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1 Université Paris Diderot, Laboratoire Jacques-Louis Lions,

Bâtiment Sophie Germain, 5, rue Thomas Mann

75205 Paris Cedex 13, FRANCE,

blanc@ann.jussieu.fr

2 Ecole des Ponts and INRIA,

6 & 8, avenue Blaise Pascal, 77455 Marne-La-Vallée Cedex 2, FRANCE

lebris@cermics.enpc.fr
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Abstract

We consider the corrector equation associated, in homogenization the-
ory, to a linear second-order elliptic equation in divergence form−∂i(aij∂ju) =
f , when the diffusion coefficient is a locally perturbed periodic coeffi-
cient. The question under study is the existence (and uniqueness) of the
corrector, strictly sublinear at infinity, with gradient in Lr if the local
perturbation is itself Lr, r < +∞. The present work follows up on our
works [7, 8, 9], providing an alternative, more general and versatile ap-
proach, based on an a priori estimate, for this well-posedness result. Equa-
tions in non-divergence form such as −aij∂iju = f are also considered,
along with various extensions. The case of general advection-diffusion
equations −aij∂iju + bj∂ju = f is postponed until our future work [10].
An appendix contains a corrigendum to our earlier publication [9].
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1 Introduction

Motivation. In a series of works [7, 8, 9] (see also the related works [6, 25]),
we have shown that the solution to a highly oscillatory equation of the type

−div (a(x/ε)∇uε) = f (1)

may be efficiently approximated using the same ingredients as classical periodic
homogenization theory when the coefficient a in (1) is a perturbation of a periodic
coefficient, say to fix the ideas a = aper + ã where aper is periodic and ã ∈ Lr,
1 ≤ r < +∞, is a local perturbation that formally vanishes at infinity. The
quality of the approximation (that is, the rate of convergence in H1 norm of
uε minus its approximation based on homogenization theory) is entirely based
upon the existence of a corrector function wp, strictly sublinear at infinity (that

is,
wp(x)

1 + |x|
|x|→∞−→ 0), solution, for each p ∈ Rd, to the corrector equation

associated to (1), namely

−div (a (p+∇wp)) = 0 in Rd. (2)

Such a situation comes in sharp contrast to the general case of homogeniza-
tion theory where only a sequence of ”approximate” correctors wp,ε, satisfying

−div (a(x/ε) (p+∇wp,ε))
ε→0
⇀ 0, is needed to conclude, but where the rate

of convergence of the approximation is then unknown. See more details in our
previous works and in [6, 25]. A quick inspection on (2) shows that the corrector
wp is expected to read as wp = wp,per + w̃p with wp,per the periodic corrector
(solution to −div (aper (p+∇wp,per)) = 0) and w̃p solution with ∇w̃p ∈ Lr to

−div (a∇w̃p) = div (ã (p+∇wp,per)) in Rd. (3)

In turn, the setting being linear, the existence and uniqueness of w̃p solution
to (3) in the correct functional space is formally equivalent to the existence of
an a priori estimate

‖∇u‖Lq ≤ C ‖f‖Lq , (4)

for the exponent q = r, and u solution to

−div (a∇u) = div f in Rd. (5)

The purpose of this article is to show how the estimate (4) (and similar es-
timates) can be established with a good degree of generality (in particular q
needs not be equal to r, the Lebesgue exponent such that ã ∈ Lr, but can be
any exponent 1 < q < +∞), using a quite versatile approach based on a simple
version of the concentration-compactness principle [28]. Intuitively, estimate (4)
holds true because the perturbation ã within the coefficient a in (5) vanishes
in a loose sense at infinity, while, by the celebrated results of Avellaneda and
Lin (see [2, 3] and more specifically [4]), the estimate holds true when a = aper.
Thus, the integrability in Rd of the solution remains unchanged. The approach
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introduced here not only provides an alternate proof of the results of our earlier
works for local perturbations of periodic coefficients, but also allows for con-
sidering, instead of (1), equations not in divergence form − aij ∂iju = f , which
were not approached in our works so far. This also provides an approach for
the case of advection-diffusion equations − aij(·/ε) ∂ijuε + ε−1 bi(·/ε) ∂iuε = f
which will be discussed in a forthcoming publication [10].

Mathematical setting. More precisely, (1) is supplied with homogeneous
Dirichlet boundary conditions and posed on a bounded regular domain Ω ⊂ Rd,
with a right-hand-side term f ∈ L2(Ω). For our exposition, we will assume d ≥
2. Of course, as always, dimension 1 is specific and can be addressed by (mostly
explicit) analytic arguments that we omit here. In our earlier publications [7,
8, 9], the coefficient a considered is of the form a = a0 + ã where a0 denotes
the unperturbed background, and ã the perturbation. For some of our results
there, the unperturbed background can be quite general provided it enjoys the
”natural” properties that make homogenization explicit. Similarly, we consider
different cases of perturbations ã, and can prove some of the results in the
absence of some regularity of the coefficients. We refer the reader to [7, 8, 9] for
all the precise settings and statements regarding the above informal claims. In
the present contribution, however, we only address the case

a = aper + ã (6)

where aper denotes a periodic unperturbed background, and ã the perturbation,
with

aper(x) + ã(x) and aper(x) are both uniformly elliptic, inx ∈ Rd,
aper ∈

(
L∞(Rd)

)d×d
,

ã ∈
(
L∞(Rd) ∩ Lr(Rd)

)d×d
, for some 1 ≤ r < +∞

aper, ã ∈
(
C0,α

unif(Rd)
(
Rd
))d×d

for some α > 0,

(7)
Note that, actually, in the above assumptions, the fact that ã is bounded

is implied by the assumption ã ∈ C0,α
unif(Rd) ∩ Lr. We nevertheless state it as

above to highlight the fact that ã ∈ Lq for any q ≥ r.
The reason why we make the above set of assumptions (7) is that (a) we need

our results to hold true in the absence of the perturbation ã and the periodic
case a0 = aper with aper sufficiently regular is the only one where we are actually
aware of (thanks to the works of Avellaneda and Lin) that this is the case (see
however Remark 7 below), and (b) the perturbation ã has to formally vanish at
infinity for our specific arguments to hold.

We note, on the other hand, that we readily consider the case of matrix-
valued coefficients, instead of scalar-valued coefficients as in our previous works.
The modifications are only a matter of technicalities.

All the results of the present article are stated and proved for equation,
not for systems. However, as we point out in Remark 6 below, the result of
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Proposition 2.1 (i.e the divergence form case) carries over to systems. This is
not the case of our proof for the non-divergence form (see Remark 8 below), since
our proof makes essential use of the maximum principle or of its consequences.

Given the above assumptions, it is well known [5] that there exists a periodic
corrector wp,per unique up to the addition of a constant, that solves

−div (aper(x) (p+∇wp,per(x))) = 0, (8)

posed for each fixed vector p ∈ Rd. In these particular conditions, ∇wp,per ∈
C0,α

unif(Rd) ∩ L∞. This corrector allows to consider the following first-order ap-
proximation to uε issued from the so-called two-scale expansion truncated at
the first order

uε,1per(x) = u∗(x) + ε

d∑
i=1

∂xiu
∗(x)wei,per(x/ε), (9)

where ei are the canonical vectors of Rd and where u∗ denotes the homogenized
limit of uε, that is the solution to

−div (a∗∇u∗) = f, (10)

with homogeneous Dirichlet boundary conditions on ∂Ω, where a∗ is the homog-
enized matrix-valued coefficient (actually also computed from local averages of
the solution wp,per to (8)). We have that uε − uε,1per converges to zero (at least)
in H1 norm and, precisely because of the existence of the corrector, the rate of
the convergence

∥∥uε − uε,1per∥∥H1 as ε vanishes can be made precise in terms of ε.
We refer the reader to our previous works and the classical textbooks [5, 24] for
more details.

It has been pointed out in our works that this quality of approximation
carries over to the case of a local perturbation of the coefficient in (1). A
proof of this fact is contained in [6, 25]. Problem (8), now reading as (2), is
therefore a key step in the understanding, and approximation, of the solution uε

both locally and globally. This fact is intuitively clear when one has realized
that this problem is obtained by zooming-in from (1) to the small scale. Using
linearity, (2) is equivalent to (3) and the key question is thus to prove existence
for the latter equation.

Plan. Our contribution is organized as follows. To start with, we consider
in Section 2 the case of the equation in divergence form (1) under the condi-
tions made precise in (7). We establish the estimate announced in (4) for the
solutions to (5). Our result is stated in Proposition 2.1. The subsequent Sec-
tion 3 is devoted to the analogous estimate, stated in Proposition 3.1, for the
equation in non-divergence form. The fact that each of the estimate implies the
well-posedness of the corresponding corrector problem (and thus, subsequently
and using the arguments of our other works, the agreement of the first order
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approximation (9) with the oscillatory solution uε in various norms and at a
certain well defined rate in ε) is made precise in Section 4. Finally, we take the
opportunity of the present article to provide, in Appendix A, a corrigendum of
our previous work [8, 9]. Although this did not at all affect the main results
of our works, we made there, for some intermediate technical result (namely
Lemma 4.2 of [9] and Lemma 1 of [8]), some erroneous claims. We correct this
here.

2 Estimate for operators in divergence form

As mentioned in our introduction, we wish to prove existence and uniqueness
of the (strictly sublinear at infinity) corrector wp, solution for p ∈ Rd fixed, to
the corrector equation (2). Assuming that the coefficient a is of the form (6)
and satisfies the assumptions (7), we readily introduce w̃p = wp −wp,per where
the latter denotes the periodic corrector associated to aper, the existence and
uniqueness (up to the addition of a constant) of which is a classical fact [5].
For further reference, we note that under the regularity conditions (7) for the
coefficient aper, elliptic regularity implies that the periodic corrector wp,per is
a W 1,∞ function. Indeed, the classical Hilbert theory gives that wp,per ∈ H1

loc

and is periodic. Harnack inequality then implies that wp,per ∈ L∞. Finally, [21,
Theorem 8.32] implies that ∇wp,per is Hölder continuous, hence in particular is
in W 1,∞. Equation (2) reads as (3), that is,

− div (a∇w̃p) = div (ã (p+∇wp,per)) in Rd,

which we now have to solve. Formally simplifying both sides of the equation
leads to considering the equation −∆w̃p = div (ã p) and we thus expect, for
r > 1, to find ∇w̃p in the same space as ã, namely Lr. This of course will in
particular ensure that wp is strictly sublinear at infinity. This expectation is
confirmed by the results of our earlier contributions, which we now prove in a
different manner here. Our main result is the following:

Proposition 2.1 Assume (6)-(7). Fix 1 < q < +∞. Then, for all f ∈(
Lq(Rd)

)d
, there exists u ∈ L1

loc(Rd), such that ∇u ∈
(
Lq(Rd)

)d
, solution to

equation (5) namely
−div (a∇u) = div f in Rd. (5)

Such a solution is unique up to the addition of a constant. In addition, there
exists a constant Cq, independent on f and u, and only depending on q, d and
the coefficient a, such that u satisfies (4), namely

‖∇u‖(Lq(Rd))d ≤ Cq ‖f‖(Lq(Rd))d . (4)

The existence and uniqueness (up to the addition of a constant) of w̃p (and
thus of the corrector wp) is an immediate consequence of Proposition 2.1. For
r > 1, the proposition is applied to q = r, f = ã (p + ∇wp,per), given that
ã ∈ (Lr(Rd))d×d and ∇wp,per ∈ (L∞(Rd))d. The case r = 1 is considered in
Remark 1 below.
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Remark 1 As stated in assumption (7), the case ã ∈ Lr for r = 1 is allowed in
Proposition 2.1. However, the proposition then only gives existence of ∇w̃p ∈
Lq(Rd) for any q > 1, and not ∇w̃p ∈ L1 as ã. Writing −div(aper∇w̃p) =
div(ã(∇wp + p)) and using ∇wp ∈ L∞, a fact that is established there, the
results of [4] imply that ∇w̃p is in weak-L1(Rd). But ∇w̃p /∈ L1(Rd), contrary
to what is mistakenly stated in [9, 8]. A counterexample for aper = 1, ã with
compact support, is provided in Remark 4 below.

The proof of Proposition 2.1 to which we now proceed is based upon the
following intuitive property. When the defect ã identically vanishes, the coef-
ficient a is the periodic coefficient aper. In this particular case, estimate (4)
has been established in [4]. The estimate is shown there, using the representa-
tion of the solution u in terms of the Green function Gper(x, y) associated to
the operator −div (aper∇.), and the properties of approximation of this Green
function obtained from the results of [2]. Next, when ã 6= 0, one notices that,

since ã ∈
(
Lr(Rd) ∩ C0,α

unif(Rd)(Rd)
)d×d

, we have that ã(x)
|x|→∞−→ 0. Intuitively,

the operator −div (a∇.) is therefore close to the operator −div (aper∇.) at in-
finity, and estimate (4) is likely to hold true there. On the other hand, locally,
estimate (4) is a consequence of elliptic regularity and the fact that it holds true
in the Hilbertian case q = 2. The actual rigorous proof of Proposition 2.1 im-
plements this strategy of proof, using a continuation argument, the celebrated
results of [4] and our results [7] on the case q = 2.

Proof of Proposition 2.1 We argue by continuation. We henceforth fix
some 2 ≤ q < +∞. The case 1 < q ≤ 2 will be obtained by duality at the
end of the proof.

We define at = aper + t ã and intend to prove the statements of Propo-
sition 2.1 for t = 1. For this purpose, we introduce the property P defined
by: we say that the coefficient a, satisfying the assumptions (6)-(7) (for some
1 ≤ r < +∞) satisfies P if the statements of Proposition 2.1 hold true for
equation (5) with coefficient a. We next define the interval

I = {t ∈ [0, 1] / ∀ s ∈ [0, t],PropertyP is true for as} . (11)

We intend to successively prove that I is not empty, open and closed (both
notions being understood relatively to the closed interval [0, 1]), which will show
that I = [0, 1], and thus the result claimed.

To start with, we remark that the results of Avellaneda and Lin in [4, The-
orem A] show that I 6= ∅ since 0 ∈ I. Notice that the property u ∈ L1

loc is

a straightforward consequence of elliptic regularity using f ∈
(
L1
loc(Rd)

)d
and

the Hölder regularity of the coefficient aper because of (7). This property im-
mediately carries over to all t ∈ [0, 1] as soon we know there is a solution in the
following argument.

Next, we show that I is open (relatively to the interval [0, 1]). For this
purpose, we suppose that t ∈ I and wish to prove property P on [t, t + ε[ for
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some ε > 0. In order to solve, for f ∈
(
Lq(Rd)

)d
−div ((at + ε ã)∇u) = div f in Rd,

we write it as follows:
∇u = Φt (εã∇u+ f) , (12)

where Φt is the linear map which to f ∈ Lq(Rd) associates ∇u ∈ Lq(Rd), where
u is the solution to (5). Since Φt is continuous from Lq to Lq, with norm
Cq, it is clear that, for Cqε ‖ã‖L∞(Rd) < 1, the above map is a contraction.

Hence, applying the Banach fixed-point theorem, (12) has a unique solution
in Lq(Rd), which satisfies the estimate (4), in which Cq has been replaced by

Cq

(
Cqε ‖ã‖L∞(Rd) − 1

)−1

.

We now show, and this is the key point of the proof, that I is closed. We
assume that tn ∈ I, tn ≤ t, tn −→ t as n −→ +∞. For all n ∈ N we know

that, for any f ∈
(
Lq(Rd)

)d
, we have a solution (unique to the addition of a

constant) u with ∇u ∈
(
Lq(Rd)

)d
of the equation

−div (atn ∇u) = div f in Rd,

and that this solution satisfies ‖∇u‖(Lq(Rd))d ≤ Cn ‖f‖(Lq(Rd))d for a constant
Cn depending on n but not on f nor on u. We want to show the same properties
for t.

We first temporarily admit that the sequence of constants Cn is uniformly

bounded from above in n and conclude. For f ∈
(
Lq(Rd)

)d
fixed, we consider

the sequence of solutions un to

−div (atn ∇un) = div f in Rd,

which we may write as

−div (at∇un) = div (f + (atn − at)∇un) in Rd,

The sequence of gradients ∇un is bounded in
(
Lq(Rd)

)d
, and therefore

weakly converges (up to an extraction) to some ∇u. We may pass to the weak
limit in the above equation (recall that atn − at converges strongly in L∞) and
we find a solution to −div (at∇u) = div f . The solution also satisfies the es-
timate (because the sequence Cn is bounded and because the norm is weakly
lower semi continuous). There remains to prove uniqueness, that is,

−div (a∇u) = 0 in Rd, (13)

with ∇u ∈ Lq(Rd), implies ∇u ≡ 0 in the present setting. To this end, we
notice that (13) also reads as

− div (aper∇u) = tdiv (ã∇u) . (14)
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Using that, in the right-hand side, ã∇u ∈
(
Lq1(Rd)

)d
for

1

q1
=

1

r
+

1

q
(by

the Hölder inequality), and the results of [4] on the operator with periodic

coefficient, this implies that, in turn, ∇u ∈
(
Lq1(Rd)

)d
. One may then iterate

this argument, and inductively obtain ∇u ∈
(
Lqn(Rd)

)d
for

1

qn
=

1

qn−1
+

1

r
.

One thereby obtains ∇u ∈
(
Lqn(Rd)

)d
for

1

qn
=

1

q
+
n

r
. We recall that we

have assumed q ≥ 2, thus 1
q ≤

1
2 . If in addition r ≥ 2, it is then always

possible to find n ≥ 0 such that 1 ≤ qn ≤ 2. In the case r < 2, we note that
ã ∈ Lr ∩L∞ ⊂ L2, hence we apply the argument with r = 2. In both cases, we
have 1 ≤ qn ≤ 2 for some adequate n ≥ 0, and we obtain, by interpolation, ∇u ∈(
Lqn ∩ Lq(Rd)

)d ⊂ (L2(Rd)
)d

. But, for such an L2 function, (13) immediately
implies ∇u ≡ 0 by ellipticity (a precise argument may be found in [7]). This
concludes the argument of uniqueness.

In order to prove that the sequence of constants Cn is indeed bounded, we
argue by contradiction and assume that the sequence Cn is unbounded, which

amounts to assuming there exist fn ∈
(
Lq(Rd)

)d
and un with∇un ∈

(
Lq(Rd)

)d
,

such that
−div (atn ∇un) = div fn in Rd, (15)

‖fn‖(Lq(Rd))d
n−→+∞−→ 0, (16)

‖∇un‖(Lq(Rd))d = 1, for alln ∈ N. (17)

We readily notice that (15) also reads as

−div (at∇un) = div (fn + (at − atn)∇un) ,

where, as n −→ 0, the rightmost term inside the divergence strongly converges

to zero in
(
Lq(Rd)

)d
because at − atn strongly converges to zero in

(
Lq(Rd)

)d
and ∇un is bounded in

(
Lq(Rd)

)d
. Therefore, without loss of generality, we

may change fn into fn + (at − atn)∇un and replace (15) by

−div (at∇un) = div fn in Rd. (18)

We now concentrate our attention on the sequence ∇un. In the spirit of the
method of concentration-compactness, we now claim that

∃ η > 0, ∃ 0 < R < +∞, ∀n ∈ N, ‖∇un‖(Lq(BR))d ≥ η > 0, (19)

where BR of course denotes the ball of radius R centered at the origin.
We again argue by contradiction (we recall the main argument we are con-

ducting here is also an argument by contradiction) and assume that, contrary
to (19),

∀ 0 < R < +∞, ‖∇un‖(Lq(BR))d
n−→+∞−→ 0. (20)
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Since ã satisfies the properties in (7), it vanishes at infinity and thus, for any δ >
0, we may find some sufficiently large radius R such that

‖ã‖
(L∞(BcR))

d ≤ δ, (21)

where BcR denotes the complement set of the ball BR. We then write

‖ã∇un‖q
(Lq(Rd))d

=

∫
BR

|ã∇un|q +

∫
BcR

|ã∇un|q

≤ ‖ã‖q
(L∞(Rd))d×d

‖∇un‖q
(Lq(BR))d

+ ‖ã‖q
(L∞(BcR))

d×d ‖∇un‖q(Lq(Rd))d

≤ ‖ã‖q
(L∞(Rd))d×d

‖∇un‖q
(Lq(BR))d

+δ .1, (22)

using (17) and (21) for the latter majoration. On the other hand, (20) implies
that the first term in the right hand side vanishes, and since δ is arbitrary,

this shows that ã∇un converges strongly to zero in
(
Lq(Rd)

)d
. Inserting this

and (16) into (18), which, for this specific purpose, we rewrite as

−div (aper∇un) = div (fn + t ã∇un) ,

and using the continuity result in
(
Lq(Rd)

)d
for the periodic setting estab-

lished by Avellaneda and Lin in [4], we deduce that ∇un (strongly) converges

to zero in
(
Lq(Rd)

)d
. This evidently contradicts (17) . We therefore have es-

tablished (19).
Because of the bound (17), we may claim that, up to an extraction, ∇un

weakly converges in
(
Lq(Rd)

)d
, to some ∇u. Passing to the limit in the equation

in the sense of distributions, we have −div(at∇u) = 0. Next, we show that this

convergence in
(
Lqloc(Rd)

)d
is indeed strong. By Sobolev compact embeddings,

we know this convergence implies the strong convergence of the sequence un

to u (up to a sequence of irrelevant constants cn which, with a slight abuse of
notation, we may include in u) in Lqloc(Rd). Since we have

−div (at (∇un −∇u)) = div(fn),

we multiply this equation by (un−u)χR, where χR is a smooth cut-off function
such that χR = 1 in BR, and χR = 0 in BcR+1. Integrating by parts, we have∫

χR [at∇(un − u)] · ∇(un − u) = −
∫

[at∇(un − u)] · (∇χR) (un − u)

+

∫
χR [∇(un − u)] · fn +

∫
(un − u) fn · ∇χR.

We may pass to the limit in each term of the right hand side, since∇(un−u) −⇀
0 in Lq, hence in L2(BR), un − u converges strongly in L2(BR), and fn −→ 0
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in Lq, hence in L2(BR). Using the fact that a is elliptic, we therefore obtain
that ∇un −→ ∇u in L2(BR). Finally, using the elliptic estimate (see e.g. [19,
Theorem 7.2])

‖∇v‖(Lq(BR))d ≤ C(R)
(
‖∇v‖(L2(B2R))d + ‖f‖(Lq(B2R))d

)
, (23)

for all 0 < R < +∞, and all solutions v to −div (at∇v) = divf , we obtain,

applying (23) to un − u, that ∇un strongly converges in (Lq(BR))
d

to ∇u. We
infer from (19) and the local strong convergence that ∇u cannot identically
vanish, while it solves −div(at∇u) = 0. The argument following (13) implies
that ∇u = 0, and we reach a final contradiction. This concludes the proof in
the case 2 ≤ q < +∞.

For the case 1 < q < 2, we argue as announced by duality. At this stage,
we have established the claims within Proposition 2.1 for 2 ≤ q < +∞. We
may apply them to the case of the transposed coefficient aT of a, and the
operator −div

(
aT ∇.

)
, since obviously, aT satisfies the assumptions (7) if a

does. Let us now fix f ∈
(
Lq(Rd)

)d
, for some 1 < q ≤ 2, and denote by

2 ≤ q′ < +∞, the conjugate exponent of q, that is,
1

q
+

1

q′
= 1. To any

arbitrary function g ∈
(
Lq
′
(Rd)

)d
, we may associate the unique (up to an

additive constant) solution v, such that ∇v ∈
(
Lq
′
(Rd)

)d
, to −div

(
aT ∇v

)
=

div g. Its gradient ∇v depends linearly, continuously, on g. We may therefore

define by g 7−→ Lf (g) :=
∫
Rd f .∇v a linear form on

(
Lq
′
(Rd)

)d
. Since, using

the result of Proposition 2.1 for q′,∣∣∣∣Lf (g) =

∫
Rd
f .∇v

∣∣∣∣ ≤ ‖f‖(Lq(Rd))d ‖∇v‖(Lq′ (Rd))
d

≤ Cq′ ‖f‖(Lq(Rd))d ‖g‖(Lq′ (Rd))
d , (24)

this linear form is therefore a continuous map on
(
Lq
′
(Rd)

)d
. Hence there exists

some U ∈
(
Lq(Rd)

)d
such that

Lf (g) =

∫
Rd
f .∇v =

∫
Rd
g . U,

and we read on estimate (24) that

‖U‖(Lq(Rd))d ≤ Cq′ ‖f‖(Lq(Rd))d .

We now identify more precisely U . Assuming that g additionally satisfies

curl g = 0 on Rd, we have − div
(
aT ∇v

)
= div g = 0 with ∇v ∈

(
Lq
′
(Rd)

)d
,

and thus, by the estimate, ∇v ≡ 0. It follows that, for such g, Lf (g) =
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∫
Rd f .∇v = 0, thus

∫
Rd g . U = 0. This property shows that there exists some u

such that U = ∇u, and thus ∇u ∈
(
Lq(Rd)

)d
with

‖∇u‖(Lq(Rd))d ≤ Cq′ ‖f‖(Lq(Rd))d .

We finally show that u satisfies −div (a∇u) = div f . To this end, we
consider the specific case where v ∈ D(Rd) (that is, v is smooth and has compact
support) and set g = aT ∇v, so that, in effect, − div

(
aT ∇v

)
= div g holds true.

Applying the above, we have

∫
Rd
f .∇v =

∫
Rd
g .∇u. The left-hand side is the

duality product 〈div f, v〉D′(Rd),D(Rd), while, by definition of g, the right-hand
side reads as∫

Rd
aT ∇v .∇u =

∫
Rd
∇v . a∇u = 〈−div (a∇u) , v〉D′(Rd),D(Rd).

Since this holds true for all v ∈ D(Rd), this shows −div (a∇u) = div f and
concludes our proof. ♦

Remark 2 Although, in the above proof, the case 1 < q < 2 is proved by duality,
it is also possible to use a direct approach similar to the above argument. The
heart of the above proof is the following result: if u is a solution to −div(a∇u) =
0 and if ∇u ∈ Lq(Rd), then u is constant. We use it for q = 2, but it is still
valid for any q > 1, as it is stated in Lemma 2.2 below. Note however that we
do not know if this lemma, which is proved only for equations, carries over to
systems.

Lemma 2.2 Assume d ≥ 2, and that the matrix a is C0,α
unif(Rd), uniformly

elliptic and bounded. If u satisfies −div(a∇u) = 0 and ∇u ∈ Lq(Rd), for some
1 ≤ q < d, then ∇u = 0.

Proof: We first note that, according to the Galiardo-Nirenberg-Sobolev in-
equality [18, Section 5.6.1, Theorem 1], u ∈ Lq∗(Rd), up to the addition of a

constant, with 1
q∗ = 1

q −
1
d . Hence, we have u ∈W 1,q∗

loc , with

sup
x0∈Rd

‖u‖W 1,q∗ (B2(x0)) < +∞.

Here, B2(x0) is the ball of radius 2 centered at x0. Next, we apply [14, Theo-
rem 1], which states that, if u satisfies the above properties, then for any ball
B1(x0) of radius 1, we have u ∈ W 1,s(B1(x0)) for all 1 < s < +∞, with the
following estimate

‖u‖W 1,s(B1(x0)) ≤ C‖u‖W 1,q∗ (B2(x0)), (25)

where C depends only on the ellipticity constant of a, on ‖a‖C0,α(B2), on d and
on s, q∗. In particular it does not depend on u nor on x0. Applying the De
Giorgi-Nash estimate, we have

‖u‖L∞(B2(x0)) ≤ C

(∫
B2(x0)

u2

)1/2

,

12



where C does not depend on x0, for the same reasons as above. Hence, applying
(25) for s = 2, u is bounded, which, by Liouville theorem (see for instance [30]),
implies that u is constant. ♦

Remark 3 In the proof of Proposition 2.1, we have used some of our results
established in the case q = 2 in [7]. We actually only made use of the unique-
ness result (in order to prove that ∇u ≡ 0 in (13) above), while we did estab-
lish [7] existence and uniqueness of the solution (although not stated as such, the
proofs of [7] and [9] imply continuous dependency on the datum). If we allow
ourselves to also use the existence result, then the above proof may be slightly
simplified. One may then prove by continuation ”only” that estimate (4) holds
true (in particular, it in turn implies uniqueness), while the existence part is a

consequence of a density argument: we approximate f ∈
(
Lq(Rd)

)d
by a se-

quence fn ∈
(
L2 ∩ Lq(Rd)

)d
; for each fn, we have a solution un the gradient of

which is in
(
L2(Rd)

)d
; using the estimate, the sequence ∇un is a Cauchy se-

quence in
(
Lq(Rd)

)d
; we may finally pass to the limit and obtain a solution for

f only in
(
Lq(Rd)

)d
. We chose to present the proof of Proposition 2.1 because

its pattern is more general and applies (see Section 3) to operators that are not
in divergence form (to which our arguments of [7] do not carry over).

Remark 4 It is well known that, even when a = aper ≡ 1, estimate (4) is
wrong for q = 1 (in dimensions d > 1). For instance, for d ≥ 3, let us define

u(x) =
1

d|B1|

∫
B1

(x− y) · e
|x− y|d

dy,

where B1 is the unit ball of Rd, |B1| its volume, and e 6= 0 is a fixed vector in
Rd. It is clear that −∆u = div (1B1

e) in the sense of distributions. However,

a simple computation shows that ∇u(x) ≈ 1
d|x|d

(
e− d (x·e)x

|x|2

)
, as |x| → +∞.

Hence ∇u 6∈ L1
(
Rd
)
.

Remark 5 We shall see in Section 4 below that a consequence of Proposi-
tion 2.1 is the existence of a corrector in the adequate functional space, and,
in turn, a quantitative theory of homogenization where the rates of convergence
may be made precise, both for the Green functions associated to the divergence
operators and for the solutions to the homogenized problems. Actually, the exis-
tence of a corrector in the adequate functional space conversely implies Propo-
sition 2.1. By the arguments introduced for the periodic case in [2], further
made precise in [27] for various boundary conditions, and adapted in [6] to the
case of divergence operators with perturbed periodic coefficients satisfying (7),
it is indeed possible to establish, from the existence of a suitable corrector, the
approximation properties for the Green function G(x, y). Then, the arguments
of [4], using the representation formula for the solution of (5), can be replicated
to obtain the results of Proposition 2.1.
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Remark 6 The statement and proof of Proposition 2.1 concern equations, but
an analogous result holds for systems in divergence form. Indeed, all our argu-
ments carry over to systems, including the central result by Avellaneda and Lin
of [4] (based on the results of [2]) on the continuity of operators with periodic
coefficients, and the uniqueness result that is a consequence of our arguments

of [7] when ∇u ∈
(
L2(Rd)

)d
. The only point above at which we have used the

fact that we deal with an equation (actually, applying the Harnack inequality)
is when we prove that ∇wp,per ∈ L∞. But this is also implied by the results of
Avellaneda and Lin [2]. However, as stated in Remark 2, for systems, we do
not have a direct proof of the case q < 2, and only can prove it by a duality
argument.

Remark 7 All what we need in the above proof of Proposition 2.1 is that (i)
the gradient ∇wper of the periodic corrector is L∞ (and the latter fact is, in
particular, true when aper itsef is Hölder continuous), (ii) the coefficient a is
uniformly continuous (in order to be able to use the local elliptic regularity re-
sult (23)), (iii) the result of Avellaneda and Lin concerning the continuity (4)
in the case of a periodic coefficient. The recent results of [22] allow to provide
a functional analysis setting for non Hölder coefficients.

3 Estimate for operators in non-divergence form

The purpose of this section is to prove the result analogous to that of Proposi-
tion 2.1 in the case of the equation, not in divergence form,

−aij∂iju = f in Rd. (26)

Note that because of the specific form of (26), we may assume, without loss of
generality, that the matrix-valued coefficient a in (26) is symmetric.

Our result is:

Proposition 3.1 Assume (6)-(7). Fix 1 < q < +∞. Then, for all f ∈ Lq(Rd),
there exists u ∈ L1

loc(Rd) such that D2 u ∈ Lq(Rd), solution to equation (28)
namely

−aij∂iju = f in Rd. (26)

Such a solution is unique up to the addition of an affine function. In addition,
there exists a constant Cq, independent on f and u, and only depending on q,
d and the coefficient a, such that u satisfies∥∥D2 u

∥∥
(Lq(Rd))d×d

≤ Cq ‖f‖Lq(Rd) . (27)

Proposition 3.1 will be used in the next section (and also in [10]) to proceed
with the homogenization of the equation

−aij(x/ε) ∂ijuε = f. (28)
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The correctors associated to (28) may be put to zero, since they are solutions
to −aij∂ij(p.x+wp(x)) = 0. Because it is not in divergence form, the homoge-
nization of (28) (or the precise understanding of the behavior of its solution uε

for ε small) however requires to understand the adjoint problem defining the
invariant measure associated to (28). The latter reads as

−∂ij(aijm) = 0, in Rd, (29)

or equivalently,
−∂ij(aij m̃) = ∂ij(ãijmper), in Rd, (30)

decomposing, in the same spirit as we decomposed the corrector earlier, the
measure as m = mper + m̃ , where −∂ij(aperij mper) = 0. The existence and
uniqueness of mper, under the constraints mper ≥ 0 and 〈mper〉 = 1, is proved
in [5]. The existence of m̃ in the suitable functional space is readily related to
Proposition 3.1. We will see the details in Section 4.

3.1 From the non-divergence form to the divergence form

To start with and as a preparatory work (both for the proof of Proposition 3.1
and the homogenization of equation (28) in Section 4), we recall here, for con-
venience of the reader, a classical algebraic manipulation (see e.g. [5]) that
transforms an equation in non divergence form to an equation in divergence
form provided an invariant measure (that is, a solution to the adjoint equation)
exists and enjoys suitable properties. We perform the transformation here in
full generality and abstractly, in the case of the general equation

−aij∂iju+ bi∂iu = f, (31)

where aij , 1 ≤ i, j ≤ d, bi, 1 ≤ i ≤ d, are general coefficients. We will actually
use the transformation at several distinct stages of our work in the present
article, and also in our forthcoming article [10]. The coefficients aij , bi will
either be periodic, or include the local perturbation. They will either be at
scale one (meaning aij(x)), or be rescaled by ε as in aij(x/ε), etc. The first-
order coefficients bi, 1 ≤ i ≤ d, will identically vanish (as in the case here), or
not (in [10]).

Consider (31), posed on a (not necessarily) bounded domain Ω and supplied
with some suitable boundary conditions (or conditions at infinity) we do not
make precise in this formal generic argument. Assume that there exists a pos-
itive solution m, actually bounded away from zero, inf m > 0, to the adjoint
equation

−∂i(∂jaijm+ bim) = 0, (32)

on the same domain, with boundary conditions that we do not make precise
either, and suitably normalized. Multiplying (31) by m, we obtain, without
even using the specific properties of m, that

−div (a∇u) +
(
b+ div a

)
.∇u+ = f, (33)
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where
a = ma, b = mb, f = mf. (34)

Precisely because of (32), b+ div a is divergence-free

div(b+ div a) = 0. (35)

Equation (35) (again formally) implies the existence of a skew-symmetric matrix
B such that

b+ div a = divB. (36)

In the particular case of dimension d = 3, this is equivalent to the existence of
a vector field B = (B1, B2, B3) such that

b+ div a = curlB, (37)

where B and B are related by

B =

 0 −B3 B2

B3 0 −B1

−B2 B1 0

 . (38)

Using B and relation (36), it is then immediate to observe that

div
[
u (b+ div a)

]
= div(u divB) = div(B∇u), (39)

and thus (33) reads as the equation in divergence form

−div (A∇u) = f. (40)

with
A = a− B (41)

Since inf m > 0, a is elliptic. Moreover, B is skew-symmetric, hence the matrix
A is elliptic.

As mentioned earlier, we will make the above transformation explicit, and
justify it, in each specific instance we need. The first of these instances, and
actually a very classical and well known one, is a simple periodic setting. Con-
sider (31) posed on the entire space Rd for periodic second-order coefficients
aij = aperij , 1 ≤ i, j ≤ d, with period the unit cell of the periodic lattice Zd,
bi ≡ 0, 1 ≤ i ≤ d, and c ≡ 0. The adjoint equation (32) to be considered is
posed also on the entire space, for periodic solutions, and reads as

−∂ij(aperij mper) = 0. (42)

It is established, e.g. in [5], that there exists a unique nonnegative periodic
solution mper that is normalized, regular and is indeed bounded away from
zero. Performing the above manipulations, we note that b ≡ 0 and div aper is of
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zero mean in (36). Thus, the matrix B = Bper may be assumed periodic, and
we write the equation originally considered in the divergence form

−div (Aper∇u) = mperf. (43)

We notice that, because bi ≡ 0, 1 ≤ i ≤ d, here, divBper = div(mper a
per), and

therefore
divAper = div(mper a

per)− divBper = 0, (44)

a property we shall use in the next section.

3.2 Proof of Proposition 3.1

The proof of Proposition 3.1 essentially follows the same pattern as that of Propo-
sition 2.1. We again argue by continuation, (this time for all 1 < q < +∞ since,
in this case, the exponent q = 2 does not play any specific role), and show that
the interval defined by (11) is again the entire interval [0, 1]. Of course, this
time Property P is based on the statements of Proposition 3.1 and not those of
Proposition 2.1 any longer.

The fact that 0 ∈ I is a consequence of the results of [4, Theorem B], precisely
because of the algebraic manipulations we recalled above, which allow to rewrite
the equation under the conservative form (43), with the specific property (44).
The local integrability u ∈ L1

loc(Rd) is like in Section 2 obtained by elliptic
regularity.

Next, we show that I is open (relatively to the interval [0, 1]). In order to do
so, we proceed exactly as in the proof of Proposition 2.1, writing the equation
−(at + εã)ij∂iju = f as

D2u = φt (f + εãij∂iju) , (45)

where φt is the application f 7→ D2u, where u is the solution to

− (at)ij ∂iju = f.

Here again, the map appearing in (45) is proved to be a contraction for ε > 0
sufficiently small, thereby showing existence and uniqueness of the solution,
together with the continuity estimate.

Regarding the closeness of I, the heart of the matter is, similarly to the case

of an operator in divergence form, to show that if we have fn ∈
(
Lq(Rd)

)d
and

un with D2un ∈
(
Lq(Rd)

)d×d
, such that

− (at)ij∂iju
n = fn in Rd, (46)

‖fn‖(Lq(Rd))d
n−→+∞−→ 0, (47)∥∥D2un

∥∥
(Lq(Rd))d×d

= 1, for alln ∈ N. (48)
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then we reach a contradiction. To this end, we first prove, using the same
argument as in the proof of Proposition 2.1 and the result by Avellaneda and
Lin [4] on the operator with periodic coefficient (this time in non divergence
form), that

∃ η > 0, ∃ 0 < R < +∞, ∀n ∈ N,
∥∥D2un

∥∥
(Lq(BR))d×d

≥ η > 0. (49)

Because of the bound (48), we may claim that, up to an extraction, D2un weakly

converges in
(
Lq(Rd)

)d×d
, to some D2u. Passing to the limit in the sense of

distribution implies that u is a solution to − (at)ij∂iju = 0. Hence,

− (at)ij∂ij (un − u) = fn.

The Poincaré-Wirtinger inequality and (48) imply that, up to the addition of
an affine function, un is bounded in W 2,q(BR). Applying Rellich Theorem, we
know that, up to extracting a subsequence, un converges strongly in Lq(BR),
for any R > 0. Elliptic regularity results [21, Theorem 9.11] then imply

‖un − u‖W 2,q(BR) ≤ C(R)
(
‖fn‖Lq(BR+1) + ‖un − u‖Lq(BR+1)

)
. (50)

Here, the constant C(R) depends on R, on the ellipticity constant of a and
of its C0,α

unif(Rd) norm, but not on fn, un, u. The right-hand side of this in-
equality tends to 0 as n→ +∞, hence we have strong convergence of un to u in
W 2,q(BR). In particular, (49) implies that u 6≡ 0. Concluding the proof amounts
to reaching a contradiction with − (at)ij∂iju = 0. This requires a significantly
different proof from the case of operators in divergence form, because here we
cannot bootstrap some L2 integrability and use coerciveness to conclude. The
proof, in the present case, relies on the maximum principle.

We first give the end of the proof assuming d ≥ 3. We will explain below
how to adapt it to the case d = 2.

First, we assume q < d/2. In such a case, we claim that

∀n ∈ N such that n <
d

2q
, D2u ∈

(
Lsn(Rd)

)d×d
, where

1

sn
=

1

q
− 2n

d
. (51)

This is proved by induction on n. The case n = 0 is true by assumption. If we
assume that (51) is true for n − 1, with n < d/(2q), the Gagliardo-Nirenberg-

Sobolev inequality [18, Section 5.6.1] and the fact that D2u ∈
(
Lsn−1

(
Rd
))d×d

imply that, up to the addition of an affine function, ∇u ∈
(
Ls
∗
n−1(Rd)

)d
and

u ∈ Ls
∗∗
n−1(Rd), where

1

s∗n−1

=
1

sn−1
− 1

d
,

1

s∗∗n−1

=
1

s∗n−1

− 1

d
=

1

sn−1
− 2

d
.

In other words, s∗∗n−1 = sn. We then apply [21, Theorem 9.11] again (that is,
inequality (50) with un = 0 and fn = 0), finding∫

B1(x0)

|D2u|sn ≤ ‖u‖snW 2,sn (B1(x0)) ≤ C‖u‖
sn
Lsn (B2(x0)) = C

∫
B2(x0)

|u|sn ,
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where C does not depend on u nor on the center x0 of the balls. Summing up
all these estimates for x0 ∈ δZd, with δ > 0 sufficiently small, we obtain (51).
Next, we choose n such that

d

2q
− 1 < n <

d

2q
,

which is always possible because d/q > 2. Then, we have sn > d/2. Hence,
Morrey’s Theorem [18, Section 5.6.2] implies that u ∈ C0,α

unif(Rd). Since we also

have u ∈ Ls
∗∗
n−1(Rd), we infer that u vanishes at infinity: for any δ > 0, we have,

for R sufficiently large, |u(x)| < δ if |x| > R. Applying the maximum principle,
we infer that −δ ≤ u ≤ δ in Rd. This being valid for any δ > 0, we find u ≡ 0,
reaching a final contradiction.

Second, we assume that q ≥ d/2. We claim that

∀n ∈ N such that
1

q
+
n

r
< 1, D2u ∈

(
Lσn(Rd)

)d×d
, where

1

σn
=

1

q
+
n

r
.

(52)
Here again, we prove this by induction: for n = 0, we have σ0 = q and assump-
tion (48) implies D2u ∈ Lq(Rd)d×d. Assuming that (52) holds for n − 1, with
n < r − r/q, we write the equation satisfied by u as

aperij ∂iju = tãij∂iju ∈ Ls(Rd),
1

s
=

1

σn−1
+

1

r
=

1

σn
,

since ã ∈ Lr(Rd) and D2u ∈ Lσn−1(Rd). Applying the results of [4], we thus

have D2u ∈
(
Lσn(Rd)

)d
. This concludes the proof of (52).

Next, we choose n such that

r

(
2

d
− 1

q

)
< n < r

(
1− 1

q

)
.

This is possible if r
(

1− 1
q

)
−r
(

2
d −

1
q

)
> 1, that is, r > d

d−2 . Since ã ∈ Lr∩L∞,

we may in fact increase r so that this condition is fulfilled. For such a value
of n, we have σn < d/2, and we may therefore apply our argument of the case
q < d/2. Here again, we reach a contradiction.

Let us now assume that d = 2. We cannot, as we did above, assume that
q < d/2. However, the proof of (52) is still valid. We apply this inequality

for the largest possible value of n, that is, n =
⌊
r − r

q

⌋
, where b·c denotes the

integer part. We thus have

D2u ∈
(
Lσ(Rd)

)d×d
, σ = σ(r, q) =

q

1 + q
r

⌊
r − r

q

⌋ .
As we already pointed out above, since our assumption is that ã ∈ Lr∩L∞(Rd),

we may increase r if we wish. Since
q

r

⌊
r − r

q

⌋
→ q − 1 as r → +∞, we infer
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that
D2u ∈

(
Lσ(Rd)

)d×d
, ∀σ ∈]1, q]. (53)

Next, we note that, since the ambient dimension is d = 2, the fact that
the matrix a is elliptic and symmetric implies that there exists two positive
constants C0 and C1 such that, for any symmetric matrix e = eij ,

C0 (aijeij)
2 ≥ e2

ij + C1 det(e),

with summation over repeated indices. This inequality is easily proved by el-
ementary considerations, and was used for instance in [15], and stated in [32,
Equation (4)]. We apply it to e = D2u, multiply by χ2

R, where χR is a smooth
cut-off function such that χR = 1 in BR, χR = 0 in BCR+1, and |∇χR| ≤ 2. We
integrate over R2 and find

0 = C0

∫
(aij∂iju)

2
χ2
R ≥

∫
(∂iju)

2
χ2
R + C1

∫ (
∂11u∂22u− (∂12u)

2
)
χ2
R.

We note that the integrand in the last term is equal to ∂1 (∂1u∂22u)χ2
R −

∂2 (∂1u∂12u)χ2
R. Integrating by parts, we thus have

0 ≥
∫

(∂iju)
2
χ2
R − 2C1

∫
χR ∂1u ∂22u ∂1χR + 2C1

∫
χR ∂1u ∂12u ∂2χR.

Hence, ∫
(∂iju)

2
χ2
R ≤ 2C1

∫
|∇χR||∇u|χR|D2u|. (54)

If q ≥ 4/3, (53) implies D2u ∈ L4/3, and, by the Gagliardo-Nirenberg-Sobolev
inequality, ∇u ∈ L4. As a consequence, |∇u||D2u| ∈ L1, and, letting R→ +∞
in (54), we infer that D2u = 0. If q < 4/3, then, by the Gagliardo-Nirenberg-
Sobolev inequality, ∇u ∈ Lq∗ , where 1

q∗ = 1
q −

1
2 . In particular, the conjugate

exponent of q∗, denoted by (q∗)′, satisfies 4/3 < (q∗)′ < 2. Thus, q < (q∗)′ < 2.
Hence, successively applying Hölder inequality and the interpolation inequality
to (54), we infer∫

|D2u|2χ2
R ≤ 2C1

∥∥|∇χR| |∇u|∥∥Lq∗ (Rd)

∥∥χR|D2u|
∥∥
L(q∗)′ (Rd)

,

≤ 2C1

∥∥|∇χR| |∇u|∥∥Lq∗ (Rd)

∥∥χR|D2u|
∥∥β
L2(Rd)

∥∥χR|D2u|
∥∥1−β
Lq(Rd)

, (55)

for β =
4− 3q

2− q
. Thus,

∥∥χR|D2u|
∥∥2−β
L2(Rd)

≤ 2C1

∥∥|∇χR| |∇u|∥∥Lq∗ (Rd)

∥∥χR|D2u|
∥∥1−β
Lq(Rd)

−→
R→+∞

0,

since ∇u ∈ Lq
∗

and D2u ∈ Lq. Recalling that β ∈]0, 1[, thus 2 − β > 0, we
obtain D2u = 0.

Once again, we have reached a contradiction. This shows that I is closed.
As it is also open and non empty, it is equal to [0, 1] and this concludes the
proof of Proposition 3.1. ♦
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Remark 8 In sharp contrast to the case of operators in divergence form, Propo-
sition 3.1 and its proof as presented above cannot be extended to the case of
systems. In particular, we have made use of the result by Avellaneda and Lin
for non-divergence form operators, which is, to the best of our knowledge, spe-
cific to equations. In addition, even though some systems satisfy the maximum
principle, we do not see how to adapt our proof of uniqueness to the generic case
of systems. Note also that, besides the usefulness of Proposition 3.1 on its own,
the specific use we will make of that proposition in homogenization theory is
exposed in Section 4. The treatment of non-divergence form operators there will
require the use of the invariant measure associated to their adjoint, a concept
we do not even know how to define for systems.

4 Application to homogenization

4.1 Divergence form

We return to the corrector equation (2), namely

−div (a (p+∇wp)) = 0 in Rd

which we write under the form (3):

− div (a∇w̃p) = div (ã (p+∇wp,per)) in Rd.

Since wp,per is the periodic corrector, that is the solution to (8)

−div (aper(x) (p+∇wp,per(x))) = 0,

with the coefficient aper satisfying assumptions (7), we have, as pointed out at

the beginning of Section 2, ∇wp,per ∈
(
L∞(Rd)

)d
. We insert this information

in the right-hand side of (3), and may therefore conclude, using Proposition 2.1
for the specific exponent q = r that there exists a function w̃p, uniquely defined

up to the addition of a constant, that solves (3), with ∇w̃p ∈
(
Lr(Rd)

)d
and

with, considering (4),

‖∇w̃p‖(Lr(Rd))d ≤ Cr
(
|p|+ ‖∇wp,per‖(L∞(Rd))d

)
‖ã‖(Lr(Rd))d .

Setting wp = wp,per+ w̃p, returning to equation (2) and using the regularity (7),

we also have that ∇w̃p ∈
(
L∞(Rd)

)d
. We have therefore provided an alternative

proof of our main results in Theorem 4.1 of [9]. The arguments of [6] then allow
to prove quantitative homogenization results. Recall however Remark 1: the
above argument does not cover the case r = 1, since in Proposition 2.1, q = 1
is excluded.

To end this section, let us mention that, using the above computation, if G is
the Green function associated to (31), and if G is the Green function associated
to (40), we have

G(x, y) = m(y)G(x, y).
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Moreover, the measure m satisfies γ ≤ m(x) ≤ 1
γ , for some γ > 0, and m ∈

C0,α
unif(Rd). Hence, all the estimates which are valid for the Green function G

give estimates on G. The same conclusion holds for ∇xG. On the other hand,
estimates on ∇yG can only be proved if m ∈W 1,∞, which is in general not the
case.

4.2 Non-divergence form

We discuss here homogenization for the equation in non-divergence form (28)

−aij(x/ε) ∂ijuε = f.

In order to deal with this problem, we may apply two different strategies,
both relying on the central estimate of Proposition 3.1:

• The first one consists in using this estimate to derive a bound on the
distance between the solution uε and the solution corresponding to the
case ã = 0. Then, using the results of [2, 3], valid only in the periodic
case, we may prove equivalent convergence estimates in the present case.

• The second one, which is the one we chose to apply below, consists in using
Proposition 3.1 to prove the existence of a stationary measure. Then,
multiplying the equation by this measure m, the calculations performed
in Subsection 3.1 allow to write the above equation in divergence form.
We may therefore use the same method as in Subsection 4.1. This strategy
seems more intrinsic and more easily adaptable to different situations. We
follow it here.

We claim there exists an invariant measure associated to this equation. The
precise result is the following.

Proposition 4.1 Assume the coefficient a in (28) satisfies (7) with r > 1.
There exists an invariant measure associated to this equation, that is, by defini-
tion, a unique function m solution to (29):

−∂ij(aijm) = 0, in Rd, (56)

which writes m = mper + m̃ where mper is the periodic invariant measure mper

(defined in Section 3.1 above), and m̃ is defined as the unique solution in Lr(Rd)
to (30)

−∂ij(aij m̃) = ∂ij(ãijmper), in Rd. (57)

This function m is Hölder continuous, positive, bounded away from zero.

Remark 9 In the case r = 1, the above result still holds, but we only have
m̃ ∈ Lq(Rd), for any q > 1.

The existence and uniqueness of m as stated in Proposition 4.1 is an im-
mediate consequence of the following corollary of Proposition 3.1, the proof of
which is postponed until the end of this Section.
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Corollary 4.2 (of Proposition 3.1) Assume (6)-(7). For all 1 < q < +∞
and f ∈

(
Lq(Rd)

)d×d
, there exists a unique u ∈ Lq(Rd) solution, at least in the

sense of distributions, to

− ∂ij ( aij u) = ∂ij fij in Rd. (58)

This function u satisfies

‖u‖Lq(Rd) ≤ Cq ‖f‖(Lq(Rd))d×d , (59)

for a constant Cq independent of f .

Proof of Proposition 4.1. Applying Corollary 4.2, we know that there exists
a solution m̃ to (57), with m̃ ∈ Lr(Rd). In the case r = 1, we have m̃ ∈ Lq(Rd),
for any q > 1. The measure mper solution to ∂ij

(
aperij m

)
= 0 is already known

to exist (see [17]), to be Hölder continuous thanks to standard elliptic regularity
results, and to be bounded away from 0. The measure m = mper + m̃ is a
solution to (56). We prove now that m is positive. For this purpose, we first
point out that m̃ is uniformly Hölder continuous, thanks to the results of [12, 13].
Since it is in Lr(Rd), we know that

‖m̃‖L∞(BcR)
R→+∞−→ 0.

Hence, for R sufficiently large, we have

∀x ∈ BcR, m(x) ≥ 1

2
inf mper > 0. (60)

Applying the maximum principle on BR, we infer that m ≥ 0 in the whole
space Rd. Next, we apply the Harnack inequality [12], which implies that m is
bounded away from 0. This concludes the proof of Proposition 4.1. ♦

Next, we rescale m, considering mε(x) = m(x/ε) and multiply (28) by mε.
The standard manipulations ((33) through (41)) recalled in Section 3.1 yield

−div (Aε∇uε) = mεf, (61)

with the elliptic matrix valued coefficient Aε(x) = A(x/ε),

A = ma− B (62)

and the skew-symmetric matrix-valued coefficient B defined by (38). In the
specific case considered, where m = mper + m̃, B is defined as the sum B =

Bper + B̃, where the periodic part Bper is obtained solving the periodic equation
divBper = div(mper a

per) (the right-hand side being divergence-free because
of (42), we recall) and where

div B̃ = div (m̃ aper +mper ã+ m̃ ã) . (63)
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The latter equation (which also has a divergence-free right-hand side because of

(30), that is, (57)) admits a skew-symmetric solution B̃ ∈
(
Lr(Rd)

)d×d
which is

unique up to the addition of a constant. This is an application of the Calderón-
Zygmund operator theory. Indeed, we introduce the solution to

−∆B̃ij = ∂jk

(
m̃aperik + (mper + m̃) ãik

)
− ∂ik

(
m̃aperjk + (mper + m̃) ãjk

)
, (64)

which is known to exist thanks to [29, 31], with the additional property that
the corresponding operator is continuous from Lr to Lr:∥∥∥B̃ij∥∥∥

Lr(Rd)
≤ C

d∑
k=1

(∥∥∥m̃aperjk + (mper + m̃) ãjk

∥∥∥
Lr(Rd)

+ ‖m̃aperik + (mper + m̃) ãik‖Lr(Rd)

)
, (65)

where C is a universal constant. Now, using that div(div(ma)) = 0, a simple
computation gives

− ∂i∆B̃ij = −∂iik
(
m̃aperjk + (mper + m̃) ãjk

)
= −∂k∆

(
m̃aperjk + (mper + m̃) ãjk

)
,

hence the distribution T = div B̃ − div (m̃ aper +mper ã+ m̃ ã) is harmonic.

Since, according to (65) and the fact that ã, m̃ ∈ Lr(Rd), T ∈ W−1,r′(Rd), we
necessarily have T = 0, hence B̃ satisfies (63). Finally, we point out that the
regularity assumed on aper and ã implies that mper and m̃ are both Hölder
continuous, and consequently that A = ma−B satisfy the assumptions (7). On
the other hand, the right-hand side mε f of (61) strongly converges (to f) in
H−1(Rd) as ε vanishes. We may therefore apply the results of [9, 6] to (61) and
obtain the homogenized limit, with actual rates of convergence.

We conclude this section with the proof of Corollary 4.2.

Proof of Corollary 4.2 We fix f ∈
(
Lq(Rd)

)d×d
, for some 1 < q < +∞, and

denote by q′ the conjugate exponent of q, that is,
1

q
+

1

q′
= 1. To any arbitrary

function g ∈ Lq
′
(Rd), we may associate the unique (up to the addition of an

affine function) solution v, such that D2v ∈
(
Lq
′
(Rd)

)d×d
, to − aij ∂ijv = g.

The map

Lq
′
(Rd) −→

(
Lq
′
(Rd)

)d×d
g 7−→ ∂ijv

is linear continuous. We may therefore define by g 7−→ Lf (g) :=
∫
Rd fij . ∂ijv a

linear form on Lq
′
(Rd). Since, using the result of Proposition 3.1 for q′,∣∣∣∣Lf (g) =

∫
Rd
fij . ∂ijv

∣∣∣∣ ≤ ‖f‖(Lq(Rd))d×d
∥∥D2v

∥∥
(Lq′ (Rd))

d

≤ Cq′ ‖f‖(Lq(Rd))d×d ‖g‖Lq′ (Rd) , (66)
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this linear form is therefore a continuous map on Lq
′
(Rd). Hence there exists

some u ∈ Lq(Rd) such that

Lf (g) =

∫
Rd
fij . ∂ijv =

∫
Rd
g u,

and we read on estimate (66) that

‖u‖Lq(Rd) ≤ Cq′ ‖f‖(Lq(Rd))d×d .

There remains to show that u satisfies − aij ∂iju = ∂ijfij . To this end, we
consider the specific case where v ∈ D(Rd) (that is, v is smooth and has compact

support) and set g = −aij ∂ijv. Applying the above, we have

∫
Rd
fij . ∂ijv =∫

Rd
g u. The left-hand side is the duality product 〈 ∂ij fij , v〉D′(Rd),D(Rd), while,

by definition of g, the right-hand side reads as∫
Rd
−aij ∂ijv u = 〈− aij . ∂iju, v〉D′(Rd),D(Rd).

Since this holds true for all v ∈ D(Rd), this shows −∂ij ( aij u) = ∂ij fij and
concludes our proof. ♦
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A Appendix: Corrigendum to [9]

The present section aims at correcting some mistakes in [9].
First, we recall Remark 1 above that was pointing out that the case r = 1

should not have been included in Theorem 4.1 of [9].
Second, the purpose of this appendix is to correct [9, Lemma 4.2]. We have

claimed there that the elementary pointwise estimations known on the first and
second gradient of the Green function of the Laplace operator can be generalized
in similar estimates integrated locally for the operator −div (a∇.) . Our precise
statement, and some parts of the proofs are erroneous (however, this does not
affect the other results in [8, 9]). In this appendix, we are going to use the
notation of [8, 9]: aper is replaced by a0, and ã by b.

The correct statement of our results is as follows.

Lemma A.1 (Corrected version of [9, Lemma 4.2]) Assume that the co-
efficient a satisfies a = a0 + b, where a0 denotes the (unperturbed) background,
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and b the perturbation. Assume that 0 < µ ≤ a0(x) + b(x), 0 < µ ≤ a0(x),

a.e., for some fixed constant µ, a0 ∈ L∞(Rd), b ∈ L∞(Rd). Consider the Green
function G, solution to

−divx (a(x)∇xG(x, y)) = δ(x− y) (67)

(i) Then, for all 1 ≤ q ≤ 2, there exists a constant C such that, for all R > 0
and all x ∈ Rd, G satisfies∫

B2R(x)\BR(x)

|∇yG(x, y)|q dy ≤ C

Rd(q−1)−q , (68)

where B2R(x)\BR(x) = {y, R ≤ |x− y| ≤ 2R} denotes the annular region en-
closed between the balls of radius R and 2R.
(ii) Assume in addition that a0 = aper is periodic and Hölder continuous, and

that b ∈ Lr(Rd) ∩ C0,α
unif(Rd), for some 1 ≤ r < +∞, then G satisfies

∀ q ∈]1,+∞[, ∃C > 0, ∀ y ∈ Rd,
∫
{|x−y|>1}

|∇x∇yG(x, y)|qdx ≤ C.

(69)

Three comments are in order:

[a] the estimate (68) is correctly stated in [9] (as estimate (26) therein), but
the proof there has a flaw. For clarity, we provide the entire, corrected
proof here. In the course of the proof of (68) in [9], it is indeed claimed
that the estimate∫

B2R\BR
|∇xG(x, y)|q dy ≤ C

Rd(q−1)−q (70)

holds true. Note the gradient in x and not in y in the integrand. It is
actually unclear that the latter estimate is correct, and we suspect it is
not.

[b] it is claimed in [9] that the estimate∫
B2R(x)\BR(x)

|∇x∇yG(x, y)|q dy ≤ C

Rd(q−1)
(71)

holds; we are only able to establish this estimation as a consequence of
a more precise, namely pointwise, estimation of ∇x∇yG(x, y) which is a
consequence of arguments in both [9] and [6] and provided the additional
assumption b ∈ Lr(Rd), for some 1 ≤ r < +∞ holds.

[c] we therefore replace this estimate on annular regions by the estimate (69),
and show it is sufficient to conclude the proof of Lemma 4.2 in [9], thereby
checking there is no circular argument.
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Proof: (i) The proof of (68) is exactly that of [9]: we first prove that, for
1 ≤ q ≤ 2, ∫

B2R(y)\BR(y)

|∇xG(x, y)|q dx ≤ C

Rd(q−1)−q . (72)

Note that in (68) and (72), the role played by x and y are reversed. We will see
below that (72) indeed implies (68).

We first proceed for dimensions d ≥ 3. In the case q = 2, we use the Cac-
cioppoli inequality (see e.g. [9, Lemma 4.3]), which implies that∫

BR/2(x0)

|∇xG(x, y)|2dx ≤ C

R2

∫
BR(x0)

|G(x, y)|2dx,

for any x0 ∈ Rd such that y /∈ BR(x0). Next, we fix y and we cover B2R \
BR = {x, R < |x− y| < 2R} by balls BR/2(xi), for some points xi such that
5R/4 < |xi| < 7R/4, in such a way that (i) a finite number of such xi is sufficient
to cover the ring B2R \ BR and that (ii) any point in B2R \ BR belongs to at
most K balls BR/2(xi), for some K that is independent of the radius R. This
is easily seen to be possible.

The above estimate holds for any couple of balls (BR/2(xi), BR(xi)). We
sum all such estimates over the finite number of indices i and obtain∫

B2R\BR
|∇xG(x, y)|2dx ≤ C K

R2

∫
B11R/4\BR/4

|G(x, y)|2dx. (73)

Since d ≥ 3, using the classical pointwise estimate

∀x, y ∈ Rd, 0 ≤ G(x, y) ≤ C

|x− y|d−2
. (74)

(established in [23, 26] and recalled in [9, estimate (28)]), we get,∫
B2R\BR

|∇xG(x, y)|2dx ≤ C K

R2

∫ 11R/4

R/4

rd−1

r2d−4
dr ≤ C

Rd−2
. (75)

This proves the case q = 2. For q < 2, we simply apply the Hölder inequality
and use (75):∫

B2R\BR
|∇xG(x, y)|qdx ≤

(∫
B2R\BR

|∇xG(x, y)|2dx

)q/2
Rd(1−q/2)

≤ CR−(d−2)q/2+d−dq/2 = CR−dq+d+q. (76)

We thus have proved (72) for d ≥ 3.

We next prove (72) for d = 2. For this purpose, we use the following inequal-
ity, valid for any β ∈ (0, 2], and which expresses and quantifies the continuous
embedding of L2,∞ into Lr for r < 2 on bounded domains:

∀ f ∈ L2,∞(Ω),

∫
Ω

|f |2−β ≤ Cβ |Ω|β/2‖f‖2−βL2,∞(Ω),
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where Cβ = 4 1+2−β

(2β−1)(2−β)/2
is suitable. This estimate is proved for instance in

the Appendix of [11]. We are going to apply it to f = ∇xG and Ω = B2R \BR.
Since, in sharp contrast to the situation in dimensions d ≥ 3, G(x, y) does not
vanish when |x− y| −→ +∞, we use the estimate

‖∇xG(., y)‖L2,∞ ≤ C, (77)

to bound from above the right hand side. We find:∫
B2R\BR

|∇xG|2−β ≤ Cβ CRβ .

This implies (72) for q = 2−β ∈ [0, 2). Finally, in order to prove (72) for q = 2,
we fix y and first point out that, integrating the equation−divx(a(x)∇xG(x, y)) =
δy(x) on the set {x, G(x, y) ≥ s} (which contains y) for some s ∈ R, that

1 =

∫
G≥s
−divx(a∇xG)dx = −

∫
G=s

(a∇xG) · ns, (78)

where ns denotes the outward normal to the set {x, G(x, y) ≥ s}. Note that,
here, we have implicitly assumed that the set {x, G(x, y) ≥ s} is Lipschitz-
continuous, so that its outer normal is well defined and we can integrate by
parts. This may not be the case, given the regularity of G. However, using
the co-aera formula (see [1, Theorem 3.40]), it is simple to prove that, since
G ∈ C0,α away from x = y, this set is Lipschitz-continuous for almost all s ∈ R.
This is sufficient for our purpose here.

Next, we multiply the equation by G and integrate on {m ≤ G ≤ M} for
some m ≤M . This gives

0 =

∫
M≥G≥m

−divx(a∇xG)Gdx

=

∫
G=M

G (a∇xG) · nM −
∫
G=m

G (a∇xG) · nm +

∫
M≥G≥m

(a∇xG) · ∇xG.

(79)

Hence, using (78), we have∫
M≥G≥m

(a∇xG) · ∇xG = M −m.

Next, we define, for R > 0, mR = inf {G(x, y), x ∈ B2R \BR} , and MR =
sup {G(x, y), x ∈ B2R \BR} . We have B2R \BR ⊂ {mR ≤ G ≤MR}. Hence,∫

B2R\BR
|∇xG|2dx ≤ C

∫
mR≤G≤MR

(a∇xG) · ∇xG = MR −mR.

We apply the estimate (30) of [16], namely here

‖G‖C0,α(Br) ≤ C r
−α ‖∇G‖L2,∞(B2r) ,
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for all r such that B2r ⊂ B2R \BR. In view of (77), that estimate implies that
MR −mR is bounded independently of R. This proves (72) in the case q = 2.

At this stage, we have proved (72). We next point out that, in all gener-
ality and for non necessarily symmetric matrix-valued coefficients a, H(x, y) =
G(y, x) is the Green function of the operator − div(aT∇·), where aT is the trans-
pose matrix of a, which satisfies the same assumptions as a. Hence, we may
apply (72) to H, finding (68).

(ii) We now turn to the proof of (69).
Here again, we first proceed with the case d ≥ 3, and deal with d = 2

separately.
We note that G satisfies −divx (a∇xG(·, y)) = 0 in the set |x − y| > 1/2.

Hence, applying [21, Theorem 8.32], we have

∀x0 ∈ Rd such that |x0 − y| > 1,

‖G(·, y)‖C1,α(B1/4(x0)) ≤ C‖G(·, y)‖L∞(B1/2(x0)), (80)

where the constant C does not depend on x0, and α > 0 is defined by (7).
Using the classical estimate we recalled in (74), we deduce that there exists
some constant C > 0 such that

∀ |x− y| > 1, |∇xG(x, y)| ≤ C

|x− y|d−2
. (81)

This estimate, applied to H(x, y) = G(y, x), the Green function of the operator
−div

(
aT∇·

)
, yields

∀ |x− y| > 1, |∇yG(x, y)| ≤ C

|x− y|d−2
. (82)

Next, we apply the proof of (i) to ∂ykG. More precisely, since−divx(a∇x∂ykG(x, y)) =
0 in the set {|x−y| > 1/2}, we may apply Caccioppoli inequality and the whole
sequence of arguments that successively lead to (73) through (76) to ∂ykG in-
stead of G and we obtain, for 1 ≤ q ≤ 2,∫

B2R(y)\BR(y)

|∇x∇yG(x, y)|q dx ≤ C

Rd(q−1)−q ,

where C depends on q but not on y nor on R. In particular, summing up all
these inequalities for R = 2k, k ≥ 0, we have∫

|x−y|>1

|∇x∇yG(x, y)|qdx ≤ C
∑
k≥0

1

2k((d−1)q−d)
. (83)

The right-hand side is a converging series if and only if q > d/(d− 1). Hence,

∀ q ∈
]

d

d− 1
, 2

]
, ∃C > 0, ∀ y ∈ Rd,

∫
{|x−y|>1}

|∇x∇yG(x, y)|qdx ≤ C.

(84)
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We are now going to prove that (84) is valid for any q ≤ 2, that is,

∀ q ∈ ]1, 2] , ∃C > 0, ∀ y ∈ Rd,
∫
{|x−y|>1}

|∇x∇yG(x, y)|qdx ≤ C, (85)

for a constant C that, like in (83) and (84), depends on q, but not on y. In
order to prove (85), we write G = Gper +G1 +G2, with

−divx (a0(x)∇xGper(x, y)) = δ(x− y), (86)

−divx (a0(x)∇xG1(x, y)) = divx(χ(x− y) b(x)∇xG(x, y)), (87)

−divx (a0(x)∇xG2(x, y)) = divx [(1− χ(x− y)) b(x)∇xG(x, y)] , (88)

where χ ∈ C∞(Rd) is a cut-off function:

0 ≤ χ ≤ 1, χ|B1(0) = 1, χ|B2(0)c = 0, |∇χ| ≤ 2.

We successively prove that Gper, G1 and G2 satisfy (85), for |x− y| > 4. From
this we will infer that G satisfies (85).
Step 1: Gper satisfies (85). The results of [2, 11] imply that Gper satisfies the
estimates

∀ (x, y) ∈ Rd × Rd, |∇xGper(x, y)|+ |∇yGper(x, y)| ≤ C

|x− y|d−1
, (89)

∀ (x, y) ∈ Rd × Rd, |∇x∇yGper(x, y)| ≤ C

|x− y|d
. (90)

In particular, Gper satisfies (85). Actually, it even satisfies (69).

Step 2: bound on G1. We prove that G1 satisfies an estimate similar to (90)
for |x − y| > 3 (see (100) below). For this purpose, we first prove a bound on
∇yG1, from which we deduce a bound on ∇x∇yG1. We write, from (87),

G1(x, y) =

∫
Rd
∇zGper(x, z)T b(z)∇zG(z, y)χ(z − y)dz.

Hence, differentiating this equality with respect to yk, we have

∂ykG1(x, y) =

∫
Rd
∇zGper(x, z)T b(z)∇z∂ykG(z, y)χ(z − y)dz︸ ︷︷ ︸

:=H1(x,y)

−
∫
Rd
∇zGper(x, z)T b(z)∇zG(z, y) (∂ykχ) (z − y)dz.︸ ︷︷ ︸

:=H2(x,y)

(91)

The term H2(x, y) is easily estimated using (82) and (89), and the fact that
∇χ(z − y) vanishes outside 1 < |z − y| < 2:

|H2(x, y)|

≤ C‖b‖L∞(Rd)

∫
1<|z−y|<2

1

|x− z|d−1

1

|z − y|d−2
dz ≤ C

|x− y|d−1
, (92)
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for any x such that |x− y| > 3. Next, we write H1(x, y) as follows

H1(x, y) =

∫
Rd

(
∇zGper(x, z)T b(z)−∇yGper(x, y)T b(y)

)
∇z∂ykG(z, y)χ(z−y)dz

+

∫
Rd
∇yGper(x, y)T b(y)∇z∂ykG(z, y)χ(z − y)dz. (93)

In order to estimate the first term of the right-hand side of (93), we point out
that b ∈ C0,α

unif(Rd), and that Gper satisfies, according to [23, Theorem 3.5] and

since a0 ∈ C0,α
unif(Rd),

∀ z such that |z − y| ≤ 2,

|∇zGper(x, z)−∇yGper(x, y)| ≤ C|z − y|α
(

1

|x− z|d−1
+

1

|x− y|d−1

)
(94)

Actually, (94) is proved in [23, Theorem 3.5] for a problem in a bounded domain
with homogeneous boundary conditions. But a careful examination of the proof
shows that the constant does not depend on the size of the domain, implying
(94). In addition, [23, Theorem 3.3] implies that |∇z∂ykG(z, y)| ≤ C|z− y|−d if

|z − y| ≤ 2. Hence, using (94) and the fact that b ∈
(
C0,α

unif(Rd)
)d

, we infer

|H1(x, y)| ≤ C
∫
|z−y|<2

|z − y|α
(

1

|x− z|d−1
+

1

|x− y|d−1

)
1

|y − z|d
dz

+

∣∣∣∣∫
Rd
∇yGper(x, y)T b(y)∇z∂ykG(z, y)χ(z − y)dz

∣∣∣∣ (95)

The first term of the right-hand side of (95) is dealt with using the fact that, if
|x− y| > 3 and |y − z| < 2, then |x− y| ≤ 3|x− z|. Hence,∫

|z−y|<2

|z − y|α
(

1

|x− z|d−1
+

1

|x− y|d−1

)
1

|y − z|d
dz

≤ 1 + 3d−1

|x− y|d−1

∫
|z−y|<2

dz

|y − z|d−α
≤ C

|x− y|d−1
, (96)

where C does not depend on x nor on y. The second term of the right-hand
side of (95) is estimated using that χ has compact support, and integrating by
parts:∣∣∣∣∫

Rd
∇yGper(x, y)T b(y)∇z∂ykG(z, y)χ(z − y)dz

∣∣∣∣
=

∣∣∣∣∫
Rd
∇yGper(x, y)T b(y)∂ykG(z, y)∇zχ(z − y)dz

∣∣∣∣
≤ C

|x− y|d−1

∫
1<|z−y|<2

1

|z − y|d−2
dz ≤ C

|x− y|d−1
, (97)
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where C is independent of x and y. Here, we have used (89) and (81). Inserting
(97) and (96) into (95), we have

|H1(x, y)| ≤ C

|x− y|d−1
. (98)

Collecting (92) and (98), and inserting them into (91), we find that

∀ |x− y| > 3, |∇yG1(x, y)| ≤ C

|x− y|d−1
. (99)

Recalling that −divx(a0∇x∂ykG1) = 0 in {x, |x − y| > 2}, we may apply
[2, Lemma 16], which implies that

sup
x∈BR(x0)

|∇x∇yG1(x, y)| ≤ C

R
sup

x∈B2R(x0)

|∇yG1(x, y)|,

for any x0 ∈ Rd and R > 0 such that B2R(x0) ⊂ {x, |x − y| > 2}. Applying
this with R = 1

4 |x0 − y| − 3
4 , we find that

∀ |x0 − y| > 4, |∇x∇yG1(x0, y)| ≤ C

|x0 − y|d
. (100)

Step 3: G2 satisfies (85). Differentiating (88) with respect to yk, we have

− divx (a0(x)∇x∂ykG2(x, y)) = divx (b(x)∇xG(x, y) ∂yk (1− χ(x− y)))

+ divx ((1− χ(x− y)) b(x)∇x∂ykG(x, y)) (101)

In the right-hand side of this equation, we notice that

‖b∇xG(·, y) ∂yk (1− χ(· − y))‖L1∩L∞(Rd) ≤ C, (102)

since the support of ∂yk (1− χ(x− y)) is included in 1 < |x− y| < 2 and b∇xG
is bounded in this set. We fix an integer n ≥ 0 such that

(n− 1)d ≤ r < nd. (103)

Considering the rightmost term of (101), we have b ∈ Lr ∩ L∞(Rd) and (84),
hence, since the support of 1− χ is included in {x ∈ Rd, |x− y| > 1},

‖(1− χ(· − y)) b∇x∂ykG(·, y)‖Lq1 (Rd) ≤ C,
1

q1
= min

(
1,

1

s
+

1

q

)
,

s ∈ [r,+∞], q ∈
]

d

d− 1
, 2

]
, (104)

that is,

‖(1− χ(· − y)) b∇x∂ykG(·, y)‖Lq1 (Rd) ≤ C, ∀ q1 ∈
]
max

(
1,

1

1− 1
d + 1

r

)
, 2

]
,

(105)
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where C does not depend on y. Hence, (101) reads

−divx (a0(x)∇x∂ykG2) = divx(K), ‖K‖Lq1 ≤ C, ∀ q1 ∈
]
max

(
1,

1

1− 1
d + 1

r

)
, 2

]
.

Since a0 is periodic, we may apply [4, Theorem A]. We thus have ‖∇x∇yG2(·, y)‖Lq(Rd) ≤
C. This, together with (90) and (100), implies that

‖∇x∇yG(·, y)‖Lq1 ({x∈Rd, |x−y|>4}) ≤ C, ∀ q1 ∈
]
max

(
1,

1

1− 1
d + 1

r

)
, 2

]
.

In order to have this estimate on the set {|x − y| > 1} instead of {|x −
y| > 4}, we apply [21, Theorem 8.32], which implies that, since G satisfies
− divx(a∇x∂ykG) = 0 in {|x− y| > 1/2},

∀x0 ∈ Rd such that |x0 − y| > 1,

‖∂ykG(·, y)‖C1,α(B1/4(x0)) ≤ C‖∂ykG(·, y)‖L∞(B1/2(x0)). (106)

The right-hand side of (106) is bounded using (82), so we have

‖∇x∇yG(·, y)‖Lq1 ({x∈Rd, |x−y|>1}) ≤ C, ∀ q1 ∈
]
max

(
1,

1

1− 1
d + 1

r

)
, 2

]
.

Hence, we may repeat this argument n times, where n is defined by (103).
Hence, we find that

‖∇x∇yG(·, y)‖Lqn ({x∈Rd, |x−y|>1}) ≤ C, ∀ qn ∈

max

(
1,

1

1− 1
d + n

r

)
︸ ︷︷ ︸

=1

, 2

 ,
(107)

where C does not depend on y. Hence, we have proved (69), but only for
q ∈]1, 2]. In order to recover any q > 1, we point out that, according to standard
elliptic regularity results (see for instance [20, Theorem 7.2]),∫

B1/4(x0)

|∇x∂ykG(·, y)|q ≤ C
∫
B1/2(x0)

|∂ykG(·, y)|q,

where x0 is such that |x0 − y| > 1 and C does not depend on x0. According to
(82), ‖∂ykG(·, y)‖Lq({|x−y|>1}) ≤ C for any q > d/(d − 2). Summing all these

inequalities for x0 ∈ δZd, with δ > 0 sufficiently small, we thus have

‖∇x∇yG(·, y)‖Lq({|x−y|>1}) ≤ C, ∀ q > d

d− 2
.

This finally proves (69) in the case d ≥ 3.
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We turn to the case d = 2: here, it is not immediately clear that (81) is true,
because G does not satisfy (74). However, (68) holds, and implies, for q = 2,
that that there exists C > 0 such that

∀R > 0,

∫
B2R(y)\BR(y)

|∇xG(x, y)|2dx ≤ C. (108)

We claim that |∇xG(x, y)| ≤ C, for all x, y such that |x − y| > 1. We prove
this fact by contradiction: we assume that there exist sequences (yn)n∈N and
(xn)n∈N such that |xn − yn| ≥ 1 and

|∇xG(xn, yn)| −→
n→+∞

+∞. (109)

Let us define

Hn(x) =
G(x+ xn, yn)−G(xn, yn)

|∇xG(xn, yn)|
.

Then,

−div (a(x+ xn)∇Hn(x)) = 0, ∀x such that |x| < |xn − yn|.

Moreover, we have
Hn(0) = 0, |∇Hn(0)| = 1.

On the other hand,∫
B |xn−yn|

3

(0)

|∇Hn|2 =
1

|∇xG(xn, yn)|2

∫
|x|<|xn−yn|/3

|∇xG|2(x+ xn, yn)|dx

=
1

|∇xG(xn, yn)|2

∫
|z−xn|<|xn−yn|/3

|∇xG|2(z, yn)|dz

≤ 1

|∇xG(xn, yn)|2

∫
B2Rn (yn)\BRn (yn)

|∇Gx|2(z, yn)|dz, (110)

where we have chosen Rn = 2|xn − yn|/3. Indeed, this implies that

{z, |z − xn| < |xn − yn|/3} ⊂ B2Rn(yn) \BRn(yn).

Applying (108), (110) gives∫
B |xn−yn|

3

(0)

|∇Hn|2 ≤
C

|∇xG(xn, yn)|2
−→

n→+∞
0

Thus, ∇Hn → 0 in
(
L2(B1/3(0))

)d
. Applying elliptic regularity results [21,

Theorem 8.32], Hn is bounded in C1,α(B1/3(0)). Hence we may pass to the
limit in the equality |∇Hn(0)| = 1, reaching a contradiction.

Estimate (81) is finally proved. In the present case, it reads

∀ |x− y| > 1, |∇xG(x, y)| ≤ C, (111)
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for some constant C independent of x and y. Since this is a point-wise esti-
mate, we may apply it to G(y, x), which is the Green function of the adjoint
operator −div

(
aT∇

)
. Hence, (111) also holds for ∇yG. Since ∇yG satisfies

−div(a∇x∇yG) = 0 in the set |x−y| > 1, we apply here again elliptic regularity
results, as for instance [21, Theorem 8.32]. We thus infer that we have, instead
of (84),

∇x∇yG(x, y) ∈ L∞({|x− y| > 1}). (112)

Then, we adapt the proof of the case d ≥ 3: we define here again Gper, G1 and
G2 by (86)-(87)-(88). The first and second steps, which deal with Gper and G1,
are identical, and we do not reproduce them. The third step is different, since
it is in this step that we use (84). We write (101), and point out, here again,
that (102) holds. We replace (104) by the fact that

‖(1− χ(· − y))b∇x∂ykG(·, y)‖Lq1 (Rd) ≤ C, ∀ q1 ∈ [r,+∞[,

where C does not depend on y. Applying [2, Theorem A] to (101), we infer
that ‖∇x∇yG2(·, y)‖Lq1 ({|x−y|>1}) ≤ C. Here again, this, together with (90)
and (100), imply that

‖∇x∇yG(·, y)‖Lq1 ({|x−y|>1}) ≤ C, ∀ q1 ∈]r,+∞[, (113)

where C does not depend on y. We repeat the argument following (112), where
we use (113) instead of (112). This gives

‖∇x∇yG(·, y)‖Lq2 ({|x−y|>1}) ≤ C, ∀ q2 ∈
]r

2
,+∞

[
provided r/2 ≥ 1. Otherwise we have ‖∇x∇yG(·, y)‖Lq2 ({|x−y|>1}) ≤ C, for all
q2 > 1. Repeating the argument n times, we thus have

‖∇x∇yG(·, y)‖Lqn ({|x−y|>1}) ≤ C, ∀ qn ∈
]
max

(
1,
r

n

)
,+∞

[
.

For n large enough, we thus have ‖∇x∇yG(·, y)‖Lq({|x−y|>1}) ≤ C, for any q > 1.
We have proved (69), thereby concluding the proof of Lemma A.1. ♦

Given Lemma A.1, we now explain how one needs to modify the proof of
Theorem 4.1 of [9], which we recall here:

Theorem A.2 (Theorem 4.1 of [9]) Assume that a = a0 + b satisfies 0 <
µ ≤ a0(x)+b(x), 0 < µ ≤ a0(x), a.e., for some fixed constant µ, a0 ∈ C0,α

unif(Rd),
b ∈ C0,α

unif(Rd)∩Lr(Rd), for some r ∈ [1,+∞[. Assume that a0 = aper is periodic.
Then, problem (2) has a solution wp such that wp = wp,0 + w̃p, where wp,0 is
the periodic corrector, that is, the solution to (3), and

• if 1 ≤ r < d, then ∇w̃p ∈ Lr, lim
|x|→+∞

w̃p(x) = 0, and the solution wp is

unique among those satisfying wp = vper + v, where vper is periodic and
∇v ∈ Lr;
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• if 2 ≤ r, then ∇w̃p ∈ Lr. In addition, the solution wp is unique in the
class of solutions wp = vper + v, where vper is periodic and ∇v ∈ Lr.

We recall that in the proof of [9, Theorem 4.1], the corrector wp = wp,per + w̃p
is proved to exist, writing w̃p as

w̃p(y) =

∫
∇xG(y, x) [b (p+∇wp,per(x))] dx.

A crucial ingredient of the proof is to establish that ∇w̃p ∈ L∞. The function
w̃p is splitted as w̃p = w1 + w2, where

w1(y) =

∫
Rd
∇xG(y, x) [b (p+∇wp,per(x))]χ(x− y) dx,

w2(y) =

∫
Rd
∇xG(y, x) [b (p+∇wp,per(x))] (1− χ(x− y)) dx,

where, χ is a cut-off function:

χ ∈ D(Rd), χ|B1(0) = 1, χ|Bc2(0) = 0, χ ≥ 0, |∇χ| ≤ 2.

Next, both ∇w1 and ∇w2 are shown to be bounded. The proof for ∇w1 is
performed in [9]. As for ∇w2, we write

∇w2(y) =

∫
Rd
∇x∇yG(y, x) [b (p+∇wp,per(x))] (1− χ(x− y)) dx,

thus

|∇w2(y)| ≤
∫
|x−y|>1

|∇x∇yG(y, x)| |b(x)| (|p|+ ‖∇wp,per‖L∞) dx

≤ (|p|+ ‖∇wp,per‖L∞) ‖∇x∇yG(·, y)‖Lq({|x−y|>1})‖b‖Lr(Rd),

where we have chosen q = r′, that is, 1
q + 1

r = 1, and used (69) in the right-hand

side. This shows that ∇w̃p is bounded and the proof of Theorem 4.1 of [9] then
proceeds unchanged.

Remark 10 We think that (70) is not true in full generality. Indeed, applying
the De Giorgi-Nash estimate (see for example [30, Theorem 2]) to |∇yG|, which
is a subsolution of −divx(a∇xv) = 0 in {|x− y| > 0}, one finds

sup
x∈Rd, R<|x−y|<2R

|∇yG(x, y)| ≤ C

(
1

|B2R \BR(y)|

∫
B2R\BR(y)

|∇yG(x, y)|qdx

)1/q

,

where C depends on q, a and d only. In particular it does not depend on R.
Hence, applying (70), we would have

sup
x∈Rd, R<|x−y|<2R

|∇yG(x, y)| ≤ C

Rd−1
,
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which would in turn imply the pointwise estimate

|∇yG(x, y)| ≤ C

|x− y|d−1
. (114)

This estimate is true for a periodic coefficient (see [11, 4]). It is unclear for a
general coefficient. The results of [11] give an example in which (114) and the
estimate |∇x∇yG(x, y)| ≤ C|x− y|−d cannot hold together. This is why we do
not expect (70) to hold for a general coefficient a. Note however that, as stated
in Remark 11 below, it is true if the coefficient a is a local perturbation of a
periodic coefficient.

Remark 11 For the case of a coefficient that reads a = aper + ã, with aper

periodic and ã ∈ Lr(Rd), it is possible to adapt the proofs of [2, 3, 27], thereby
proving directly that inequality (114), thus (70), hold. The central estimate for
this is Lemma 16 of [2]. We will prove in [6, 25] that it is valid in this special
case.
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Planck-Kolmogorov equations. Mathematical Surveys and Mono-
graphs, 207. American Mathematical Society, Providence, RI, 2015.

[14] H. Brezis, On a conjecture of J. Serrin, Atti Accad. Naz. Lincei Rend.
Lincei Mat. Appl.19 (4), 2008, 335–338.

[15] H. O. Cordes, Zero order a priori estimates for solutions of elliptic dif-
ferential equations. 1961 Proc. Sympos. Pure Math., Vol. IV pp. 157–166
American Mathematical Society, Providence, R.I.

[16] G. Dolzmann, S. Müller, Estimates for Green’s matrices of elliptic systems
by Lp theory, Manuscripta Mathematica 88, no. 2, pp 261-273, 1995.

[17] B. Engquist and P. Souganidis,Asymptotic and numerical homogenization,
Acta Numer. 17, pp 147-190 (2008).

[18] L. C. Evans, Partial differential equations. Second edition. Graduate
Studies in Mathematics, 19. American Mathematical Society, Providence,
RI, 2010.

[19] M. Giaquinta, Multiple integrals in the calculus of variations and
nonlinear elliptic systems, Princeton University Press, 1983.

[20] M. Giaquinta, L. Martinazzi, An introduction to the regularity the-
ory for elliptic systems, harmonic maps and minimal graphs, Lec-
ture Notes Scuola Normale Superiore di Pisa (New Series), Volume 11,
Edizioni della Normale, Pisa, Second edition, 2012.

[21] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations
of second order. Reprint of the 1998 edition. Classics in Mathematics.
Springer-Verlag, Berlin, 2001.

[22] A. Gloria, S. Neukamm, F. Otto, A regularity theory for random elliptic
operators, in preparation.

38
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