.w
• best ring matrix: best number of 1 among the ring

matrices (without scheduling) + ring-field correspondence

divided by k.m.w
• average with scheduling: average number of xors with

scheduling + ring-field correspondence divided by k.m.w
• best with scheduling: best number of xors with schedul-

ing + ring-field correspondence divided by k.m.w

k+m,k 12,8 16,10

average field matrix 1.79 1.90
best field matrix 1.73 1.85

average ring matrix 1.59 1.63
best ring matrix 1.5 1.58

average with scheduling 1.32 1.26
best with scheduling 1.19 1.20

TABLE II
FACTOR OVER OPTIMAL FOR w = 4

This table confirms that, even without scheduling, ring

matrices have a lower density than field matrices, thanks to

the Sparse transform. Applying scheduling to these matrices

allows a significant gain of complexity. Indeed, it reduces the

complexity by more than 20% on the best matrices. The final

results are similar to the results obtained (without scheduling)

on the optimal matrix in Section V-A. To the best of our

knowledge, other scheduling approaches do not reach this level

of sparsity for these parameters.

VII. CONCLUSION

In this paper, we have presented a new method to build

MDS erasure codes with low complexity. By using transforms

between a finite field and a polynomial ring, sparse generator

matrices can be obtained. This allows to significantly reduce

the complexity of the matrix vector multiplication. It also al-

lows simple schedulers that drastically improve the complexity

by reducing the number of operations.

Similar results can be obtained with Equally-Spaced Polyno-

mials (ESP) [5], but they are not presented here due to lack

of space.
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