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A Semi-Analytical Heterogeneous Model
for Thermal Analysis of Cancerous
Breasts

A. Ramírez-Torres, R. Rodríguez-Ramos, A. Conci, F.J. Sabina,
C. García-Reimbert, L. Preziosi, J. Merodio and F. Lebon

Abstract In the present work coupled stationary bioheat transfer equations are
considered. The cancerous breast is characterized by two areas of dissimilar thermal
properties: the glandular and tumor tissues. The tumorous region is modeled as a
two-phase composite where parallel periodic isotropic circular fibers are embedded
in the glandular isotropic matrix. The periodic cell is assumed square. The local
problem on the periodic cell and the homogenized equation are stated and solved.
The temperature distribution of the cancerous breast is found through a numerical
computation. A mathematical and computational model is integrated by FreeFem++.
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1 Introduction

Actually, clinical examination, ultrasound, mammography, thermography, among
others, are employed to identify and treat breast cancer [1, 2]. In particular,
mammography is considered the standard procedure for detecting breast cancer.
Yet, it presents difficulties for finding tumors in dense breasts. Thermography
technique has arisen as a prospective method with the aim of increase the efficacy of
the early discovery of breast cancer [3, 4]. Then, mathematical and numerical
models have been proposed for studying thermal distribution on healthy and
cancerous breasts, with the aim of using thermography as a complementary tool.
For instance, [5] modeled a three-dimensional tumorous breast and sensitivity
parameters are analyzed. Moreover, [3] were able to set a method to approximate
thermal properties, where the physical process was ruled by a bioheat transfer
equation. A three-dimensional breast, taking into account thermal and elastic
properties, was modeled and the influence of both properties on the surface tem-
perature was considered by [6]. In the aforementioned works, the numerical sim-
ulation was performed via FEM.

In the present study, a semi-analytical method is proposed for studying the breast
thermal properties for different parameter data. Then, mathematical and computa-
tional modeling are integrated for solving two coupled stationary bioheat transfer
equations. To separate micro and macro variables of the heterogeneous problem,
the two-scale asymptotic expansion is used [7, 8]. In fact, multiscales methods have
been successfully applied to various physical systems. For example, a formal
two-scale asymptotic expansion for studying the macroscopic behavior of a porous
and linear elastic solid was used in [9]. On the other hand, the homogeneous
problem associated with the healthy breast tissues (without tumor) and the
homogenized problem resulting by the application of the two-scale homogenization
method to the heterogeneous tumor tissue, are solved using FreeFem++. Finally,
numerical results are shown and discussed.
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2 Mathematical Model

The aim of the present work is to find the stationary temperature fields u and ue that
are described by the following bioheat transfer equations [10].

� @
@xi

Kg
ij
@u
@xj

� �
þ qbcbx

g
bu ¼ qgm þ qbcbx

g
bua in X1;

�Kg
ij
@u
@xj

ni ¼ h u� ueð Þ on @Xn
1;

u ¼ uc on @Xd
1:

8>>><
>>>:

ð1Þ

� @
@xi

Ke
ij
@ue
@xj

� �
þ qbcbx

e
bu

e ¼ qem þ qbcbx
e
bua inX2;

Ke
ij
@ue
@xj

ni ¼ �Kg
ij
@ug
@xj

ni on @X2;

ue ¼ ug on @X2

8>>><
>>>:

ð2Þ

where Kg
ij ¼ kgdij denotes glandular tissue thermal conductivity, qb is blood mass

density, cb blood specific heat capacity, ua is the arterial blood temperature, uc the
temperature at the boundary between breast and chest, ue is the surrounding tem-
perature and h represents the combined effective heat transfer coefficient due to
convection, radiation and evaporation of 13:5 W=m2 K [11]. Besides, the rapidly
oscillating coefficients Ke

ij;x
e
b and qem are defined as follows

Ke
ijðxÞ ¼

kgdij; x 2 Xe
g

ktdij; x 2 Xe
t

�
; xe

bðxÞ ¼
xg

b; x 2 Xe
g

xt
b; x 2 Xe

t

�
and qemðxÞ ¼

qgm; x 2 Xe
g

qtm; x 2 Xe
t

�
:

Note that in the case of the healthy breast model only (P1) has to be solved.
For the sake of simplicity, we will work in a two-dimensional section where the

breast geometry is represented by a hemispherical shape with a diameter L as done in
[11]. The healthy breast will be represented by a homogeneous tissue (glandular
tissue) and associated with the open, bounded, and connected domain X1 with
Lipschitz boundary @X1 ¼ @Xn

1 [ @Xd
1, where @Xn

1 \ @Xd
1 ¼ ;. On the other hand,

the cancerous tissue will be characterized by two regions of dissimilar thermal
properties: the tumoral area (Xe

t—fibers) and the glandular area (Xe
g—matrix). In this

sense, the cancerous region will consist of a periodic microstructure associated with
the open, bounded, and connected domain X2 ¼ Xe

g [Xe
t [ @Xe

g with Lipschitz
boundary @X2 ¼ @Xe

g and with Xe
g \Xe

t ¼ ;. Then, the cancerous breast is repre-
sented by X ¼ X2 [X1 (Fig. 1). Let e[ 0 be the size of the microstructure and
y ¼ x=e the fast scale coordinate. The reference periodic cell will be denoted by Y,
which contains one inclusion occupying the domain Yt with Lipschitz boundary @Yt
such that Y ¼ Yg [Yt [ @Yt, with Yt � Y and Yg \ Yt ¼ ;. It is also assumed that Xe

g

is connected and that the inclusions do not intersect the boundary @Xe
g. In previous

works, soft tissues assume to present this type of arrangement. In fact, Penta et al. [9]
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used the same periodic geometry to depict a porous tissue microstructure. Boundary
conditions for (1) are heat transfer by convection between the surface of the tissue
and the external environment on @Xn

1 and a prescribed temperature on @Xd
1. In the

case of (2) we assume heat and temperature continuity on @X2. Moreover, continuity
conditions for temperature and heat flow are imposed on Ce (boundary between the
glandular tissue Xe

g and the tumor inclusions Xe
t ), i.e.,

ue½ �½ � ¼ 0 on Ce and Kerxu
e � n½ �½ � ¼ 0 on Ce: ð3Þ

3 Two-Scale Homogenization

Here, the two-scale homogenization technique is applied to find the homogenized
equation and corresponding effective coefficients. An overview of how this method
is applied and its main assumptions can be found in [12]. Specifically, after find-
ing the solution u of problem (1), an asymptotic expansion of ue [problem (2)] is
sought as a function of e for e ! 0, namely

ueðxÞ ¼ u0ðxÞþ evpðyÞ
@u0ðxÞ
@xp

þ e2u2ðx; yÞþ . . .; ð4Þ

where the functions vpðyÞ; u2ðx; yÞ, are Y-periodic in y. In particular, the vector
function vðyÞ satisfies the unit cell problem

� @
@yi

KijðyÞ @vpðyÞ@yj
þKipðyÞ

� �
¼ 0 in YnC;

v½ �½ � ¼ 0 on C;

KijðyÞ @vpðyÞ@yj
þKipðyÞ

� �
ni

h ih i
¼ 0 on C

8>><
>>: ð5Þ

and u0ðxÞ the homogenized problem solution

Fig. 1 Decomposition of the
macroscopic domain (left) and
the corresponding unit
periodic cell (right)
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� @
@xi

K̂ij
@u0ðxÞ
@xj

� �
þ qbcbx

g
b
jYgj
jY j þ qbcbx

t
b
jYt j
jY j

� �
u0ðxÞ ¼ qgm þ qbcbx

g
bua

� � jYgj
jY j þ

þ qtm þ qbcbx
t
bua

� � jYt j
jY j in X2;

u0ðxÞ ¼ ug on @X2;

8>><
>>: ;

ð6Þ

where j � j represents volume fraction. The effective constant coefficients K̂ip are
given by

K̂ip ¼ Kij
@vp
@yj

þKip

� �
ð7Þ

where p ¼ 1; 2 and h�i denotes volume average.

3.1 Analytical Solution of the Unit Cell Problem

In particular, the theory of analytical functions by Muskhelishvili [13] is applied to
solve the cell problem (5). In this sense, the solutions of the local problems are
written as

vðgÞ1 ¼ Re a10zþ
X1 o

k¼1

a1k
fðk�1ÞðzÞ
ðk � 1Þ!

( )
and vðtÞ1 ¼ Re

X1 o

l¼1

c1l z
l

( )
; ð8Þ

vðgÞ2 ¼ Im a20zþ
X1 o

k¼1

a2k
fðk�1ÞðzÞ
ðk � 1Þ!

( )
and vðtÞ2 ¼ Im

X1 o

l¼1

c2l z
l

( )
; ð9Þ

where ðcÞ with c ¼ g; t denotes the constituent, the superscript o specifies that the
sum is carried out over odd indices, the coefficients ap0; a

p
k and cpl ðp ¼ 1; 2Þ are real

and f is the zeta quasi periodic Weierstrass function. Now, using Laurent’s
expansion of f and the quasi-periodicity property of f and its derivatives

vðgÞ1 ¼ Re
X1 o

l¼1

a1l z
�l � A1

l z
l

� �( )
and vðgÞ2 ¼ Im

X1 o

l¼1

a2l z
�l � A2

l z
l

� �( )
; ð10Þ

where for p ¼ 1; 2

Ap
l ¼

X1 o

k¼1

kapkgkl with gkl ¼ ð�1Þpþ 1p; kþ l ¼ 2
ðkþ l�1Þ!

k!l! Skþ l; kþ l[ 2

(

5



and Sk are called the reticulate sums and are defined as Sk ¼P
w2L�

1
wk ðk� 3; k oddÞ with L� representing the lattice excluding the number w ¼

0 and w ¼ mw1 þ nw2 where m; n 2 Z and w1;w2 are the periods. In particular, in
the present work w1 ¼ 1 and w2 ¼ i, due to we are in presence of square unit cells.

Substitution of (8)–(10) in boundary conditions of problem (5) and taking into
account that on C; z ¼ Reih where R is the circumference radius give that coeffi-
cients apk can be found through solution of the following infinite linear system (for
finding the effective properties it is truncated into an appropriate order k ¼ N)

n�1Iþð�1Þpþ 1Wp
� �

Âp ¼ Vp; ð11Þ

where Âp ¼ ðâp1; âp2; . . .ÞT; âpk ¼ apk
ffiffiffi
k

p
=Rk;Vp ¼ ðð�1Þpþ 1R; 0; . . .ÞT,

n�1 ¼ kg þ kt
kg � kt

and Wp ¼
ð�1Þpþ 1pR2; kþ l ¼ 2P1 o

k¼1

ffiffiffi
k

p ffiffi
l

p
gklR

kþ l; kþ l[ 2

8<
: :

Now, from Eq. (7)

K̂ip ¼ Kij
@vp
@yj

þKip

� �
:

Using the form of Kij, Green’s theorem, the double periodicity of vp and for-
mulas (8)–(10), then

K̂pp ¼ kg 1� 2pa11
� �

; if p ¼ 1
kt 1þ 2pa21
� �

; if p ¼ 2

�
: ð12Þ

In fact, if kg ¼ kt. Then, K̂ ¼ K̂11 ¼ K̂22.

4 Numerical Solution and Analysis of Results

This section is devoted to find the temperature distribution of problems (1) and (6)
where we define as g ¼ qbcbx

g
b; g

eðxÞ ¼ qbcbx
e
bðxÞ, f ¼ qgm þ qbcbx

g
bua; f

eðxÞ ¼
qemðxÞþ qbcbx

e
bðxÞua. With this aim, we follow the following procedure.
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4.1 Solution of (1)

For finding solution u of (1), we use FreeFem++. First, the problem must be written
in its weak formulation. In this sense, let H1

dðX1Þ ¼ fu 2 H1ðX1Þ s:t: cðuÞ ¼
0 on @Xd

1g. Using the trace theorem for uc 2 H1=2ðX1Þ, there exists a continuous
linear operator R0 : H

1
2ð@X1Þ ! H1ðX1Þ such that c R0ucð Þ ¼ uc. Now, we define

~u ¼ u� R0uc 2 H1
dðX1Þ. Then, on @Xd

1

cð~uÞ ¼ cðuÞ � cðR0ucÞ ¼ uc � uc ¼ 0:

In this way, the equivalent variational formulation of problem (1) is

Find ~u 2 H1
dðX1Þ such that

að~u; vÞ ¼ LðvÞ; 8v 2 H1
dðX1Þ

(
; ð13Þ

where

að~u; vÞ ¼
Z
X1

Kgrx~u � rxvdxþ
Z
X1

g~uvdxþ
Z
@Xn

1

h~uvdS;

LðvÞ ¼
Z
X1

fvdx�
Z
X1

gðR0ucÞvdx�
Z
X1

KgrxðR0ucÞ � rxvdx

þ
Z
@Xn

1

hðue � R0ucÞvdS:

In particular, the weak solution existence and uniqueness of problem (13) can be
proved by standard methods using the Lax–Milgram theorem. In this sense, the
following must be proved:

(i) The bilinear form að~u; vÞ is continuous
In this sense, observe that Kg 2 Mða; b;X1Þ and by Cauchy–Schwartz

jað~u; vÞj � bkrx~ukL2ðX1ÞkrxvkL2ðX1Þ þ gk~ukL2ðX1ÞkvkL2ðX1Þ
þ hk~ukL2ð@Xn

1ÞkvkL2ð@Xn
1Þ:

Furthermore, by the Poincaré–Friedrichs II theorem

k~ukL2ðX1Þ � ~C1krx~ukL2ðX1Þ ¼ ~C1k~ukH1
d ðX1Þ:

On the other hand, by the trace theorem

7



k~ukL2ð@Xn
1Þ ¼ kcð~uÞkL2ð@Xn

1Þ ¼
Z
@Xn

1

jcð~uÞj2 þ
Z
@Xd

1

jcð~uÞj2
2
64

3
75

1
2

¼ k~ukL2ð@X1Þ �C2k~ukH1ðX1Þ:

Moreover,

k~ukH1ðX1Þ ¼ k~uk2L2ðX1Þ þ krx~uk2L2ðX1Þ
h i1

2 � ~C1krx~uk2L2ðX1Þ þ krx~uk2L2ðX1Þ
h i1

2

¼ ð1þ ~C1Þ
1
2krx~ukL2ðX1Þ ¼ ~C3k~ukH1

d ðX1Þ; ~u 2 H1
dðX1Þ:

Therefore,

k~ukL2ð@Xn
1Þ �C2k~ukH1ðX1Þ � ~C4k~ukH1

d ðX1Þ;

where ~C4 ¼ C2~C3 ¼ C2ð1þ ~C1Þ
1
2. Finally, for ~u 2 H1

dðX1Þ

jað~u; vÞj � bk~ukH1
d ðX1ÞkvkH1

d ðX1Þ þ g~C1C1k~ukH1
d ðX1ÞkvkH1

d ðX1Þ þ h~C4C4k~ukH1
d ðX1ÞkvkH1

d ðX1Þ

�C5k~ukH1
d ðX1ÞkvkH1

d ðX1Þ;

with C5 ¼ bþ g~C1C1 þ h~C4C4.

(ii) The bilinear form að~u; vÞ is H1
d -elliptic

Let u 2 H1
dðX1Þ,

aðu; uÞ ¼
Z
X1

KgðrxuÞ2dxþ
Z
X1

gu2dxþ
Z
@Xn

1

hu2dS

�C6

Z
X1

ðrxuÞ2dxþ
Z
X1

u2dxþ
Z
@Xn

1

u2dS

0
B@

1
CA

¼ C6 krxuk2L2ðX1Þ þ kuk2L2ðX1Þ þ kuk2L2ð@Xn
1Þ

� �
�C6krxuk2L2ðX1Þ ¼ C6kuk2H1

d ðX1Þ; with C6 ¼ minða; g; hÞ:

(iii) The linear form LðvÞ is continuous in H1
dðX1Þ

Let v 2 H1
dðX1Þ,
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LðvÞj j ¼
Z
X1

fvdx�
Z
X1

gðR0ucÞvdx�
Z
X1

KgrxðR0ucÞ � rxvdxþ
Z
@Xn

1

hðue � R0ucÞvdS


















�
Z
X1

fvj jdxþ
Z
X1

gðR0ucÞvj jdxþ
Z
X1

KgrxðR0ucÞ � rxvj jdxþ
Z
@Xn

1

hðue � R0ucÞvj jdS:

But, by Cauchy–Schwarz inequality, the Poincaré–Friedrichs II theorem and the
fact that R0uc 2 H1ðX1Þ and rxðR0ucÞ 2 L2ðX1Þð Þn

jLðvÞj �C10kvkH1
d ðX1Þ;

where C10 ¼ C1kf kL2ðX1Þ þ gC1kR0uckL2ðX1Þ þ bkrxðR0ucÞkL2ðX1Þ þ hC7juej þð
hC8kuckH1=2ð@Xn

1ÞÞC3:

Thus, (i)–(iii) proves the existence and uniqueness of solution ~u0 by using the
Lax–Milgram theorem.

Now, it must be shown that the map hf ei 2 L2ðX1Þ ! u 2 H1
dðX1Þ is continuous

in order to prove the regularity of the weak solution. In fact, from the H1
d -ellipticity

of the bilinear form

jaðu; uÞj �C6kuk2H1
d ðX1Þ

and the continuity of the linear operator in H1
dðX1Þ

jLðuÞj �C10kuk2H1
d ðX1Þ:

Then,

C6kuk2H1
d ðX1Þ � jaðu; uÞj ¼ jLðuÞj �C10kuk2H1

d ðX1Þ;

i.e.

kukH1
d ðX1Þ �

C10

C6
¼ C11kf kL2ðX1Þ;

with

C10 ¼ 1
C6

C1 þ
gC1kR0uckL2ðX1Þ

kf kL2ðX1Þ
þ bkrxðR0ucÞkL2ðX1Þ

kf kL2ðX1Þ
þ

hC7juej þ hC8kuckH1=2ð@Xn
1Þ

� �
C3

kf kL2ðX1Þ

0
@

1
A:

Now, the contribution of R0uc may be difficult in some cases. However,
FreeFem++ replaces the Dirichlet condition by a Robin condition of the form

9



rxu � nþ u=e ¼ uc=e on @Xd
1 and solves the problem with a very small value of e.

In particular, we approximate the involved functions by piecewise linear continuous
finite elements.

4.2 Solution of (6)

The last step in the homogenization procedure is to solve the homogenized problem
(6). Here we prove that u0 is its solution and that the problem is well posed. In this
sense, let H1

0ðX2Þ ¼ fu 2 H1ðX2Þ s:t: cðuÞ ¼ 0 on @X2g. Using the trace theorem

for ug 2 H1=2ðX2Þ there exists a continuous linear operator R0 : H
1
2ð@X2Þ !

H1ðX2Þ such that c R0ug
� � ¼ ug. Now, we define ~u0 ¼ u0 � R0ug 2 H1

0ðX2Þ. Then,
on @X2

cð~u0Þ ¼ cðu0Þ � cðR0ugÞ ¼ ug � ug ¼ 0:

In this way, the equivalent variational formulation of problem (6) is

Find ~u0 2 H1
0ðX2Þ such that

að~u0; vÞ ¼ LðvÞ; 8v 2 H1
0ðX2Þ

�
; ð14Þ

where

að~u0; vÞ ¼
Z
X2

K̂rx~u
0 � rxvdxþ

Z
X2

hgei~u0vdx;

LðvÞ ¼
Z
X2

hf eivdx�
Z
X2

K̂rxðR0ugÞ � rxvdx�
Z
X2

hgeiðR0ugÞvdx:

In particular, K̂ 2 Mða; b;X2Þ see Cionarescu and Donato [14], and hf ei 2
L2ðX2Þ and hgei[ 0. The existence and uniqueness of solution ~u0 can be proved
through the Lax–Milgram theorem. Then, we must show that:

(i) The bilinear form að~u0; vÞ is continuous
In this sense, observe that using the fact that K̂ 2 Mða;b;X2Þ and by Cauchy–

Schwartz inequality

jað~u0; vÞj � bkrx~u
0kL2ðX2ÞkrxvkL2ðX2Þ þ hgeik~u0kL2ðX2ÞkvkL2ðX2Þ:

Now, from remark 3.37 p. 32 by Cionarescu and Donato [14], for
~u0; v 2 H1

0ðX2Þ,
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k~u0kH1
0 ðX2Þ ¼ krx~u

0kL2ðX2Þ;

kvkH1
0 ðX2Þ ¼ krxvkL2ðX2Þ:

Furthermore, by the Poincaré–Friedrichs I theorem,

k~u0kL2ðX2Þ � Ĉ1krx~u0kL2ðX2Þ ¼ Ĉ1k~u0kH1
0 ðX2Þ;

kvkL2ðX2Þ �C1krxvkL2ðX2Þ ¼ C1kvkH1
0 ðX2Þ:

Finally, for ~u0 2 H1
0ðX2Þ

jað~u0; vÞj � bk~u0kH1
0 ðX2ÞkvkH1

0 ðX2Þ þ hgeiĈ1C1k~u0kH1
0 ðX2ÞkvkH1

0 ðX2Þ

�C2k~u0kH1
0 ðX2ÞkvkH1

0 ðX2Þ;

with C2 ¼ bþhgeiĈ1C1.

(ii) The bilinear form að~u0; vÞ is H1
0-elliptic

Let u 2 H1
0ðX2Þ,

aðu; uÞ ¼
Z
X2

K̂ðrxuÞ2dxþ
Z
X2

hgeiu2dx

¼ C3 krxuk2L2ðX2Þ þ kuk2L2ðX2Þ
� �

; with C3 ¼ minða; hgeiÞ
�C3krxuk2L2ðX2Þ ¼ C3kuk2H1

0 ðX2Þ:

(iii) The linear form LðvÞ is continuous in H1
0ðX2Þ

Let v 2 H1
0ðX2Þ,

jLðvÞj �
Z
X2

jhf eivjdxþ
Z
X2

jK̂rxðR0ugÞ � rxvjdxþ
Z
X2

jhgeiðR0ugÞvjdx:

But, using the Cauchy–Schwarz inequality, the Poincaré–Friedrichs I theorem
and the fact that R0ug 2 H1ðX2Þ and rxðR0ugÞ 2 L2ðX2Þð Þn

jLðvÞj �C6kvkH1
0 ðX2Þ;

where C6 ¼ C4khf eikL2ðX2Þ þ hgeiC5kR0ugkL2ðX2Þ þ bkrxðR0ugÞkL2ðX2Þ:
Thus, (i)–(iii) proves the existence and uniqueness of solution ~u0 by using the

Lax–Milgram theorem.
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Now, it must be shown that the map hf ei 2 L2ðX2Þ ! u 2 H1
0ðX2Þ is continuous

in order to prove the regularity of the weak solution. In fact, from the H1
0-ellipticity

of the bilinear form

jaðu; uÞj �C3kuk2H1
0 ðX2Þ

and the continuity of the linear operator in H1
0ðX2Þ

jLðuÞj �C6kuk2H1
0 ðX2Þ:

Then,

C3kuk2H1
0 ðX2Þ � jaðu; uÞj ¼ jLðuÞj�C6kuk2H1

0 ðX2Þ;

i.e.,

kukH1
0 ðX2Þ �

C6

C3
¼ C7khf eikL2ðX2Þ;

with

C7 ¼ 1
C3

C4 þ
hgeiC5kR0ugkL2ðX2Þ

khf eikL2ðX2Þ
þ bkrxðR0ugÞkL2ðX2Þ

khf eikL2ðX2Þ

!
:

Once the solution u of (1) is found, we proceed to solve (6). In particular, the
homogenized problem (6) is solved using the aforementioned FreeFem++. As
above, we approximate the involved functions by piecewise linear continuous finite
elements.

4.3 Analysis of Results

Numerical calculations are carried out for three breast models A, B, and C, whose
tissue parameters are shown in Table 1. Temperatures are fixed as ua ¼ uc ¼ 37 	C
[5]. We fixed the surrounding temperature ue ¼ 20. The metabolic heat value for
different tumor sizes follows the law given by Jiang et al. [6] as
qtm ¼ C=ð468:6 lnð100DÞþ 50Þ, where C ¼ 3:27
 106 Wday=m3 and D is the
tumor diameter.

Figure 2A–C show the temperature distribution of healthy breast tissues with
L ¼ 0:14 m, i.e., without a tumor. Now, in Fig. 3 it is shown how depth (in the
present study the depth is stated as the distance between the tumor center and the
point on the breast surface in the same axis) affects breast thermal distribution. In
particular, in the zone “far” from the tumor area, no appreciable temperature
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changes at the surface are observed. Which is not the case when the tumor is located
near to the boundary where the temperature difference at the surface is higher if
compared with Fig. 2. Indeed, when the tumor is nearer to the boundary, the surface
temperature increases. This behavior is in accordance with the observations made
by [5] and [6]. Figure 4 first line of graphs, center line and bottom line, present the
steady-state temperature for a cancerous breast tissue with L ¼ 0:13 m, L ¼ 0:15 m
and L ¼ 0:17 m, respectively. In particular, a sphere with radius r ¼ 0:01 m was
inserted in the breast model to imitate the in situ tumor at a depth of d ¼ 0:04 m.
Moreover, a relative large tumor volume fraction jYtj ¼ 0:7 is considered so that
healthy breast tissue volume fraction is jYgj ¼ 0:3 in the tumorous region. As
observed, if the breast dimensions are bigger, the maximum temperature is higher,

Fig. 2 Thermal distribution of a healthy breast tissue

Fig. 3 Thermal distribution of a cancerous breast tissue with an embedded spherical tumor of
radius r ¼ 0:01 m located at depths d ¼ 0:03 m (first line) and d ¼ 0:05 m (second line),
respectively

Table 1 Tissue parameters

Model k (W/m °C) xb (1/s) cb
(J/Kg °C)

qb
ðkg=m3Þ

qg
ðWm�3Þ

Reference

kt kg xt
b xg

b

A 0.48 0.48 0.0132 0.0006612 3300 1100 700 [5]

B 0.48 0.48 0.009 0.00018 4200 1060 450 [3]

C 0.511 0.48 0.0108 0.000539 4200 1060 700 [15]
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where the temperature decreases from the chest wall to the front breast. Moreover,
surface temperature varies with breast dimension. On the other hand, the first and
second line of Fig. 5 show the temperature for a cancerous breast tissue where the
tumor is not located on the central axis x1 ¼ 0:07 m, i.e., its center is situated
0:02 m at the right and left of the central axis, respectively. Even, when the tumor is
found off central axis, it influences the temperature behavior on the nearest
boundary, which is higher than that of the adjacent surface. Besides, for Figs. 4 and
5 a temperature variation is noticed in the tumor area and the region surrounding it.

Fig. 4 Thermal distribution of a cancerous breast tissue with an embedded spherical tumor of
radius r ¼ 0:01 m for L ¼ 0:13 m, L ¼ 0:15 m and L ¼ 0:17 m, respectively

Fig. 5 Thermal distribution of a cancerous breast tissue with an embedded spherical tumor of
radius r ¼ 0:01 m located 0:02 m at the right and left of the central axis, respectively
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5 Conclusions

Here, a semi-analytical method is used for studying breast thermography through
coupled stationary bioheat transfer equations. One hand, the breast is assumed to be
homogeneous and constituted by glandular tissue. On the other hand, the tumor area
is represented by a periodic composite and comprised of glandular and cancerous
tissue. In particular, the temperature distribution on both, breast and tumor tissue,
was computed using a numerical algorithm implemented in FreeFem++. In sum-
mary, if the breast dimensions are bigger then the maximum temperature is higher
and no appreciable changes in temperature difference were observed far from the
breast boundary. The work results also indicate that the data parameter will influ-
ence the thermal distribution of the tumorous breast. The proposed method provides
a helpful framework for studying the thermal profile of breast cancerous tissues.
Moreover, it facilitates the understanding of the complex behavior of its surface
temperature. Also, it improves the current premature discovery and analysis of
breast tumors, integrating mathematical and computational tools. In fact, ther-
mography together with mathematical and computational modeling bring an
appropriate methodology in order to allow the assessment of rapidly growing
neoplasm.
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