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Application of Infrared Images
to Diagnosis and Modeling of Breast

Roger Resmini, Aura Conci, Lincoln Faria da Silva,
Giomar Oliver Sequeiros, Francieric Araújo, Claudinéia de Araújo,
Adriel dos Santos Araújo, Reinaldo Rodríguez-Ramos
and Frédéric Lebon

Abstract This chapter presents some developments and researches on using breast
infrared images in Brazil (Visual Lab group of the Federal Fluminense University).
These researches focus on comparing protocols for data acquisition using a
FLIR SC 620 infrared (IR) camera; preprocessing the acquired data (using opera-
tions such as region of interest or ROI extraction, image registration and some other
operations to prepare the images or thermal matrices to be used in computations);
3D reconstruction and, diagnostic recommendations from the IR data. These are
steps for development of computer tools for screening breast diseases, mainly, to be
used on public health system (named in Brazil: “Sistema Único de Saúde”—SUS).
After experimentations and comparisons among the diversity of recommendations
and ways of data acquisition reported in the literature, we propose a new protocol to
IR data capture and storage. With these, we developed a web site that can be used
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by all researchers interested in development of works in such subject. The site has
public access and presents several ground truths of intermediated developments of
the research as segmentation of the ROI, sets of features to be used for comparing
artificial intelligence methods for decision making, and some techniques for ROI
registration. Our intension is to provide materials to those interested in infrared
researches for breast disease. For the development of IR applications are very
important compare outcomes in disease detection (and diagnosis) and to use dif-
ferent strategies for features extraction, decision-making, and dimensionality
reduction. However, in order to promote fair conditions for comparisons, we have
to begin in a more standardized way to go further and for this we invite all interest
in the same theme to use a unified procedure for data acquisition.

Keywords Infrared images � Image registration � Breast diseases � Image
segmentation

1 Introduction

Thermoregulation in humans is affected by their metabolic activity and sweating.
Related to the temperature distribution, the human body can be considered as a
symmetrical system around the sagittal plane. This is the idea behind the use of
temperature for diagnosis or triage of diseases [7]. As Hippocrates said, “if the
temperature of an area of the body diverges of its symmetrical, then diseases must
be chased in these” [1]. It is especially related to the tumor growth when angio-
genesis plays a fundamental part of in the processes of proliferation, migration and
cellular differentiation, and when neovascularization increases the temperature in
the region near to a cancer.

Thermography, like ultrasound (US), is a functional examination. Both present
no risks to the patient and do not use ionizing radiation, and have safety and cost
benefits. The use of US imaging or sonography in medicine requires very good
operator training: such a person, in most countries, must be the same doctor that
elaborates and signs the examination report. On the other hand, to aid the diagnosis
of breast cancer, the most widely used imaging examination is mammography. This
is, in part, due to the fact that mammography (like thermography) does not require a
medical doctor for acquiring the patient images: only a well-trained nurse or
assistant who follows an established and protocol of training is necessary; then,
diagnosis can be done later by the specialists. This possibility allows performing
examinations in a more efficient way in large hospitals, big clinics and in a very
populated and poor country for triage proposes. Additionally, combining the two
main positive aspects of these most used and traditional examinations in medicine,
some authors have pointed out that thermography can detect cancer earlier than US
imaging and mammography, due to their relation with fluid perfusion, neo vases
formation and in the beginning of a disease [12, 15].

2



Historically, the computer was used for the first time to help with medical
diagnosis around the year 1960. At that time, the key idea was to achieve a diag-
nosis elaborated by the computer. Due to several factors such as low processing
power of computers and the lack of powerful algorithms, for decision making, the
idea did not progress. By the 1980s, the idea of using the computer for the diagnosis
reemerged, supported by the increase in the processing power of computers,
advances in image processing and improvements in artificial intelligence algo-
rithms. This second wave was supported on the premise that the computer system
gives a second opinion or a complementary opinion for diagnostics, but never
pretending to replace the human specialist. The first thermal sensors became
available for diagnosis in the 60s. The 1990s promoted advances in infrared
(IR) sensors (IR digital cameras allow the implementation of more elaborated
software, accurate enough to be used for medical diagnostics) . During the current
millennium, a new generation of sensors has arrived, being more rapid, sensitive
and allowing images with more resolutions.

Although, the computational power of computers has increased continuously
since then, allowing use of more sophisticated machine learning algorithms, such as
support vector machines (SVM) [33], fuzzy neural networks, and deep learning.
And, even though, big data treatments have grown in parallel, producing more
techniques for storage, maintenance and retrieval, and allowing for use of not only
an image per patient but a complete history of the patient’s life with many sorts of
examinations patients can have, included in their files along with many other sig-
nificant data sets related to heath. The idea nowadays is to use the computer as a
tool to help the physician save time, and to promote more efficient and correct
diagnosis without taking from the physicians and patients the role of protagonists
(i.e., continuing in the trend of the end of last century). With this in mind, this
chapter suggests image processing techniques to help in the medical diagnosis of
breast diseases by using thermal imaging. In the literature an inconsistent point
among the articles using infrared breast imaging is the existence of multiple pro-
tocols for data acquisition, that is. These aspects are discussed in the next section.
After acquisition, the images and data are stored and submitted to a number of
techniques which generate the result of the examination, which is the report that is
to be sent to the patients and their physician. These techniques are explained in the
following sections, which consider storage and retrieval, preprocessing, 3D re-
construction, extraction of features, classification and performance evaluation.

2 An Overview on the Image Acquisition Protocols

Image acquisition protocols present at least three aspects: the preparation of the
patient; the room environmental conditions and the procedures performed on the
patient during the examination.

The preparation of the patient is related to recommendations to be followed
before the exam (first aspect). Although, almost each hospital or health center uses
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its own protocol, there are common patient recommendations. For instance, these
are for patients do not do: smoke; drink caffeine or alcohol; practice physical
exercises; and apply any cream or oil type in the region of the breast and armpit.
A second aspect of recommendations is related to the environmental conditions of
the examination room: Temperature, relative humidity and air circulation should be
controlled during the examination and the same of all capture. This second aspect
is, in some way, almost the same among the groups (excluding the room temper-
ature) using thermal examinations over the world, as well.

However, considering the procedures performed on the patient (third aspect)
there are much more variations. This third aspect ranges from the induction of
changes in the body temperature of the patient (Passive Static Thermography), or
no temperature alteration (Active Dynamic Thermography); duration of cooling
or heating of the breasts; patient’s position (lying, sitting or standing) during the
examination; patient’s position relative to the camera (angles and distance); position
of the arms (on the head or supported at the waist, the named akimbo position), and
number of examinations used on the diagnostic decision.

Related to the induction of changes in the breast temperature, the acquisition
protocol may be classified as static or dynamic (passive or active). This nomen-
clature is considered in relation to the presence of the forced heat transfer in the
patient body and consequent increase in the transient terms of the associated
equations that describes the phenomena of thermal distribution on healthy and
unhealthy tissues of the breast. In static protocols the patient is on stable temper-
ature state with the environment of the examination room over the duration of the
exam. This type of acquisition is suitable to identify hot and cold areas and to
measure the symmetry in the distribution of skin temperature: it is the most used
type. On the other side, an acquisition protocol is named dynamic when the camera
is used for monitoring the recovery of skin surface temperature after a thermal stress
(for example, heating or cooling) or chemical stress (e.g., on the use of some drug
to promote vasodilatation or vasoconstriction in the vascular system). In other
words: the dynamic case study the temperature of the skin surface in transient part
of the processes and, allows to analyze changes over time, this turns important the
acquisition of more than one frame at same position in the examination in order to
enable the use of the transient set of data. That is, to promote the use of the
information related to the changes of the skin surface temperature plus the interior
temperature radiation and convection improves the identification of the age of the
blood vases of the breast. This is important because normal veins (the one with
almost the same age then the patient) present vasoconstriction (i.e., have con-
striction behavior) on the cold. However, this behavior is not visible for the bad
formed and incomplete vein produced by the fast malignant proliferation of cells
induced by the liquids perfusion near a cancerous region.

A fourth aspect related to the acquisition protocols is the dates or number of
examinations used to promote the current diagnosis of a patient. In this aspect it can
be classified as simple, sequential, or monitoring. In a simple acquisition, a unique
examination (capture in a specific date or a single image) of the patient is used, that
is, only a moment of time of her life is considered. In sequential mode, a series of
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images are acquired sequentially at a time interval as in dynamic protocols for
monitoring skin temperature variation do not in the same day, but after some interval
of days, weeks, or months. That is, as the dynamic protocol more images are used,
but in monitoring mode, images are captured over longer interval on the same type of
examination, for instance every 6 or 12 months, in order to monitor suspicious
region, for early detection of a disease, to verify the progress of a disease and
treatment after an therapy [27, 29]. Of course, the fourth aspect can be considered as
a repetition of the third. For this, the protocols which deserve more analysis and
experimentations are the static and the dynamic (Passive or Active) acquisition
protocol grouped in the third aspect commented before. In order to see what can be
considered the best one for the interested community on promote the union of effort
for better use of IR images on diagnosis, data from these two types of acquisitions,
obtained by our group, are available in a database of breast thermal images, named
Database for Mastology Research with Infrared Image—DMR-IR [27], and can be
used by researchers on breast infrared images. This, as far as we known, have never
be done before for breast diagnosis (for locating perforating vessels in breast
reconstruction surgery the use of cold and hot stimulation was used and compared
with static thermography by Kołacz et al. [16]). In both, the patient attempts the
common preparation and we used to ask them for, before capturing the images, pass
for acclimatization in a room with controlled temperature (between 20 and 22 °C for
10 min) with arms raised over the head and with the breast naked. The 2 acquisition
forms used on experimentations are: (1) A static protocol, where five captures are

Fig. 1 User interface of DMR-IR database (http://visual.ic.uff.br/dmi)
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done: 1 frontal, 2 laterals in an angle of 45° with the camera and 2 laterals in
direction of the right and left sides of the body (Fig. 1). (2) A dynamic protocol,
where an electric fan is turned on, in the breasts for 2 min and twenty frontal images
are acquired, in fifteen seconds interval between them [28]. The resulting infrared
images present 640 � 480 pixels and were captured using a FLIR thermal camera,
model SC620, which sensitivity of 0.04 °C range from −40 to 500 °C.

3 Storage and Retrieval

The Database for Mastology Research with Infrared Image—DMR-IR contains
infrared images and temperature matrixes, digitalized mammograms and clinical
data acquired in the university hospital (Hospital Universitário Antônio Pedro—
HUAP) of Federal Fluminense University, Rio de Janeiro, Brazil. The data are from
patients of the gynecologic department of HUAP. There are data from healthy
patients and from patients with a number of breast diseases, including cancer. This
research is approved by the Ethical Committee of the HUAP and registered at the
Brazilian Ministry of Health under number CAAE: 01042812.0.0000.5243. The
DMR-IR is accessible through a user-friendly interface (http://visual.ic.uff.br/dmi)
for managing and retrieving information. All data are from those patients that agree
on signing a term of understanding and knowledge about the research details and
consent on the use of their data for the research. Figure 1 illustrates one of the
navigations pages of the static protocol with some patient information for filtering
the wanted cases and images. Images can be downloaded in JPG or BMP format for
mammograms and thermograms (infrared images). The thermograms can also be
downloading as a 2D array of temperature. Reports of the exam can be downloaded
in txt or xml format as well.

A relational model was employed to construct the database and a client–server
application is used for data management. A retrieval tool was implemented using a
client side application that provides a search dialog to compose the query. A server
side application executes it using the tool and returns the results to the client [13,
31]. As in some cases, textual-based information is not enough for retrieval,
especially when user’s search requirements are about image visual features, a CBIR
(Content-Based Image Retrieval) tool was implemented. The image retrieval is
based on extraction of interest points. An interest point of an object represents a
specific area on the object around which the local image structure is rich in terms of
local information about the image content.

Figure 2 shows the CBIR model for image retrieval given an image as sam-
ple and performing ASIFT [20]. In this, we use the frontal position of the ther-
mograms. For image representation, the local visual feature considered is the Bag of
Words (BoW) [32]. The basic idea of BoW is that a set of local image patches is
sampled using some detected features on key points. They are composed by a
vector of visual descriptors for each patch independently. Then the patches created
are included into a set of visual words which constitute a codebook. After that, an
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image is described as a histogram-based representation of the codebook, and a
classifier (the Support Vector Machine—SVM in the implemented tool) is used to
find the image more similar to one associated to that the user have presented as
sample for retrieval [25].

4 Preprocessing

Mainly, the preprocessing step performs the segmentation of the data that is the
identification of the Region of Interest (ROI) of the images, and the separation of
this from the rest of the frame (that will be considered no relevant or the back-
ground). For diagnosis purpose, the thermal matrix and image are exported by the
camera. Both data can be used in an analysis. Images can use for segmenting
visually the ROIs, and the thermal matrixes (i.e., the file with thermal values, one
per point in the scene observed) are used for feature extraction to help in diagnosis.

The segmentation process (i.e., the ROI), in the breast application, frequently
generates two areas or masks, one for the right breast and the other for the left
breast. According to the physicians of our groups there are two possible ways to
consider the breast analysis relating to ROI segmentation [4, 8]. Both exclude head
and neck and begin in the inframammary fold. Figure 3 shows these two types of
ROIs: including (Fig. 3a, b) in the ROI the area of possible lymph nodes related to
breast and armpits or excluding this area (Fig. 3c, d) [23].

The purpose of inclusion of the armpits area is to investigate the ability to detect
altered lymph nodes, like it is done in sentinel lymph node exams (that verifies if a
cancer is in metastases) [18]. Ground truth (i.e., segmentation is done manually by
specialist) for this type of segmentations and the results achieved by two automatic

Fig. 2 Content-based image retrieval (CBIR) with bag of words (BoW) model [25]
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approaches can be seen in http://visual.ic.uff.br/en/proeng/marques/ or downloaded
in http://visual.ic.uff.br/en/proeng/marques/gt.php. Details about how they are done
can be found in Marques et al. [19]. The same process of separation of relevant data
can be applied over the array of temperature, i.e., the temperature to be analyzed
can be cropped and the elements outside the region of interest (ROI) can not be
used (Fig. 4).

Fig. 3 Two possible breast regions of interests (ROI). a Right breast and b left breast of
segmentation without armpits. c Right breast and d left breast of segmentation with armpits [23]

Fig. 4 Series do dynamic acquisition and the region of interest (ROI) on the images
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For comparison of the influence of the use of this additional area on diagnosis,
both ways of segmentation are performed in the same group of patients and the
same methodologies for features extraction and diagnostic suggestion are conduced
to a complete scheme by Resmini [23]. Segmentations used in this comparison are
available in http://visual.ic.uff.br/en/proeng/rresmini_thesis.

5 Three-Dimensional Reconstruction

The geometric modeling of the patient breast is useful for many application such as:
(1) to merge temperature information with others [5] specially with 3D exams
which represent the same patient like magnetic resonance, (2) to represent a model
of the breast with a 3D mesh for surgical reconstruction after mastectomy modeling,
(3) to identify points of correlation between IR exams and models of the patient
body for finite elements analysis or other forms of treatment of the inverse problem
(i.e., what is inside of the body that can result in a thermal distribution of skin’
surface) [3, 11, 24] and (4) for some numerical analysis and other examinations like
Electrical Impedance Tomography (EIT) [14] and 3D Ultrasound [35]. Moreover,
three dimensional meshes of the real model can be used in surgeries simulations, for
the personal project of prosthesis, for breast reduction, and other procedures.

We proposed two approaches for reconstruction. The first one uses a frontal
image and two lateral (orthogonal to this) images of the breast for shape recon-
struction. Figure 5 shows some steps of this approach [34]. The second extends the
first by proposing an apparatus to be used during the capture with thermal camera
and two Kinects (MicroSoft Xbox 360), improving the quality of the 3D mesh
generated [2]. The steps of the second one can be seen in Fig. 6.

From the two-dimensional thermal images (Fig. 5) it is possible to reconstruct
the patient breast geometry. The 3D geometric model proposed is based on fitting
two curves (for each breast a frontal and lateral view is used). The first step is the
identification of the points of the inframammary fold of the patient’s IR image).
These points are computed from IR image adjusted by using the least-square
method (LSM) [34]. These define the bottom curve used to define the size and

Fig. 5 Breast contour detection using a frontal and lateral view for each breast. Surface modeling
from such curves are achieved after positioning the lateral curves on a plane parallel to the coronal
over the nipple and using the bottom curve to define the size and shape of the breast [34]

9



shape of the breast. The spatial shape is defined by positioning the border of the
lateral views orthogonally to this over the nipple. The curves are joined as indicated
in Fig. 5. A computer graphics border representation can be used to generate the 3D
mesh. Then calculated curves and surfaces are compared with those obtained from
the process of asking the patient to be inside a laser scanner device in order to
capture the shape and measure how well the calculated curves and surface fits the
patient breast shape. The steps for these are:

1. Identification of the 2D coordinates of the breast border from the IR image red
line and blue line in Fig. 5;

2. Definition of the middle point (or nipple position) of the inframammary fold
image (red line) that will joint this curve with the vertical points (blue line);

3. Translate coordinates of all the points to the same axis and origin, and calcu-
lation of the 3D representation of the coordinates of the points, i.e., the (x, y,
z) representation for the frontal breast lower curve as can be seen in order to
have an orthogonal spatial limits of the breast;

4. Creation of an NURB surfaces using this limits, and the a 3D model of the
breast [34].

The validation of generated model was realized using 3 volunteers that have
been submitted to 3D laser digitalization of their bodies. Then the model of the real
bodies obtained with the scanner and the proposed “steps” re compared: i.e., the
laser scanned points with the proposed model of reconstruction from thermal
images. It was found that, on average, the differences between the 3D shape from
this method and the acquired model by laser scanner differ between 4.42 and
6.03%. The maximum value of differences is between 4.77 and 6.08%. In addition,
the general analysis about average of maximum value, and the minimum value
found on the validation is considered small and very much acceptable, turning the
3D model created by this methodology very close to real patient breast [34].

Range images are the name of the outcomes of a collection of imaging devices
available to produce a 2D image considering the distance of the points in a scene to
a specific point. This is normally associated with some type of sensor of the device.
These images have as pixel values a measure of the corresponding distance (e.g.,
brighter values mean shorter distance). If the sensor used to produce the range

Fig. 6 Schemes for data acquisition the infrared image and at same time the range cameras
(kinects) for breast geometric reconstruction, the range image achieved and the obtained result [2]
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image is properly calibrated, the pixel values can be used directly to compute
distance in the desired length unit, such as centimeters or inch.

In the developed of a second technique for breast shape modeling we used two
Kinects, and it consists of three stages: the first is calibration of the Kinects in an
apparatus (Fig. 6 left); the second step carries out the registration of the clouds of
points acquired by the sensors (Fig. 6 center); then, the reconstruction of the surface
of the virtual object (Fig. 6 right). Comparison of this technique and the real breasts
of five (5) volunteers and two (2) phantoms are done [2]. For the volunteers the
breasts are captured by a laser scanner (as previous commented) and for the
phantoms they are measured directly by a mechanical devise. The mean differences
among the surfaces areas are 3.55%, or 0.93 considering the Dice similarity
coefficient [9], in average, and we achieve mean differences among the distances of
the real nipples and the reconstructed models of 3.51% in this technique.

6 Feature Extractions, Classification and Evaluation
of Performance for Diagnostic Tools

The developed tools for diagnostic aid [10] can be divided as a function of time in
static or dynamic. They originate from the use of data archived by the Passive
Static Thermography or by the Active Dynamic Thermography, respectively.

Using the static protocol, 3 works to perform diagnosis have been developed by
our group. In a first one [26], Lacunarity and the Hurst coefficient are calculated
from each breast ROI. Both these features use the concepts of the fractal geometry
and were computed in three approaches: using each ROI independently, combining
both patient ROIs by subtracting one from the other or by feature subtractions.
A total of 133 features were extracted in Serrano et al. [26] work from a sample of
28 volunteers. Classification algorithms of WEKA (http://www.cs.waikato.ac.nz/
ml/weka/) were used. To identify the best result achieved, the performance of a
cancer x normal classification were considered by plotting the true positive rates
(sensitivity) against the false positive rates (specificity) of each used classifiers, i.e.,
the receiver operating characteristic (ROC) curve were considered. The Naïve
Bayes technique achieved the best score for correctly identifying cancer using these
features: it presented 0.958 of area under the ROC Curve (AUC).

In a second work [22], a total of 320 features were computed: most of them are
from the geo statistic (Ripley’s K function, Moran index, and Geary coefficient), but
also features from fractal geometry (using Higuchi fractal dimension approach) and
statistic (average and standard deviation and second order moments). They are
computed from each breast separately without combination or subtraction of images
or features. The same 28 patients are considered. These characteristics are grouped in
an array of data processed by the WEKA (http://www.cs.waikato.ac.nz/ml/weka/)
classifier software, as the previous one. The principal component analysis (PCA) is
performed in two ways: with the base divided into four groups of features and with
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the entire amount of data. The Support Vector Machine (SVM) was used for patient
classification by the PCA best group. The best accuracy is 82.14 and 91.70% is the
best sensitivity obtained [21].

In a third work [4], the used features were from fractal geometry (Higuchi fractal
dimension and Succolarity), basic statistics (average, standard deviation, and
thermal amplitude), histograms from the thermal matrix, geostatistics (Moran index
and Geary coefficient), and Ripley Diversity Index, using a total of 40 features
computed from 51 patient’s ROIs. Some tests were performed to find the most
expressive set of features by Principal Components Analysis (PCA) and genetic
algorithm feature selection. The work used SVM for classification and the AUC to
perform comparison of outcomes (resulting in 85.20%).

Using data from the dynamic protocol, Silva et al. [28] proposed a methodology
for analyzing temperature variations in order to detect a number of breast abnor-
malities (including cancer), using unsupervised and supervised machine learning
techniques, which characterizes the methodology as hybrid. The sequence of
thermograms from each patient is firstly segmented and the ROIs are registered
using the initial frame as reference. Then, for each point, functions representing the
change of temperature during the examination are built and the k-means algorithm
is applied on these functions using various values of k. Indices of clustering vali-
dation are applied to evaluate the possible groups for each value of k, generating
values to be used in the classification model. Data mining tools and hyper parameter
optimization (CASH) were used to combine groups in order to classify the patients’
breast. Further, classifiers based on Bayesian networks, neural networks, SVM and
decision tree were used. Among 39 tested classification algorithms, K-Star and
Bayes Net obtained classification accuracy of 100%. Furthermore, among the Bayes
Net, Multi-Layer Perceptron, LibSVM [6] and J48 classification algorithms, an
average accuracy of 95.71% was obtained.

Dynamic protocol data were also used by Silva [30] to compute ROI features
(first and second order statistical, clustering, histogram, fractal geometry, and
diversity indexes) and then to organize temporal series. These were after reorga-
nized in subseries with different cardinalities. The top subseries of features were
selected and used in SVM to classify the breast. The leave-one-out technique is
employed for validation using 64 patients (32 healthy and 32 with some disease).
Two features were extracted from each series and submitted to the classifier, they
are: the amplitude of the series and the square root of the sum to the square of the
series. The values were normalized between 0 and 1. The SVM classifier in the
WEKA tool was used with all their default parameters. The SVC (Support Vector
Classification) learning was used (in both C-SVC and Nu-SVC). Detailed results of
each group of feature (i.e., its sensitivity, specificity, accuracy, Youden index and
the AUC, for each analysis, are presented in Appendix B of Silva [30]. The best
results of the analysis are shown in Fig. 7.

The horizontal axis of Fig. 7 shows accuracy in percentage, it is possible to
notice that the greatest accuracies were obtained by the features from simple sta-
tistical group and by the union of all the features, achieving 97%. On the other
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hand, groups formed by the diversity index (horizontal and vertical) and lacunarity
do not obtain good results.

7 Conclusions

In this chapter, we present several approaches that have been implemented related
to the use of infrared images to breast modeling and diseases diagnosis; they
consider all aspects of the process of diagnostic tool implementation: capture
thermal matrix of patient body, storage and retrieval of images from a database,
segmentation, 3D reconstruction, feature extraction and classification. The experi-
ments and implementations were done by the Visual Lab group of the Fluminense
Federal University in Niteroi, Rio de Janeiro, Brazil. The results are promising and
it promotes diseases classification with very high accuracy. Each aspect considered
in this chapter is an important application of infrared images for breast modeling
and diagnosis. Test showed that the proposed methodology is able to detect breast
anomalies, thus contributing to adopted thermography for breast cancer screening
programs. For diagnostic recommendations the achieved results support the state-
ment that IR analysis is able to detect breast anomalies and to insert the ther-
mography in clinical routines for breast diseases screening. When considering the
dynamic protocol versus the static one, tools for diagnosis implemented using the
variation of the patient temperature (the dynamic protocol data) always achieve
better results even when very simple approaches are used like only the temporal
series of data [28, 29].

Acknowledgements This work was supported by Brazilian CAPES, CNPq, FAPERJ and
FAPEMA agencies. This research has also been partially supported by project “Pro-Engenharia
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Fig. 7 Accuracy by group of features using active dynamic thermography [30]
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