
HAL Id: hal-01697206
https://hal.science/hal-01697206

Submitted on 31 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Time Management of Heterogeneous Distributed
Simulation

Clément Michel, Janette Cardoso, Pierre Siron

To cite this version:
Clément Michel, Janette Cardoso, Pierre Siron. Time Management of Heterogeneous Distributed
Simulation. The 31st European Simulation and Modelling Conference (ESM’2017), Oct 2017, Lisbon,
Portugal. pp. 343-349. �hal-01697206�

https://hal.science/hal-01697206
https://hal.archives-ouvertes.fr


�

���������	
���������������������	�	�������	���������	�������������
�	������������	��������

��������������	��	��������
�������	������

�
�����������������	���������������������������

������ �	� ��� �
��� ����		� ��
�	������ ����� �������	� ���� ��� � ��� 	���� ������	��

��	�������	������� �	����������������������������������������
�		�������

���	��	���������������������������	����
����	���������

�����������	�
��	��� ��

�

�

�

�

an author's https://oatao.univ-toulouse.fr/19255

Michel, Clément and Cardoso, Janette and Siron, Pierre Time Management of Heterogeneous Distributed

Simulation. (2017) In: The 31st European Simulation and Modelling Conference (ESM'2017), 25 October 2017 - 27

October 2017 (Lisbon, Portugal).



TIME MANAGEMENT OF HETEROGENEOUS DISTRIBUTED SIMULATION

Clément Michel
Janette Cardoso
Pierre Siron

ISAE-SUPAERO, University of Toulouse
10 avenue Édouard Belin

BP 54032 - 31055 Toulouse CEDEX 4, France
Email: {firstname.lastname}@isae-supaero.fr

KEYWORDS
Aerospace, Distributed Processors, Model design, Dis-
crete simulation, Simulation interfaces, Cyber-Physical
Systems, Heterogeneous Systems, HLA, Distributed
Simulation

ABSTRACT

Cyber-physical systems (CPS), by their very nature,
mix continuous and discrete behavior and are modeled
by heterogeneous components. Formal analysis cannot
always handle such complex systems and simulation is a
necessary step. In particular, distributed simulation is
very useful for the validation of CPS for two main rea-
sons: either the CPS itself is distributed (e.g., a fleet of
UAVs) or the CPS is too complex and/or has too much
models (e.g., an aircraft). We discuss in this paper the
impact of distributing the simulation of a system: which
are the rules that must be applied to guarantee a cor-
rect behavior between the different simulators? If a cen-
tralized simulation already exists (using Discrete Event
simulation), which hypothesis must be made for the Dis-
tributed Discrete Event simulation? The co-simulation
framework used and discussed in this work is Ptolemy-
HLA. It allows a Ptolemy model to be distributed using
the high-level architecture (HLA) standard.

INTRODUCTION

The analysis of cyber-physical systems (CPS) is a com-
plex task due to the heterogeneity of the parts involved,
as they integrate different methodologies and tools.
Simulating different parts of a CPS requires different
abstraction and tool supports, and the lack of interop-
erability between tools poses a major challenge. Because
of the nature of the CPS, or because of its complexity,
distribution can be necessary.
Distributing a simulation brings its own challenges,
as it requires all the simulation elements to conform
to a collection of rules in order for the elements to
communicate between them.

In this work, the Ptolemy framework is used for mod-

eling the CPS system, and HLA is the standard cho-
sen for the distribution. The IEEE High-Level Archi-
tecture (HLA) is a standard for distributed discrete-
event (DDE) simulation. CERTI is a HLA-compliant
RTI (Run Time Infrastructure). Ptolemy II is a model-
ing and simulation tool for heterogeneous systems, well
suited for modeling CPS since it provides different mod-
els of computation (MoC). In this paper, the simula-
tion entities, called federates are Ptolemy models, but
the approach presented in this paper can be easily used
for other simulators. We focus on the time representa-
tion issues introduced in a distributed simulation, using
HLA as a standard for the co-simulation and Ptolemy as
a simulator component. Interoperability and reuse are
important targets, so the coupling between simulators
is an important issue in the design. The first step in a
distributed simulation is to find the partition of a sim-
ulation model consisting of a set of sub-models. Which
sub-models can (or must) be put together in a simu-
lator belonging to the distributed simulation? How to
guarantee that the distributed simulation will be valid
(according to some criteria)?
The purpose of this work is twofold: Providing prop-
erties that ensure a correct time coordination between
a federate and HLA, and studying the impact of the
distribution in the Ptolemy-HLA framework in order to
build models requiring timely input. By studying this
specific coupling, we intend to find general problems as
well their solutions concerning the time management of
heterogeneous distributed simulations.
We will start by presenting the characteristics of both
Ptolemy and HLA. Then, we will discuss the impact of
an HLA-based distribution, before introducing elements
needed for the Ptolemy-HLA simulation to be conserva-
tive.

PTOLEMY

Ptolemy II is a Java open-source simulation and
modeling tool intended for experimenting with system
design techniques, particularly those that involve
combinations of different types of models (Ptolemaeus
2014). A Ptolemy simulation, called model, is com-



posed of a Director and software components called
actors, that execute concurrently and communicate
through messages (called events) carrying values, sent
via interconnected ports. An actor that is executed is
said to be fired.

The collection of rules that governs concurrent execu-
tion of the actors and the communication between them
is called a Model of Computation (MoC). The MoC for
each actor is implemented as a Director, a software com-
ponent that dictates how actors should be fired. In this
paper, we focus on the Discrete Event (DE) and Con-
tinuous MoCs.
Ptolemy uses a model of time known as the superdense
time, represented by a tuple (t, n), where t is called the
model time and n is called the microstep. The model
time represents the time at which some events occurs,
and the microstep represents the sequencing of events
that occur at the same model time (Manna and Pnueli
1993, Ptolemaeus 2014). The events are ordered in the
event queue first by t, then by n.
An event e is noted e((t, n), v) with (t, n) the timestamp
and v the value of the event. To ensure determinism, the
order in which actors are fired when multiple events are
queued for the same timestamp (t, n) is given by the
actor rank, a topological sort that lists the actors in
data-precedence order.
In the DE MoC, a model advances its logical time to the
timestamp of the next event in the queue, and the actor
to whom this event is destined for is executed. In the
Continuous MoC, the model advances its logical time to
a timestamp computed by the solver (Runge-Kutta 23
or Runge-Kutta 45), and all actors are fired at once.
Ptolemy provides a so-called TimeRegulator interface
with a proposeTime method (Ptolemaeus 2014). This
interface is implemented by attributes that wish to be
consulted when a Director advances time. The Director
will call the proposeTime method, passing it a proposed
time to advance to, and the method will return either
the same proposed time or a smaller time.

HLA

The High-Level Architecture (HLA) is a standard for
distributed discrete-event simulation. In HLA terminol-
ogy, the entire system to be simulated is represented by
a federation, which is a collection of federates (simula-
tion entities or simulators).
The execution of a federation uses a middleware, called
the Runtime Infrastructure (RTI). The federation have a
Federation Object Model (FOM), a file that contains the
definition of data structures (called objects) exchanged
between the federates.
In a federation, messages are exchanged between the
various federates through the RTI. Those messages,
called events, can be timestamped. Messages that are
time-stamped are said TSO for Time Stamp Order.

Among the services defined by the HLA stan-
dard (IEEE-SA Standards Board 2010), we will focus
on object management and on time management.

The object management service allows for federates to
exchange messages and values. We focus here on two
functions: Update attribute value (UAV), that sends a
message to the federation, and Reflect Attribute Value
(RAV), that delivers a message from the federation.
A federate is said regulating and constrained when it
both sends and receives TSO messages. When all the
federates are regulating and constrained, the federation
is said to be conservatively synchronized (Kuhl et al.
2000). Regulating federates generate TSO messages
that must occur no earlier than hc + lah, with hc being
the current HLA time for the federate, and lah being
its lookahead, a value that establishes a lower bound on
the timestamps that can be sent.
While a Discrete Event simulation simply advances its
time to t when wanting to, a Distributed Discrete Event
simulation first asks for the permission to advance to h,
and only advances to h when granted its authorization.
A time constrained federate requests to move its logical
time forward by first asking the RTI to do so, either
through a Next Event Request (NER) or a Time Ad-
vance Request (TAR). The RTI replies to this request
by sending all TSO messages up to h to the federate,
then sending back a Time Advance Grant (TAG). The
TAG is written TAG(h) and is an “authorization” for
the federate to advance to the logical time h.

TAR
Consider a federate is at time h and asks for a time h1
through a TAR(h1); the next time value is always h1
granted by TAG(h1). So TAR(h1) → TAG(h1). The
figure 1 illustrates the reception of a RAV (h′) messages
with h < h′ ≤ h1 during the advancing phase to h1:
the logical time is not updated to h′ and is eventually
granted to h1.

h h1 h2

RAV(h')

TAR(h1) TAR(h2)

Figure 1: TAR Time Advance Policy Illustrated.

NER
Consider a federate is at time h and asks for a time h1
through a NER(h1). If it receives a message RAV (h′)
with h < h′ ≤ h1, it advances its time to h′:

NER(h1)→
{
TAG(h′), if RAV (h′)
TAG(h1), if no RAV (h′)

Figure 2 illustrates this advance policy. If the federate is
still willing to go to h1, a new NER(h1) must be asked.



h h'

RAV(h')

NER(h1)
h1

NER(h1)

Figure 2: NER Time Advance Policy Illustrated.

IMPACT OF THE DISTRIBUTION AND
COUPLING

To take part in a HLA federation, a simulator needs a
HLA coupling interface, that handles the coupling be-
tween the simulator and HLA. Let us consider Figure 3
where two parts are depicted:

• Distribution: ruled by HLA standard that guaran-
tees the time advancing is coherent for all federates
(no simulator will advance to a time in the past, and
TSO message are delivered in time-stamp order);

• Coupling: put in accordance the time advancing
mechanism of the simulator with the HLA time ad-
vancing mechanism and so guarantee an ordered
data exchange between the simulators in the feder-
ation.

The object management services (UAV, RAV) and the
time management services (NER, TAR) are indepen-
dent. However, the delivery of a RAV message is done
during the time advancing phase.
Let be t be the simulation time and h the HLA time.
The distributed simulation in Figure 3 is a Federation
where Federate f1 simulates a model M1 and Federate
f2 simulates a model M2. Each federate has its own
calendar queue, and events are sent/received through
the RTI using HLA services UAV and RAV. The time
is advanced using HLA services TAR (or NER).

Figure 3: Distribution and coupling

Let be:

• t1 the timestamp at which f1 wants to produce an
event (to be sent through the RTI);

• he the timestamp of this corresponding event in the
HLA service UAV sent through the RTI; it is also
the timestamp of the callback RAV;

• t2 the timestamp of an event put in f2 calendar
queue after the reception of the RAV from the RTI;

• hc the current HLA time;

• lah the lookahead;

• TS the HLA time step, defined only when using
TAR; hc + TS is called next point in time.

In such a distributed simulation, the event time stamp
of a message can be altered twice, t1 → he and he → t2,
due to:

• Different time representations;

• the distribution itself and its rules, e.g. a federate
cannot send an event earlier then hc+ lookahead;

• the coupling HLA ↔ simulator providing a coher-
ent way for both time advancing mechanisms.

Indeed, a coupled distributed simulation does not come
without a cost, and t2 > t1. In the next section, the
Ptolemy-HLA coupling will be presented. Let us point
out that in this paper we will focus on NER time man-
agement but TAR was also designed and implemented.

PTOLEMY-HLA

Ptolemy-HLA (Lasnier et al. 2013) aims to provide
a distributed, conservative simulation. Both HLA
and Ptolemy offer conservative time management op-
tions (Buck et al. 1994, Fujimoto 2003), then the inter-
face binding them together must be conservative as well.
In this section, we detail the different conditions needed
for a Ptolemy-HLA conservative simulation.

Ptolemy/HLA Coupling Design

For a Ptolemy model to work as a HLA federate, the
model’s Director must be a DE Director. However, it
can very well contain composite actors that themselves
contain a Continuous Director each. Three Ptolemy
components are added for Ptolemy and HLA to com-
municate:

• HlaManager : encompasses the high-level HLA
rules and services such as time management and
object management.

• HlaSubscriber actor: receives events from the HLA
federation through RAVs (pictured on Figure 4b).

• HlaPublisher actor: sends Ptolemy events to the
HLA federation through UAV service (pictured on
Figure 4c).

Events circulating through the federation (even when
not sent to another federate) must respect both HLA
and Ptolemy time restrictions. In order to coordinate
both Ptolemy time advancing and HLA time advancing,
the proposeTimemethod was extended in order to allow
Ptolemy to query the RTI for a time t. When a Ptolemy



federate wants to advance its time to the timestamp of
the earliest event available, it first interrogates the RTI
through the proposeTime algorithm, and wait for the
RTI to grant it.
Algorithm 1 displays the proposeTime for the NER.

Algorithm 1 Extended proposeTime algorithm (NER)

1: NER(tasked)
2: while TAG(hreceived) not received do
3: tick()
4: end while
5: tasked ← hreceived
6: if RAV received then
7: Schedule HlaSubscriber firing at tasked
8: end if
9: return tasked

The Ptolemy-HLA framework allows a federation (f1,
f2) with any combination of federates time man-
agement: (NER,NER), (NER,TAR), (TAR, NER),
(TAR,TAR). This is true also for a federation with more
than two federates.
The events exchanged between the federates see their
timestamp manipulated and shifted as depicted on Fig-
ure 3. In order to coordinate HLA and Ptolemy time,
the coupling interface in the simulator has two time
lines. In this section, we consider that both time lines
have the same computer representation, so both can be
directly compared.
In the sequel, let us present how the timestamp can
change in the Ptolemy-HLA framework when sending
and receiving an event according to the time manage-
ment.

Sending a Ptolemy event through the RTI:
Let be t1c the current (Ptolemy) logical time of federate
f1 and h1c be the current HLA time. The federate wants
to send an event e(t1c) (through the HlaPublisher actor)
using a HLA UAV(h1) service; timestamp h1 depends on
the federate’s time management:

NER: h1 =h1c + lah,with h1c = t1c (1a)

TAR: h1 =

{
h1c + lah, if t1c < h1c + lah
t1c , otherwise (1b)

Receiving a RAV from the RTI:
Let be t2c the current (Ptolemy) logical time of federate
f2 and h2c be the current HLA time. The reception of
the HLA RAV(h1) service at h2c wakes up a HlaSub-
scriber actor with a Ptolemy event e(t2); the timestamp
t2 depends on the federate’s time management:

NER: t2 =h1 (2a)
TAR: t2 =h2c + TS (2b)

These rules are necessary in order to produce a conser-
vative distributed simulation that respects the rules of
both HLA and Ptolemy (i.e. no TSO message sent ear-
lier than hc+ lookahead, no event insertion in Ptolemy’s
past).
It can be seen from equations 1a, 1b, 2a and 2b that the
difference t2 − t1c between the production of an event
at time t1c in f1 and its consumption at time t2 at f2
depends on the time management of each federate and
its parameters:

t2 − t1c = f(lah, (TS), t1c , h1c , h2c).

Let us consider again Figure 3, where both federates f1
and f2 use a NER time management with hc current
HLA time for both federates and a same lookahead lah.
Notice that they can also have different lookaheads.
Let be t1c the current (Ptolemy) logical time and ef1(t1c)
the event that wakes up the HlaPublisher actor in f1.
By using equation 1a, the corresponding UAV is sent
with timestamp h1 = t1c + lah (regardless of f2 time
management). The RAV event with timestamp h1 re-
ceived by f2 is queued at HlaSubscriber actor as a event
ef2 with timestamp t2 = h1 given by equation 2a. Thus,
the (NER,NER) configuration introduces in the dis-
tributed simulation a delay δNER−NER = t2−t1c = lah.

Ptolemy/HLA coupling: implementation issues

Coupling Ptolemy with HLA requires to take into ac-
count that the time representation is different: CERTI
RTI uses IEEE 754 double (with dynamic precision)
and Ptolemy uses its own Time representation (fixed
precision). These two time representations must be well
converted.
Timestamps in Ptolemy are represented under the form
t = n ∗ r with n an integer (called the time value) and
r a Java double (called the time resolution). Thus, time
values in Ptolemy can only adopt values that are multi-
ple of r, e.g. r, 2r, 3r, etc. . .
Despite the time representation difference, one must
guarantee that:

• Rule 1: No event should be inserted into the simu-
lator’s past — tRAV > tPtII

• Rule 2: No UAV should be sent in the past of the
HLA federation — hUAV > hHLA

Non observance of these rules violates the causality of
either the federation or the simulator, outputting wrong
results.
At the earliest stages of Ptolemy-HLA, the question of
the conversion between different (computer) representa-
tion was eluded, even if it was well-known that a func-
tion f̂ such as f̂(hHLA) = tPtII and f̂−1(tPtII) = hHLA

was unobtainable.



In the following, the difference between HLA and
Ptolemy (or any other simulator that does not use dou-
ble) time representation is taken into account. In this
work, we introduce two functions f and g such as:{

f(hHLA) = tPtII

g(tPtII) = h′HLA

Several properties are required from f and g in order
to respect temporal coherence in TAR and NER cases,
such as:
• f and g are monotonous strictly increasing functions
• ∀h1, h2, h3 h3 ≥ h2 > h1 ⇒ h3 ≥ (g ◦ f)(h2) > h1
• ∀t1, t2 t2 ≥ t1 ⇒ (f ◦ g)(t2) ≥ t1.

We find these properties hard to fulfill from a math-
ematical point of view, even probably they cannot be
fulfilled if f and g are not the identity function and this
is not possible with heterogeneous systems. In such a
context, we can find and use algorithmic solutions in or-
der to use existing conversion functions and to solve the
list of the identified problems.
Thus, each time that t and h must be compared in Al-
gorithm 1, we introduce f and g, two monotonous, non-
strictly increasing functions, with the hypothesis that al-
gorithmic modifications will allow the functions to work
in our context. Considering the f and g functions, Al-
gorithm 1 is modified to Algorithm 2 in the following
way:

• NER is called only if g(tasked) > hcurrent: prevents
Ptolemy from requesting a time advance if the re-
quested time is imperceptible by the HLA time.

• tasked ← tcurrent+r, if f(hreceived) ≤ tcurrent, r be-
ing Ptolemy’s resolution: prevents HLA from grant-
ing a time advance imperceptible by the Ptolemy
time.

Equations 1a, 1b, 2a and 2b are also modified in order
to take f and g into account. For instance, 1a becomes
h1 =, h1c + lah,with h1c = g(t1c).
Finally, we keep the association between the return of a
function and its argument, i.e. when a value t1 = f(h1)
is received, the association between t1 and h1 is memo-
rized, and we will output h1 when evaluating g(t1).
Algorithm 2 ensures a framework where rules 1 and 2
are observed.
Because of this difference in HLA and Ptolemy time
representation, the theoretical delay induced by the dis-
tribution described in the previous sub-section can be
slightly altered by a value ε introduced by the conver-
sion between the time representations.

APPLICATION

A full case study of a longitudinal flight control (Lasnier
et al. 2013) will be considered in this section.

Algorithm 2 Modified ProposeTime Algorithm (NER)

1: if g(tasked) > hcurrent then
2: NER(g(tasked))
3: while TAG(hreceived) not received do
4: tick()
5: end while
6: if RAV received then
7: if f(hreceived) > tcurrent then
8: tasked ← f(hreceived)
9: else

10: tasked ← tcurrent + r
11: end if
12: Schedule HlaSubscriber firing at tasked
13: end if
14: end if
15: return tasked

Centralized simulation

(a) Centralized F-14.

(b) HlaSubscriber

(c) HlaPublisher

Figure 4: F-14

The centralized (hierarchical and heterogeneous)
Ptolemy model, based on a Matlab model of an F-14
aircraft, is pictured on Figure 4a. Aircraft and Stick
are composite actors modeled in the continuous MoC
and the AutoPilotDE composite actor (controller) uses
a DE MoC. As in a real aircraft, signals in the contin-
uous domain need to be sampled in order to be used in
the DE domain.
Let us highlight the model of the AutoPilotDE block.
The block comports one output ElevCom that is the ele-
vation command sent to the Aircraft block, and takes
in three inputs:
• stickS: The current action on the stick.
• alphaS: The current vertical velocity of the F-14.
• qS: The current pitch rate of the F-14.

If only one of the inputs receives an event, the
AutoPilotDE block will consider the others inputs as ab-
sent. Thus, receiving the events at three different times-
tamps would trigger three different rounds of computa-
tion that would output incorrect elevCom values. As
a consequence, the events concerning variables stickS,
alphaS and qS must be fed at the same timestamp (t, n)
for the output to be correct. Thanks to the topolog-
ical sort, we are guaranteed to have all these events



produced by the PeriodicSampler before actors within
AutoPilotDE are fired, processing the three events at
once.

Distributed simulation

Figure 5: Federate f14AutoPilotDE.

A distributed version of the F-14 is obtained by cre-
ating a new federate model for each of the three ac-
tors in Figure 4a: PilotStick, AutoPilotDE, and
PilotStick. For each actor, an input port is connected
to an HlaSubscriber (pictured on Figure 4b) and an
output port is connected to an HlaPublisher (pictured
on Figure 4c). The f14AutoPilotDE federate, contain-
ing the AutoPilotDE block, is pictured on Figure 5.
The Stick PilotStick and Aircraft AircraftSAct
are composite actors containing the HlaSubscriber re-
ceiving events, respectively, from f14PilotStick and
f14Aircraft federates, while the elevCom actor is an
HlaPublisher sending events to the federation.
The three federates use the NER time advancing mech-
anism with a same lookahead lah.
Let us consider tstick, talpha, tq the timestamps of the
events arriving, respectively, at inputs stickS, alphaS
(generated by the f14Aircraft federate) and qS (gen-
erated by the f14PilotStick federate).
According to equation 1a, the UAVs at f14Aircraft
and f14PilotStick federate are sent with timestamp
h = g(t + lah), with h the current HLA time for the
federate when the event is produced. The RAVs received
at f14AutoPilotDE federate are then queued as events
e with timestamps t′ = f(h) according to equation 2a.
For the AutoPilotDE block inside f14AutoPilotDE fed-
erate to work properly, events for all the inputs are re-
quired to be received at the same time. Thus, t′stick =
t′alpha = t′q. By expressing t′ as a function of t, we obtain
the following condition:

f(g(tstick) + lah) = f(g(talpha) + lah) = f(g(tq) + lah)

Since the three federates are Ptolemy federates, they
have the same f, g functions. Moreover, as all the fed-
erates have the same lah, we can reduce the condition
to

tstick = talpha = tq

This condition is satisfied as the PeriodicSamplers
(actors sampling the output of continuous models in
Aircraft and Stick blocks in Figure 4a) outputs all
the events at the same time since they have the same
period. Thus, the AutoPilotDE block receives and pro-
cesses its inputs the same way than in the centralized
model, albeit in a time-shifted manner. The bias lah
introduced by the distribution does not, in this case,
generate significant changes in the simulation behavior.
So, the AutoPilotDE block maintains its expected be-
havior under some conditions on the other federates.

RELATED WORK

In (Deschamps et al. 2017), the partitioning of a sim-
ulation is discussed, addressing the simultaneity at the
inputs of all components (of a distributed simulation).
A formalism is proposed to prove the equality of de-
lays by design and so the distributed simulation is valid.
The case study of an f14 aircraft is presented in (Michel
2017) where, for a given partition, the cyber component
is analyzed to guarantee that the data consumptions are
simultaneous using different implementations: memory
blocs, internal clock.
An aspect in distributed simulation is the multiplicity
of times and the different representation of these time
values. One must guarantee that the times advancing of
the distributed simulation are done correctly (e.g., con-
servation simulation (Fujimoto 2003)). The time repre-
sentation of each simulator, and the entity that allows
for co-simulation – HLA or master algorithm in FMI –
must be well dealt in the coupling between them. A de-
tailed analysis of time representation in the FMI frame-
work is done in (Cremona et al. 2017). In particular this
paper discuss the choice of resolution to be used when
the FMUs (components of a co-simulation) have differ-
ent resolutions. The coordination of different times issue
appears also in real cyber-physical systems (Shrivastava
et al. 2016).
In (Nägele and Hooman 2017), a HLA/simulator cou-
pling, called wrapper, is modeled using POOSL (Paral-
lel Object-Oriented Specification Language). They use
PoRTIco, a HLA compliant RTI and their federates are
also regulating and constrained.

CONCLUSION AND PERSPECTIVES

Ptolemy-HLA framework allows to run valid distributed
simulations for Event-Driven (NER) and Time-Stepped
(TAR) advancing mechanisms. For a same federate
model, the user can choose several parameters such as
the time advancing mechanism (TAR or NER) and the
lookahead. The framework implementation as well sev-
eral demos are available at (The Ptolemy Project 2017).
The coupling algorithm between Ptolemy and HLA in
the case of NER mechanism was detailed in this paper.
For highlighting a valid coupling, first we consider that



the (computer) representation of its timelines are the
same, then we extended the algorithm for taking their
representation difference into account. The TAR mech-
anism was also implemented in (The Ptolemy Project
2017). In both cases a time bias between the federates,
expressed by equations 1a to 2b, is introduced but the
algorithm guarantees an valid and efficient distribution.
When considering different time representation, the bias
can be slightly increased by a value ε introduced by the
time conversion.
The f14 Federation presented in this paper was obtained
from the centralized model following the characteristics
of a CPS: a federate for the cyber part (the controller),
a federate for the plant (the aircraft), and a federate
for the pilot stick that can be replaced by a real hard-
ware in this federation. However, the distribution of
a model needs some thought process about the model.
In a centralized model some hypotheses are implicit, for
instance the reception of all data generated by uphill ac-
tors. This constraint is ensured by the topological sort
handled by Ptolemy that determines a deterministic ex-
ecution order. This execution order can also be ensured
in a distributed context, as well as the (logical) simul-
taneity of the inbound events of an actor, even consid-
ering the timestamp modification introduced by HLA.
An analysis must be performed by the user to ensure
that the chosen distribution is correct since a simula-
tion can be distributed according to different mappings.
For helping the user to make this analysis, the next step
is the design of an extra “layer” that both helps the user
to distribute a model and ensure that the centralized
model is correctly distributed taking into account the
bias introducing by the distribution and the coupling.

ACKNOWLEDGMENT

This research was partly supported by the French Min-
istry of Defense through financial support of the Direc-
tion Générale de l’Armement.

REFERENCES

Buck J.T.; Ha S.; Lee E.A.; and Messerschmitt D.G.,
1994. Ptolemy: A Framework for Simulating and Pro-
totyping Heterogeneous Systems. International Jour-
nal of Computer Simulation, 4, 155–182.

Cremona F.; Lohstroh M.; Broman D.; Tripakis S.; and
Lee E.A., 2017. Hybrid Co-Simulation: It’s About
Time. Tech. Rep. UCB/EECS-2017-6, University of
California at Berkeley.

Deschamps H.; Siron P.; Cardoso J.; and Cappello G.,
2017. Toward a Formalism to Study the Schedul-
ing of Cyber-Physical Systems Simulations. In 2017
IEEE/ACM 21st International Symposium on Dis-
tributed Simulation and Real Time Applications (DS-
RT) (DS-RT’17). Rome, Italy.

Fujimoto R.M., 2003. Parallel Simulation: Distributed
Simulation Systems. In 35th Conference on Winter
Simulation. Winter Simulation Conference, WSC ’03.
ISBN 978-0-7803-8132-2, 124–134.

IEEE-SA Standards Board, 2010. IEEE Standard for
Modeling and Simulation (M & S) High Level Archi-
tecture (HLA): Federate Interface Specification. In-
stitute of Electrical and Electronics Engineers, New
York. ISBN 978-0-7381-6247-8.

Kuhl F.; Dahmann J.; and Weatherly R., 2000. Creat-
ing Computer Simulation Systems: An Introduction
to the High Level Architecture. Prentice Hall PTR,
Upper Saddle River, NJ. ISBN 978-0-13-022511-5.

Lasnier G.; Cardoso J.; Siron P.; Pagetti C.; and Der-
ler P., 2013. Distributed Simulation of Heterogeneous
and Real-Time Systems. In IEEE/ACM 17th Interna-
tional Symposium on Distributed Simulation and Real
Time Applications. IEEE Computer Society, 55–62.

Manna Z. and Pnueli A., 1993. Verifying Hybrid Sys-
tems. In Hybrid Systems, Springer, Berlin, Heidel-
berg, Lecture Notes in Computer Science. ISBN 978-
3-540-57318-0 978-3-540-48060-0, 4–35. doi:10.1007/
3-540-57318-6_22.

Michel C., 2017. Distributed Simulation of Cyber-
Physical Systems. Tech. rep., ESIEA, ISAE-
SUPAERO.

Nägele T. and Hooman J., 2017. Co-Simulation of
Cyber-Physical Systems Using HLA. In 2017 IEEE
7th Annual Computing and Communication Work-
shop and Conference (CCWC). 1–6. doi:10.1109/
CCWC.2017.7868401.

Ptolemaeus C. (Ed.), 2014. System Design, Modeling,
and Simulation Using Ptolemy II. Ptolemy.org.

Shrivastava A.; Derler P.; Baboudr Y.S.L.; Stanton
K.; Khayatian M.; Andrade H.A.; Weiss M.; Eid-
son J.; and Chandhoke S., 2016. Time in Cyber-
Physical Systems. In 2016 International Conference
on Hardware/Software Codesign and System Synthe-
sis (CODES+ISSS). 1–10.

The Ptolemy Project, 2017. Ptolemy Project Home
Page. https://ptolemy.eecs.berkeley.edu/.

https://ptolemy.eecs.berkeley.edu/

	INTRODUCTION
	PTOLEMY
	HLA
	TAR
	NER


	IMPACT OF THE DISTRIBUTION AND COUPLING
	PTOLEMY-HLA
	Ptolemy/HLA Coupling Design
	Ptolemy/HLA coupling: implementation issues

	APPLICATION
	Centralized simulation
	Distributed simulation

	RELATED WORK
	CONCLUSION AND PERSPECTIVES

