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1 Introduction

Nowadays structural bonding is a very common technique 

in numerous industrial domains as aeronautics or civil engi-

neering. This technology consists in an adhesive assembly 

of two bodies. The main function of this assembly is to 

transmit mechanical stresses in a given environment dur-

ing the whole life of the structure. The technology’s ben-

efits are obvious: low costs, simplified industrial processes, 

increased lightness, etc. Conventional adhesives (epoxides, 

polyamides, acrylic, cyanoacrylates, etc.) come in the form 

of thin films. Therefore, it is very important to propose sim-

ple as well as precise analytical and numerical models to 

simulate and predict the behavior of thin adhesive layers. 

The present work aims at proposing a quite general meth-

odology to describe the behavior of such a structure. Adhe-

sive layers being often characterized by their low thickness, 

it seems natural to introduce an asymptotic model whose 

small parameter is the layers’ smallest characteristic length 

�. The problem of a thin adhesive joint is then classically 

replaced by a transmission problem with mechanical char-

acteristics obtained from the mechanical and geometrical 

characteristics of the adhesive thin film (cf. [2, 12, 13, 15]).

In former papers by authors ([36, 38, 39, 45] and ref-

erences therein), the illustrated methodology has been 

applied for a planar elastic thin adhesive interphase, pos-

sibly anisotropic. Furthermore, in [37] this asymptotic 

technique within the small strains context was coupled to 

micromechanical homogenization concepts and Hertzian 
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theory in order to formulate a model of contact between 

smoothly-rough surfaces in non-sliding conditions.

In the present paper, several additional new features are 

introduced. Particularly, an overview of simple techniques 

accounting for (smooth) roughness, micro-damage (micro-

cracks) and geometrical nonlinearities is presented. Two 

main novelties are presented: (1) roughness is introduced in 

the asymptotic formulation within the framework of finite 

strain [36, 39, 44] as well as in the hard interface formula-

tion; (2) two theories of micromechanical homogenization 

for micro-cracked materials, i.e., Kachanov’s theory [30, 

48] and dilute scheme [4, 35], are studied and compared.

The paper is organized as follows. Firstly, a review of 

soft and hard imperfect interface models in linear elastic-

ity is presented in Sect.  2. Next, a smooth roughness at 

the contacting interfaces between the two adherents and 

the adhesive interphase in introduced in Sect. 3. A simple 

methodology of micromechanical homogenization able to 

take into account micro-damage is presented in Sect. 4. In 

Sect. 5, an interphase consisting of a nonlinear elastic mate-

rial, the Saint Venant–Kirchhoff material model, is studied. 

Lastly, some simple numerical applications are proposed in 

Sect. 6, to validate the proposed interface models.

2  Soft and hard imperfect interface models 

in linear elasticity

We begin by specifying what we understand by “soft” and 

“hard” interfaces. This notion is related to the stiffness 

ratio between the adhesive and the adherents. For example, 

in the case of two pieces of steel (with a stiffness close to 

210 GPa) bonded by an araldite glue (a stiffness close to 2 

GPa), the interphase is considered as soft. On the contrary, 

if two samples of maple wood (the stiffness is close to 10 

GPa) are bonded by an epoxy resin (the Young’s modulus 

is close to 4 GPa), the interphase is considered as hard.

2.1  The three-dimensional equilibrium problem

A thin interphase, B�
, joining two adherents, Ω�

±
, is consid-

ered occupying a cylindrical region of small thickness and 

cross-section S,   with S an open bounded set in IR2 with 

a smooth boundary �S. Introduced the Cartesian frame 

(O, x1, x2, x3) with (�1, �2, �3) the corresponding orthonor-

mal basis, the domains B� and Ω�

±
 are defined as

with 0 < �∕h << 1 and h the characteristic length of Ω. The 

surfaces between the adherents and the interphase of small 

thickness � are

The geometrical configuration described above is shown in 

Fig. 1.

The adherents are subjected to a body force density 

� :Ω�

± ↦ R
3 and to a surface force density �:Γ

�

g
↦ R3

. Body 

forces are neglected in the adhesive.

On Γ�

u
= �Ω� ⧵ (Γ�

g
∪ �Ω� ∩ �B�), homogeneous bound-

ary conditions are prescribed:

where ��:Ω�
↦ R

3 is the displacement field defined on Ω�
. 

Γ
�

g
 is assumed to be located far from the interphase and the 

fields of the external forces are endowed with sufficient 

(1)B
� =

{

(x1, x2, x3) ∈ Ω: −
�

2
< x3 <

�

2

}

.

(2)Ω�

±
=

{

(x1, x2, x3) ∈ Ω: ± x3 >
�

2

}

,

(3)S
�

±
=

{

(x1, x2, x3) ∈ Ω: x3 = ±
�

2

}

.

(4)�
�

= � on Γ
�

u
,

Fig. 1  Geometrical configura-

tions of the three-composite 

system within the a the refer-

ence model (interphase); b the 

rescaled model and c the limit 

model (interface)
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regularity to ensure the existence of equilibrium configura-

tion. In the following, the symbol (, ) means derivative. The 

equations governing the equilibrium problem of the com-

posite structure are written as follows:

with �� = u
�

i
�

i
 a displacement from Ω�

±
∪ B

� into IR
3
, 

�
�
= ��

ij
�i ⊗ �j the Cauchy stress, �(��) the strain tensor 

under the small perturbations hypothesis 

(eij = 1∕2(ui,j + uj,i)) and [[f ]]±
�
 the jump of f at S

�

±
. The 

materials of the adherents and of the thin interphase are 

assumed to be homogeneous and linearly elastic and �
±

, �
� 

are taken to denote the fourth-order elasticity tensors of the 

adherents and of the interphase, respectively. The tensors 

�
±

, �
� are assumed to be symmetric, with the minor and 

major symmetries, and positive definite. It is well known 

that the above equilibrium problem admits an unique solu-

tion. At least two different methods are possible to study 

asymptotically the problem (5), by using the minimization 

of the total energy [18, 19, 42, 43, 45] or, directly, by using 

the equilibrium equations [9, 16, 17, 20–23, 34]. In this 

paper, the last method was preferred.

2.2  The rescaled equilibrium problem

Because the thickness of the interphase is very small, it is 

natural to seek an approximated solution of problem (5) as 

the small parameter � vanishes. In this paper the method of 

matched asymptotic expansions is applied, which is based 

on a rescaling of the domains and on series expansions of 

the (rescaled) relevant fields (displacement and stress vector 

fields) with respect to �. In the following, the symbol (∧) will 

indicate the rescaled fields in the adhesive and the symbol (−) 

the rescaled fields in the adherents.

According to the method of matched asymptotic expan-

sions, a classical change of scale is first applied to the adhe-

sive and to the adherents [6]:

(5)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�
�

ij,j
+ fi = 0 in Ω�

±
,

�
�

ij
nj = gi on Γg,

�
�

ij,j
= 0 in B�,

[[��

i3
]]±
�
= 0 on S�

±
,

[[u�

i
]]±
�
= 0 on S�

±
,

u�

i
= 0 on Γu,

�
�

ij
=
(
a±

)
ijkl

ekl(�
�) in Ω�

±
,

�
�

ij
= (b�)ijklekl(�

�) in B�,

(6)�̂:(x1, x2, x3) ↦ (z1, z2, z3) =

(

x1, x2,
x3

�

)

,

(7)�̄:(x1, x2, x3) ↦ (z1, z2, z3) = (x1, x2, x3 ± 1∕2 ∓ �∕2).

Let �̂�: = �
�
◦�̂

−1 be a displacement from the rescaled 

interphase

and let �̄�: = �
�
◦�̄

−1 be a displacement from the rescaled 

adherents

In (7) the plus (minus) sign applied in Ω+ (Ω
−
). Under the 

change of variables, the domains Γ
u
 and Γ

g
 are transformed 

into the domains denoted by Γ̄
u
 and Γ̄

g
, respectively. The 

external forces are assumed to be independent of �, thus it 

is set f̄ (z1, z2, z3) = f (x1, x2, x3), ḡ(z1, z2, z3) = g(x1, x2, x3).

2.3  Asymptotic expansions

Within the rescaled configuration (cf. Fig. 1b), the asymp-

totic expansions of the displacement fields in the adherents 

and in the interphase take the following form:

Starting from Eq. (11), the adhesive’s strain tensor is 

obtained:

with:

and

where � = 1, 2, Sym(⋅) gives the symmetric part of a tensor 

and k = 0, 1,…

The strain tensor in the adherents can be obtained as:

with:

(8)B =

{

(x1, x2, x3) ∈ Ω: −
1

2
< x3 <

1

2

}

,

(9)Ω± =

{

(x1, x2, x3) ∈ Ω: ± x3 >
1

2

}

.

(10)�
�(z1, z2, z3) = �

0 + ��
1 + �

2
�

2 + o(�2),

(11)�̂
�(z1, z2, z3) = �̂

0 + ��̂
1 + �

2
�̂

2 + o(�2),

(12)�̄
�(z1, z2, z3) = �̄

0 + ��̄
1 + �

2
�̄

2 + o(�2).

(13)�(�̂�) = �
−1
�̂
−1 + �̂

0 + ��̂
1 + O(�2)

(14)�̂
−1

: =

⎡
⎢
⎢
⎣

0
1

2
û

0

�,3

1

2
û

0

�,3
û

0

3,3

⎤
⎥
⎥
⎦

(15)�̂
k
: =

⎡
⎢
⎢
⎣

Sym(ûk
�,�

))
1

2
(ûk

3,�
+ ûk+1

�,3
)

1

2
(ûk

3,�
+ ûk+1

�,3
) ûk+1

3,3

⎤
⎥
⎥
⎦
,

(16)�(�̄�) = �
−1
�̄
−1 + �̄

0 + ��̄
1 + O(�2)

(17)�̄
−1

= �,
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and again k = 0, 1,… The stress fields in the rescaled adhe-

sive and adherents, denoted �̂��
�
= ���◦�̂

−1 and �̄���
= ���◦�̄

−1 

respectively, are represented in asymptotic expansions:

As body forces are neglected in the adhesive, the equi-

librium equation can be written at the two first orders as:

where i = 1, 2, 3.

Equation (22) shows that the stress vector �̂��
0

i3
 is constant 

with respect to z
3
 in the adhesive, and thus it can be written:

where [.] denotes the jump between z
3
=

1

2
 and z

3
= −

1

2
.

Analogously, equation (23) can be rewritten in the fol-

lowing integrated form:

All equations written so far are general in the sense that 

they are independent of the constitutive behavior of the 

materials.

The equilibrium equation in the adherents can be written 

as:

As a perfect contact law between the adhesive and the 

adherents is assumed, the continuity of the displacement 

and stress vector fields is enforced. In particular, the conti-

nuity of the displacements leads to [45]:

(18)
�̄

k =

⎡
⎢
⎢
⎣

Sym(ūk
�,�

)
1

2
(ūk

3,�
+ ūk

�,3
)

1

2
(ūk

3,�
+ ūk

�,3
) ūk

3,3

⎤
⎥
⎥
⎦
,

(19)���
� = ���

0 + ����
1 + O(�2),

(20)�̂��
�
= �̂��

0
+ ��̂��

1
+ O(�2),

(21)�̄��
� = �̄��

0 + ��̄��
1 + O(�2).

(22)�̂��
0

i3,3
= 0,

(23)�̂��
0

i1,1
+ �̂��

0

i2,2
+ �̂��

1

i3,3
= 0,

(24)
[

�̂0

i3

]

= � ,

(25)[�̂��
1

i3
] = −[�̂��

0

i1,1
] − [�̂��

0

i2,2
].

(26)�̄
0

ij,j
+ fi = 0,

(27)�̄
1

ij,j
= 0.

(28)�
0(�̄, 0

±) = �̂
0

(

�̄,±
1

2

)

= �̄
0

(

�̄,±
1

2

)

,

(29)�
1
(

�, 0
±
)

±
1

2
�

0

,3

(

�, 0
±
)

= �̂
1

(

�,±
1

2

)

= �
1
(

�,±
1

2

)

,

and the continuity of the stress vector gives the following 

conditions:

for i = 1, 2, 3.

Following [45], the matrices �
jl
�
 (with j, l = 1, 2, 3) are 

introduced, whose components are defined by the relation:

In view of the symmetry properties of the elasticity tensor 

�
�
, it results that �

jl
�
= (�

lj
�
)T, with j, l = 1, 2, 3.

2.4  Internal/interphase analysis

In the following, two specific cases of linearly elastic mate-

rial are studied for the interphase. One, called “soft” material, 

is characterized by elastic moduli which are linearly rescaled 

with respect to the thickness �; the second case, called “hard” 

material, is characterized by elastic moduli independent of 

the thickness �.

2.4.1  Soft interphase analysis

Assuming that the interphase is “soft”, one defines:

where the tensor � does not depend on �. Accordingly to 

position (32), it is set:

Introducing the expansions in the constitutive equations 

leads to:

and

for j = 1, 2, 3, and

which represents the classical law for a soft interface.

Analogously, it is obtained:

(30)���
0

i3

(

�, 0
±
)

= �̂��
0

i3

(

�,±
1

2

)

= ���
0

i3

(

�,±
1

2

)

(31)

���
1

i3

(

�, 0
±
)

±
1

2
���

0

i3,3

(

�, 0
±
)

= �̂��
1

i3

(

�,±
1

2

)

= ���
1

i3

(

�,±
1

2

)

(32)(Kjl
�
)ki: = b�

ijkl
.

(33)�
�

= ��,

(34)K
jl

ki
: = bijkl.

(35)�̂��
0
+ ��̂��

1
= �(�̂−1 + ��̂

0) + o(�)

(36)
�̂��

0
= b(�̂−1)

�̂��
1

= b(�̂0)

(37)�̂��
0
�j = �

3j
�̂

0

,3

(38)�̂��
0
�3 = �

33
[

�̂
0
]

,

(39)

[

�̂��
1
�3

]

= −�
31
[

�̂
0
]

,1
−�

32
[

�̂
0
]

,2

4



Denoting < f > (�̄): =
1

2

(

f (�̄,
1

2
) + f (�̄,−

1

2
)
)

, it is obtained:

where the sum over � = 1, 2 is performed.

The complete problem for soft interface can be written 

at the two first orders as:

where << f >> (�̄): =
1

2

(

f (�̄, 0
+) + f (�̄, 0

−)
)

.

(40)
[

�̂
1
]

=

(

�
33
)

−1(

< �̂
1
�3 > −�

�3
< �̂

0
>,�

)

(41)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
0

ij,j
+ fi = 0 in Ω±,

�
0

ij
nj = gi on Γg,

u0

i
= 0 on Γu,

�
0

ij
=
(
a±

)
ijkl

ekl(�
0) in Ω±,[

���
0

i3

]
= � on S,

���
0

i3
= �

33

ik

[
u0

k

]
on S.

(42)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
1

ij,j
= 0 in Ω±,

�
1

ij
nj = 0 on Γg,

u1

i
= 0 on Γu,

�
1

ij
= �

1

ij
=
(
a±

)
ijkl

ekl(u
1) in Ω±,[

���
1

i3

]
= −�3�

ik

[
u0

k

]
,�
+ << ���

0

i3,3
>> on S,[

u1

i

]
=
(
�

33
)−1

ij

(
<< ���

1

j3
>> −��3

jk
<< u0

k
>>,�

)
+ << u0

i,3
>> on S,

Taking into account the first equation in (45) and using the 

positive definiteness of the tensor �, one obtains:

which corresponds to the kinematics of the perfect 

interface.

Analogously, it is obtained:

and

The complete problem for hard interface can be written at 

the two first orders as:

(46)�̂
0

,3
= 0 ⇒ [�̂0] = �,

(47)[�̂1] = (�33)−1

(

�̂��
0
�3 −�

�3
�̂

0

,�

)

,

(48)
[

�̂��
1
�3

]

=

(

−�
��
�̂

0

,�
−�

3�[�̂1]

)

,�

(49)=

(

−�
��
�̂

0

,�
−�

3�(�33)−1

(

�̂��
0
�3 −�

�3
�̂

0

,�

))

,�
.

(50)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
0

ij,j
+ fi = 0 in Ω±,

�
0

ij
nj = gi on Γg,

u0

i
= 0 on Γu,

�
0

ij
=
(
a±

)
ijkl

ekl(u
0) in Ω±,[

���
0

i3

]
= � on S,[

u0

i

]
= 0 on S.

(51)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�1

ij,j
= 0 in Ω±,

�1

ij
nj = 0 on Γg,

u1

i
= 0 on Γu,

�1

ij
=
(
a±

)
ijkl

ekl(�
1) in Ω±,[

���1

i3

]
=

(
K

��

ij
u0

j,�
+
(
�

3�(�33)−1
)

ij

(
�̂��

0

j3
−�

�3

jk
u0

k,�

))
,�
+ << ���0

i3,3
>> on S,

[
u1

i

]
= (�33)−1

ij

(
���0

j3
−�

�3

jk
u0

k,�

)
+ << u0

i,3
>> on S.

2.4.2  Hard interphase analysis

For a “hard” interphase, it is set:

where the tensor � is independent of �, and �jl is still taken 

to denote the matrices such that K
jl

ki
: = bijkl.

Taking into account the relations (13) and (20), the 

stress-strain relationship takes the following form:

which gives

(43)�
�

= �,

(44)�̂��
0
+ ��̂��

1
= �(�−1

�̂
−1 + �̂

0 + ��̂
1) + o(�),

(45)
� = �(�̂−1),

�̂��
0
= �(�̂0).

3  How introduce roughness?

3.1  The three-dimensional equilibrium problem

In this Section, a general methodology is proposed to take 

into account the interphase roughness. In particular, two 

given positive-valued dimensionless roughness functions, 

�
± ∈ C

0(S, IR
2), describing a smooth (i.e., �± are independ-

ent of �) surface roughness between the adherents and the 

interphase, are introduced. The domains B
�, Ω�

±
 and S�

±
 are 

then defined as:

5



and the interfaces between the adherents and the adhesive 

interphase are

We introduce two modified changes of variables:

Note that with these changes of variables, in the adhesive 

one has dx
3
= �

±dz
3
.

As a perfect contact law between the adhesive and the 

adherents is assumed, the continuity of the displacement and 

stress vector fields is enforced. In particular, the continuity of 

the displacements gives:

Expanding the displacement in the adherent, ��, in Taylor 

series along the x
3
−direction and taking into account the 

asymptotic expansion, it results:

Thus it is obtained:

Identifying the terms with the same powers of �, Eq. (61) 

gives:

(52)

B
� =

{

(x1, x2, x3) ∈ Ω: −
�

2
�
−(x1, x2) < x3 <

�

2
�
+(x1, x2)

}

,

(53)Ω�

±
=

{

(x1, x2, x3) ∈ Ω: ± x3 >
�

2
�
±(x1, x2)

}

,

(54)S
�

±
=

{

(x1, x2, x3) ∈ Ω: x3 = ±
�

2
�
±(x1, x2)

}

.

(55)�̂
�
:(x1, x2, x3) ↦ (z1, z2, z3) =

(

x1, x2,
x3

�+�

)

, x3 ≥ 0,

(56)�̂
�
:(x1, x2, x3) ↦ (z1, z2, z3) =

(

x1, x2,
x3

�−�

)

, x3 ≤ 0,

(57)

�̄
�
:(x1, x2, x3) ↦ (z1, z2, z3) = (x1, x2, x3 ± 1∕2 − �

+
�∕2), x3 ≥ 0,

(58)

�̄
�
:(x1, x2, x3) ↦ (z1, z2, z3) = (x1, x2, x3 ± 1∕2 + �

−
�∕2), x3 ≤ 0.

(59)�
�

(

�̄,±
�±�

2

)

= �̂
�
(

�̄,±
1

2

)

= �̄
�
(

�̄,±
1

2

)

.

(60)

�
�

(

�̄,±
�±�

2

)

=�
�(�̄, 0

±) ±
�±�

2
�
�

,3
(�̄, 0

±) +⋯

=�
0(�̄, 0

±) + ��
1(�̄, 0

±) ±
�±�

2
�

0

,3
(�̄, 0

±) +⋯

(61)

�
0(�̄, 0

±) + ��1(�̄, 0
±) ±

�±�

2
�

0

,3

(

�̄, 0
±
)

+⋯ =�̂0

(

�̄,±
1

2

)

+ ��̂1

(

�̄,±
1

2

)

+⋯

=�̄0

(

�̄,±
1

2

)

+ ��̄1

(

�̄,±
1

2

)

+⋯

(62)�
0(�̄, 0

±) =�̂0

(

�̄,±
1

2

)

= �̄
0

(

�̄,±
1

2

)

,

Following a similar analysis for the stress vector, analo-

gous results are obtained:

for i = 1, 2, 3. Note that using this technique, the jump the 

stress vector at order zero is not modified. However, taking 

the derivatives along the third axis shows that the matching 

conditions at order one are modified as follows:

with <<< f >>> (⋅) = 1∕2 �+ f (⋅, 0+) + 1∕2 �− f (⋅, 0−).

Now the equilibrium equation at order zero gives:

and thus,

At order one, the equilibrium equation leads to the 

condition

3.2  Soft interphase analysis

In this section, the interphase is assumed to be “soft”. The 

notation are the same as in Sect. 2. It is obvious to observe 

that Eq. (37) becomes

for j = 1, 2, 3, and

where � =
�
+
+ �

−

2
. Equation (72) describes an imperfect 

interface mode taking into account roughness.

Combining Eqs. (70) and (71), it is obtained:

(63)

�
1(�, 0

±) ±
1

2
�±�0

,3
(�, 0

±) = �̂
1

(

�,±
1

2

)

= �
1
(

�,±
1

2

)

.

(64)���
0

i3
(�̄, 0

±) = �̂��
0

i3

(

�̄,±
1

2

)

= �̄��
0

i3

(

�̄,±
1

2

)

,

(65)

���1

i3
(�̄, 0

±) ±
1

2
�±���0

i3,3
(�̄, 0

±) = �̂��
1

i3

(

�̄,±
1

2

)

= �̄��1

i3

(

�̄,±
1

2

)

,

(66)[�1](�̄) = [�̂1](�̄)+ <<< �
0

,3
>>> (�̄),

(67)[���1
�3](�̄) = [�̂��

1
�3](�̄)+ <<< ���

0

,3
�3 >>> (�̄),

(68)
1

�±
�̂��

0

i3,3
= �

(69)
[

�̂��
0

i3

]

= 0.

(70)�̂��
1

i3,3
= −�±�̂��

0

i�,�
.

(71)�±�̂��
0
�j = �

3j
�̂

0

,3

(72)�̂��
0
�
3
=

1

�
�

33
[

�̂
0
]

6



The constitutive equation gives:

Being �̂��
1
 and �̂0

,�
 linear in z

3
, we have [with j = 3 in Eq. 

(74)]:

The complete problem for soft interface can be written at 

the two first orders as:

(73)

[

�̂��
1
�3

]

= −�
31
[

�̂
0
]

,1
−�

32
[

�̂
0
]

,2

(74)�̂��
1
�j = �

�j
�̂

0

,�
+

1

�±
�

3j
�̂

0

,3

(75)
[

�̂
1
]

= �
(

�
33
)

−1(

< �̂��
1
�3 > −�

�3 < �̂
0 >,�

)

(76)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
0

ij,j
+ fi = 0 in Ω±,

�
0

ij
nj = gi on Γg,

u0

i
= 0 on Γu,

�
0

ij
=
(
a±

)
ijkl

ekl(�
0) in Ω±,[

���
0

i3

]
= � on S,

���
0

i3
=

1

�
�

33

ik

[
u0

k

]
on S.

The integration of the constitutive equations gives:

and by combining with the equilibrium equation one 

obtains

The complete problem for hard interface can be written at 

the two first orders as:

4  How introduce microcracks?

A very simple technique is now proposed to account for 

the presence of microcracks in the interphase. The idea 

is to introduce these microcracks (or porosity) directly in 

the elastic constitutive equations. A heterogeneous mate-

rial is considered made of an elastic material with cracks. 

To model the macroscopic behavior of cracked materials, 

homogenization models can be used and then a new homo-

geneous equivalent medium can be defined. The stiffness 

tensor depends on the crack length and orientation. In [11, 

40, 41], the authors introduce cracks by applying the meth-

odology developed by Kachanov and his collaborators [30, 

48]. In this approach, a crack density � is introduced. In 

two dimensions, this density is seen as the ratio between 

the square of the length of the crack l and the elementary 

volume describing the material at the microscale. Thus, the 

(79)[�̂1] = �(�33)−1

(

�̂��
0
�3 −�

�3
�̂

0

,�

)

(80)
[

�̂��
1
�3

]

=

(

−�
��
�̂

0

,�
−�

3�[�̂1]

)

,�

(81)= − �

(

�
��
�̂

0

,�
+�

�3(�33)−1

(

�̂��
0
�3 −�

�3
�̂

0

,�

))

,�

(82)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

�
0

ij,j
+ fi = 0 in Ω±,

�
0

ij
nj = gi on Γg,

u0

i
= 0 on Γu,

�
0

ij
=
(
a±

)
ijkl

ekl(�
0) in Ω±,[

���
0

i3

]
= � on S,[

u0

i

]
= 0 on S.

(83)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�1

ij,j
= 0 in Ω±,

�1

ij
nj = 0 on Γg,

u1

i
= 0 on Γu,

�1

ij
=
(
a±

)
ijkl

ekl(u
1) in Ω±,[

���1

i3

]
= �

(
K

��

ij
u0

j,�
+
(
�

3�(�33)−1
)

ij

(
�̂��

0

j3
−�

�3

jk
u0

k,�

))
,�
+ <<< ���0

i3,3
>>> on S,

[
u1

i

]
= �(�33)−1

ij

(
���0

j3
−�

�3

jk
u0

k,�

)
+ <<< u0

i,3
>>> on S.

3.3  Hard interphase analysis

In this section, a “hard” interphase is considered. The jump in 

the displacements at order zero is not modified:

giving again the kinematics of the perfect interface.

(77)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�
1

ij,j
= 0 in Ω±,

�
1

ij
nj = 0 on Γg,

u1

i
= 0 on Γu,

�
1

ij
=
(
�±

)
ijkl

ekl(u
1) in Ω±,[

���
1

i3

]
= −�3�

ik

[
u0

k

]
,�
+ <<< ���

0

i3,3
>>> on S,[

u1

i

]
= �

(
�

33
)−1

ij

(
<< ���

1

j3
>> −��3

jk
<< u0

k
>>,�

)
+ <<< u0

i,3
>>> on S.

(78)�̂
0

,3
= � ⇒ [�̂0] = �,
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crack density is inversely proportional to the thickness of 

the interface. The stiffness depends directly on the length l. 

Due this dependence, the next step consists in the asymp-

totic study of the stiffness coefficients of the homogenized 

elastic tensor. Obviously, two cases can appear, in the first 

one, the material is soft, in the second one the material is 

hard. In the previous sections, it has been shown how it is 

possible from this starting point to obtain imperfect soft or 

hard interface models. A scheme of this methodology is 

proposed in Fig. 2.

Within this section, two examples of homogenization 

techniques are given. The first one is based on the theory 

proposed by Kachanov et al. [30, 48]. The results presented 

here are given for a damaged isotropic material. We take E0

, �0 and �0 to denote the Young’s modulus, the shear modu-

lus and the Poisson’s ratio of the undamaged material. We 

assume that the crack lies along the direction of �
1
. In this 

case and in two dimensions, the stiffness coefficients of the 

cracked material, indexed by 1, are given by

where � = l
2∕�L and L is the length of the interface. The 

subindex i indicates the direction parallel to the crack, i.e. 

1,  or orthogonal to the crack, i.e. 2.

A simple asymptotic study of these coefficients leads to

where �� is effective elastic tensor of the homogenized 

material. Thus, this homogenization theory leads to a soft 

material. By considering the microcracks density, the stiff-

ness coefficients are given by

(84)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

E
1

1
= E

0,

E
1

2
= E

0

(
1 +

16(1 − (�0)2)

3
�

)−1

,

�
1

12
= �

0

(
1 +

8(1 − �
0)

3(1 − �0∕2)
�

)−1

,

�
1

12
= �

0.

(85)

{

�
� ≈ ��

� = �(l)

Fig. 2  Homogenization scheme 

for micro-cracked interphase 

media. The homogenized 

interphase is then treated by the 

asymptotic method in order to 

obtain the stiffnesses matrix �33 

of the imperfect-interface law

8



Note also that, in two dimensions, the normal stiffness 

and the tangential stiffness take the form

In the second example of cracked material, we intro-

duce a dilute homogenization scheme or a dilute estimate 

[4]. Note that other effective coefficients can be found 

in the literature (see [35] for example). In the case of a 

dilute estimate, the stiffness coefficients are given by:

A simple asymptotic study of these coefficients leads to:

These equations thus, lead to a model of hard interface, 

as defined above. In Sect. 6, these models will be compared 

within simple numerical examples.

5  A nonlinear model of imperfect interface 

accounting for roughness

In this section, the asymptotic behavior of a joint with an 

adhesive of vanishing thickness and comprising an iso-

tropic Saint Venant–Kirchhoff material is reviewed. The 

complete problem is addressed in [44], where the cases 

of “soft”, “hard” and “rigid” adhesive are distinguished, 

depending upon the rescaling of the adhesive moduli 

with its thickness. Attention here is restricted to the case 

of a “hard” adhesive, for which it is intended that its elas-

tic moduli are independent of the adhesive thickness. The 

(86)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

E
1

1
= E

0,

E
1

2
≈

3�E0L

16l2(1 − (�0)2)
,

�
1

12
≈

3�L�
0(1 − �

0)

16l2(1 − (�0)2)
,

�
1

12
= �

0.

(87)

⎧
⎪
⎨
⎪
⎩

K
N

=
3E

0
L

16l2(1 − (�0)2)
,

K
T

=
3E

0
L(�0 − 2)

32l2((�0)2 − 1)
.

(88)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

C
�

=
3(2� − 1) + 16((1 − �)2)�

3(2� − 1) + 32�2(1 − �)�
E

1

1
= C

�
E

0,

E
1

2
= E

0,

�
1

12
= C

�
�

0,

�
1

21
= C

�
�

0.

(89)

{

�
� ≈ �

� = �(l)

roughness of the adhesive is taken into account as in Sect. 3 

via the definition of a roughness function [11, 40, 41].

5.1  The three-dimensional equilibrium problem

A thin interphase, B
�
, joining two adherents, Ω�

±
, is con-

sidered and the same notation and assumptions of Sects. 2 

and 3 is adopted. The materials of the adherents and of the 

thin interphase are now modeled as Saint Venant–Kirchhoff 

isotropic materials, with Lamé’s coefficients equal to �±,�± 

in the adherents and �,� in the interphase. The latter are 

assumed to be independent of �, thus providing a model of 

“hard” interface, accordingly to the terminology introduced 

in the previous sections.

The equations governing the equilibrium problem of the 

composite structure are written as follows:

with �� = u
�

i
�

i
 a displacement from Ω�

±
∪ B

� into IR
3
, 

�
�
= P�

ij
�i ⊗ �j the corresponding first Piola-Kirchhoff 

stress and �
ik

 the Kronecker symbol.

It is well known that the Saint-Venant Kirchhoff energy is 

not rank-one convex and thus the direct method of the calcu-

lus of variations can not be applied to provide the existence 

of (weak) solutions of the above equilibrium problem [7, 24]. 

Existence results are known for special cases, i.e. when the 

pure displacement boundary value condition is considered 

and body forces are sufficiently small [10, 27, 29].

5.2  Asymptotic analysis

According to the method of matched asymptotic expansions 

implemented in the present paper, a change of scale is first 

applied to the adhesive interphase and the adherents. To take 

into account the roughness of the interphase, we introduce the 

modified change of variables as in (56–58). Next, the follow-

ing asymptotic series in the rescaled interphase and adherents 

domains are introduced:

(90)

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎩

P�
ij,j

+ fi = 0 in Ω�
±

,

P�
ij
nj = gi on Γg,

P�
ij,j

= 0 in B�,

[[��
i3
]]±
�
= � on S�

±
,

[[u�
i
]]±
�
= 0 on S�

±
,

u�
i
= 0 on Γu,

P�
ij
= (�ik + ui,k)(2�

±(uk,j + uj,k +
1

2
uh,kuh,j) + �±(ul,l +

1

2
|�l|

2)�kj) in Ω�
±

,

P�
ij
= (�ik + ui,k)(2�(uk,j + uj,k +

1

2
uh,kuh,j) + �(ul,l +

1

2
|�l|

2)�kj) in B�,

(91)P̂�

ij
= P̂0

ij
+ �P̂1

ij
+ o(�),

(92)û
�

i
= û

0

i
+ �û

1

i
+ o(�),
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for i, j = 1, 2, 3. Substituting the change of variables (56-58) 

and the expansion (91) into the equilibrium equations of 

the interphase (third equation in (90)), one obtains

where the + (−) sign applies in the part of B with z
3
> 0 

(z
3
< 0). The first conditions implies that the stress com-

ponents �̂0

i3
 are constant with respect to z

3
 in the rescaled 

interphase. By enforcing the continuity of the stress field at 

the interfaces between the adhesive and the adherents, Eq. 

(95) leads to the condition

where, as the usual notation rule, [f] denotes the jump 

across the surface S of a function f defined on the limit con-

figuration obtained for � → 0.

Next, we substitute the modified change of variables 

(56-58) and the expansions (91,93) into the constitutive 

equation of the interphase (last equation in (90)). This 

gives a set of conditions (at the orders −3, −2 and −1) all 

equivalent to the requirement that

This condition in turn implies that the displacement is 

constant with respect to z
3
 in the interphase and, enforc-

ing the continuity of the displacement field at the inter-

faces between the adhesive and the adherents, it gives

Substituting Eq. (98) into the condition arising from 

the (rescaled) constitutive equation of the interphase at 

order 0, the following condition is obtained:

with

Substituting (100) into (95) gives

(93)P̄�

ij
= P̄0

ij
+ �P̄1

ij
+ o(�),

(94)ū
�

i
= ū

0

i
+ �ū

1

i
+ o(�),

(95)
1

�±
�̂

0

i3,3
= 0 in B,

(96)�̂
1

i3,3
= −�±�̂0

i�,�
in B,

(97)[�0
�3] = �,

(98)�̂
0

,3
⊗ �3 = 0.

(99)[�0] = �.

(100)

�̂
0 = (� + �̂

0)

{
�(�̂0 + (�̂0)T + (�̂0)T �̂0) +

1

2
�((� ⋅ �̂0) +

1

2
|�̂0|2)�

}
,

(101)�̂
0
= �̂

0

,�
⊗ �� +

1

�±
�̂

1

,3
⊗ �3.

with

In view of Eq. (102) and under the assumption that

it is obtained that

This implies that �̂1

,3
 is independent of z

3
 and thus it admits 

the representation

In view of Eqs. (105,106), one has that �̂0 and �̂0 are 

also independent of z
3
. Thus, integrating (96) with respect 

to z
3
 in the rescaled interphase gives

with � =
1

2
(�− + �

+) and the notation div
p
 indicates the 

divergence in the plane of the interphase, e.g.

To summarize, perfect interface conditions are obtained at 

the order zero and the nonlinear imperfect interface con-

ditions (100) and (107) are obtained at the order 1. The 

imperfect interface conditions prescribe the jumps [[�̂1]]�3, 

[[�̂1]], which can be related to the corresponding jumps 

[�1]�3, [�1] across the surface S on the limit configuration 

obtained for � → 0 via matching conditions analogous to 

Eqs. (62)–(65) except for substituting the Cauchy stress �ij 

with the Piola–Kirchhoff stress Pij.

At the first two orders, the complete problems for the 

equivalent hard Saint Venant-Kirchhoff interface can be writ-

ten as:

(102)
(

ŝ
0

33
� + (� + �̂

0)�33(� + �̂
0)T

)

�̂
1

,33
= �,

(103)

ŝ
0

33
: = (2� + �)

(
1

�±
û

1

3,3
+

1

(�±)2
1

2
|�̂1

,3
|2
)
+ �

(
û

0

�,�
+

1

2
|�̂0

,�
|2
)

.

(104)det
(

ŝ
0

33
� + (� + �̂

0)�33(� + �̂
0)T

)

≠ 0,

(105)�̂
1

,33
= �.

(106)�̂
1(�̄) = [[�̂1]](�̄)z

3
+ < �̂

1
> (�̄).

(107)[[�̂1
�3]] = −� div

p
�̂

0,

(108)div
p
� = (��1),1 + (��2),2.

(109)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

P0

ij,j
+ fi = 0 in Ω±,

P0

ij
nj = gi on Γg,

u0

i
= 0 on Γu,

P0

ij
= (�ik + u0

i,k
)(2�±(u0

k,j
+ u0

j,k
+

1

2
u0

h,k
u0

h,j
) + �±(u0

l,l
+

1

2
|�0

l
|2)�kj) in Ω±,

[
�

0

i3

]
= � on S,[

u0

i

]
= 0 on S.
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6  A simple numerical example

6.1  Generalities

In the following, numerical procedures are presented and a 

numerical example is treated. Two cases are considered: a 

soft cracked interface (Kachanov theory) and a hard cracked 

interface (dilute estimate), as presented in Sect. 4. In order to 

simplify the notations, only two dimensional problems are 

considered. For the soft interface, Eq. (41) is solved. For the 

case of a hard interface, Eqs. (50) and (51) are solved. The 

equilibrium problem (51) is written as

where

with c
1
=

1

�
12

, c
2
=

E
1
(1 − �) − 2E

2
�

2

12

E
1
⋅ E

2
(1 − �)

, c
3
=

�
12

1 − �

, 

c
4
=

E
1

1 − �
2
.

6.2  Formulations of soft and hard interface problems

Soft interface problem The soft interface problem at order 

zero (41) is variational and it can be written in the weak form:

for all �± ∈ {� ∈ H
1(Ω):� = � on Γ

u
}.

Next, using standard finite element on each subdomain, 

and a “flat” finite element on S with all its nodes on S, half of 

(110)

⎧
⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P1

ij,j
= 0 in Ω±,

P1

ij
nj = 0 on Γg,

u1

i
= 0 on Γu,

P1

ij
= (�ik + u1

i,k
)(2�±(u1

k,j
+ u1

j,k
+

1

2
u1

h,k
u1

h,j
) + �±(u1

l,l
+

1

2
|�1

l
|2)�kj) in Ω±,

[
�

1

i3

]
= �

(
divp�

0

i3

)
i
+ <<< �

0

i3,3
>>> on S,

�
0

i3
=

(
(� +�

0){�(�0 + (�0)T + (�0)T�0) +
1

2
�((� ⋅�0) +

1

2
|�0|2)�}

)
i3

on S,

�
0

ij
=

(
�

0
,�
⊗ �� +

1

�±
(
[
�

1

i

]
+ <<< u0

i,3
>>>)⊗ �3

)
ij

on S.

(111)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

div ���
1 = � in Ω±

���
1� = � on Γg

�1 = � on Γu

���
1 = �±�(�

1) in Ω0
±

[�1] = �1(���
0�) + �2(�

0),1+ << �
0

,3
>> on S

[���1�] = �3(���
0�),1 + �4(�

0),11 on S

�1 =

(

c1 0

0 c2

)

, �2 =

(

0 − 1

c3 0

)

, �3 =

(

0 c3

−1 0

)

, �4 =

(

c4 0

0 0

)

.

∫
Ω±

�±�(�) ⋅ �(�)dx + ∫
S

[�] ⋅�[�]ds = ∫
Ω±

� �dx.

them related to Ω
−
 and the other half related to Ω+, it is possi-

ble to write a rigidity matrix of this problem that is invertible, 

and with standard error estimates (see for example [8, 31] for 

more details).

Hard interface problem Firstly, the interface problem at 

order 0 (see for example equation (50)) is standard since 

the continuity of the displacement and of the constraints 

across the interface are required. The problem (111) is 

no longer straightforward since discontinuities both in 

the displacement and in the stress vector fields have to 

be imposed. For the sake of simplicity, we denote by 

�0 = �1(���
0�) + �2(�

0),1 −
1

2
(�0(x1, 0+) + �0(x1, 0−)) and 

�0 = �3(���
0�),1 + �4(�

0),11 the imposed jumps, computed 

for the solution at order 0.

Then, the problem (111) has to be split into two parts, one 

for the jump in the displacements, the other for the jump in 

the constraints.

More precisely, we write �
±
= �

±
+ �

± where the 

unknowns �± and �± solve the problems

(112)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

div ���(�±) = � in Ω±

���(�±)� = � on Γg

�± = � on Γu

���(z±) = �±�(�±) in Ω±

�+ = �0
on S

�− = � on S

Fig. 3  Geometry of the problem (� = 0 for the interface problem)
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since [�] = �+ − �− = [�] − �+ + �− = �0 − �0 = �. 

The two first problems defined in Eq. (112) both in Ω+ and 

Ω
−
 are standard and they can be solved simultaneously by 

using a standard finite element method (let us notice that 

�
− is vanishing on Ω

−
 and thus there is no problem to solve 

on this domain, and �+ can be viewed as a prolongation of 

�
0 on Ω+). Equation (113) is solved by using the Nitsche’s 

method:

for all � ∈ {H
1(Ω): �(�) = 0 on �Ω∖S}, where h is the size 

of the smallest element of the finite element discretization 

of Ω±, and � > 0 is a fixed number that must be sufficiently 

large to ensure the stability of the method.

(113)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

div ���(�±) = � in Ω±

���(�±)� = � on Γg

�± = � on Γu

���(�±) = �±�(�±) in Ω±

[�] = � on S

[���(�)�] = �0 − [���(�)�] on S

(114)

∫
Ω+∪Ω−

���(�±) ⋅ �(�±)dx+∫
S

(<< ���(�)� >> ⋅[�] + [�]⋅ << ���(�)� >>)dS

+
�

h ∫
S

[�] ⋅ [�]dS = −∫
S

�
0
⋅ << � >> dS,

This formulation, known as the Nitsche’s method [32], 

is equivalent to (113). In particular, the solutions of (114) 

are weak solutions of (113) (see [1, 8, 47] for the com-

plete study of this method and for a priori and a poste-

riori error estimates).

6.3  Numerical results

In this section, we present some numerical results on an 

academic example. The geometry of the problem is given 

in Fig.  3. The composite structure consists of bricks 

glued with damaged mortar. The problem is treated in 

plane stresses. In all the computations bellow, P2 trian-

gular finite elements (conforming piecewise quadratic 

Lagrangian finite elements) are used. These elements are 

characterized by six nodes (one on each vertex and one 

on the middle of each edge).

All materials are considered as isotropic and their 

mechanical parameters are listed in Table 1.

Table 1  Elastic properties of bricks and mortar

Young modulus (MPa) Poisson ratio

Bricks 14 0.2

Undamaged mortar 11 0.2

X

Y

Z

Fig. 4  Geometry and mesh of the problem of Fig. 3 with a smoothly-

rough interphase (ε = 0.01 m)
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Fig. 5  Convergence of the various modeling to a reference solution 

when � tends to 0

Table 2  Representative coefficients for the Kachanov and the Dilute 

Model for various values of the crack length (L = 0.2 m, � = 0.01 m)

Crack length 

(m)

l = 0.002 l = 0.005 l = 0.01 l = 0.02

Kachanov 

model:

K
N
(

N

m3
) 1.3428 ⋅ 105 2.1484 ⋅ 10

4 5.3711 ⋅ 103
1.3428 ⋅ 10

3

K
T
(

N

m3
) 1.2085 ⋅ 105 1.9336 ⋅ 10

4
4.8340 ⋅ 10

3 1.2085 ⋅ 103

Dilute model:

C
�

0.9918 0.9485 0.7904 0.0988
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6.4  Roughness

In this first study, we consider a roughness equal to 

�(x
2
) = sin(16�x

2
) for x2 ∈ [0, 0.25] (see Fig.  4 for 

� = 0.01m).

For each values of � ranging from � = 0.05m to 

0.001m, we calculate the L
2 relative error between the 

solution computed with the three phases (as in Fig.  4) 

and a solution computed with the modelings proposed in 

the previous sections (soft/hard interface, at order 0 or 1). 

The results are plotted on Fig. 5.

In Fig. 5, one can observe that, since the relative rigidity of 

the mortar and the brick is small, the hard interface modeling 

provides better results, both at order 0 and 1. For that mod-

eling, the relative error is of order 0(�) when considering the 

order 0 and it converges rapidly to 10
−4 when considering the 

order 1. For the soft interface law, one can observe the conver-

gence rate is close to 0(�) at order 0 and to 0(�1.5) at order 1.

6.5  Microcracks

For the applications with microcracks, we have consid-

ered a mortar thickness equal to � = 0.01 and values of 

crack length ranging from 
l

L
= 0.1 (very damaged) to 

l

L
= 0.01.

x
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Fig. 6  Jumps in the displacement along the interface [u1](x1, x2 = 0.1) and [u2](x1, x2 = 0.1) (right), for � = 0.01 m and l = 0.002 m (the two first 

curves overlap)
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Fig. 7  Jumps in the displacement along the interface [u1](x1, x2 = 0.1) and [u2](x1, x2 = 0.1) (right), for � = 0.01 m and l = 0.02 m (the two first 

curves overlap)
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For each values of the crack length, Table 2 shows the 

representative coefficients for each theory. Let us notice 

that, for an undamaged mortar, we have K
N
= K

T
= +∞ for 

the Kachanov model and C
�
= 1 for the diluted model.

Data in Table  2 indicate that, when the crack length 

decreases, the rigidity of the interface increases for the 

Kachanov model and the diluted model becomes closer to 

the undamaged model.

We also note that for l larger than 0.02 m, the coeffi-

cient C
�
 becomes negative, an occurrence mechanically not 

admissible. On the contrary, for the Kachanov model, such 

physical restriction does not exist.

Finally, some solutions for extremal values of the param-

eters � and 
l

L
 are presented. In the first set of plots, we have 

used the Kachanov theory, imposing the continuity of the 

constraints and of the displacements across the interface, 

and the diluted model to obtain the displacements in both 

vertical and horizontal directions.

If we study more precisely the jumps in the displacements 

along the interface, we can observe that these jumps are 

smaller for l = 0.002 m (see Fig. 6) than for l = 0.01 m (see 

Fig.  7). Moreover, the jumps calculated for the Kachanov 

Model are very small in the considered range of values for l.

We then present some results obtained with the Kachanov 

model with larger values of the crack length, values that are 

unreachable with the dilute model. In Fig. 8, we can observe 

that the jumps in the displacements along the interface 

increase strongly when the length of the crack increases.

7  Conclusion and perspectives

In this paper, a general methodology aimed at modeling 

thin interphases and based on asymptotic expansions is 

presented. A review of classical “soft” and “hard” imper-

fect interfaces models in elasticity is first proposed. The 

methodology is generalized in a simple way to introduce 

smooth roughness and micro-cracks. In the first case, it 

is shown that a change in a step of the asymptotic proce-

dure, i.e. the rescaling, allows to introduce the roughness 

in the interface model. In the second case, micro-cracks 

are introduced by a simple modification of the elastic 

stiffness tensor. Next, a nonlinear constitutive equation 

for the thin interphase is introduced.

In the last part of the paper, a simple and efficient 

numerical method is described and an academic example 

is treated. In particular, it is shown how roughness and 

the presence of macro-cracks inside the interphase mate-

rial can influence the interface model.

The results of present paper are expected to find appli-

cations in different contexts, especially for modeling the 

complex behavior of nonlinear or piezoelectric adhesives 

[14, 25, 46], of imperfect bonding in composites [5, 26, 

28, 33], and quasi-brittle interfaces in masonry structures 

[36, 38, 39].

Furthermore, the proposed model has been generalized 

to introduce damage evolution, seen as the micro-crack 

length evolution [3, 38, 39], and it has been implemented 

in a commercial FEM-based software within some appli-

cations in masonry structures [38, 39]. As a perspective, 

the proposed methodology could be applied to the study 

of more general nonlinear constitutive equations, e.g., in 

biomechanical applications.
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