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ABSTRACT. We consider the kinetic Fokker-Planck equation with weak
confinement force. We proved some (polynomial and sub-exponential)
rate of convergence to the equilibrium (depending on the space to which
the initial datum belongs). Our results generalized the result in [4] [5]
[2T], 111 [10}, @ [, 14] to weak confinement case.
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1. INTRODUCTION

In this paper, we consider the weak hypocoercivity issue for the kinetic
Fokker-Planck (KFP for short) equation

(1.1) Of=Lf:=—-v-Vof + V. V() Vyuf + Apf + divy(vf),
1



2 CHUQI CAO

for a density function f = f(t,z,v), with ¢t > 0, x € R% v € R? The
evolution equation is complemented with an initial datum
£(0,)) = fo on R*.
We make the fundamental assumption on the confinement potential V'
V(z) = ()7, 7€),

where (z)2 := 1+ |z|%.
Let us make some elementary but fundamental observations. First, the
equation is mass conservative, that is

M(fo) = M(f(, ),

where we define the mass of f by

M(f) = /Rded fdzdv.

Next, we observe that

2
(1.2) G=z"1eW, W= % +V(z), ZeR,

is a positive normalized steady state of the KFP model, precisely
LG=0, G>0, M(G)=1,

by choosing the normalizing constant Z > 0 appropriately. Finally we ob-
serve that, contrary to the case v > 1, a Poincaré inequality of the type

>0, [ @ es(-V)ds <e [ 95 exp(-Via)ds,
R4 Rd
for any smooth function f : R¢ — R such that
f(z) exp(=V(z))dz = 0,
R4

does not hold. Only a weaker version of this inequality remains true (see
[20], or below Section 2). In particular, there is no spectral gap for the
associated operator £, nor is there an exponential trend to the equilibrium
for the associated semigroup.

For a given weight function m, we will denote LP(m) = {f|fm € LP} the
associated Lebesgue space and || f| zo(m) = [|fm||L» the associated norm.
The notation A < B means A < CB for some constant C' > 0.

With these notations, we can introduce the main result of this paper.
-1
Theorem 1.1. (1) For any initial datum fy € LP(G_(pT+€)), p € [1,00),
e > 0 small, the associated solution f(t,-) of the kinetic Fokker-Planck equa-

tion satisfies

N o, < —Ct? _ b1
I8 = MGG, e S e Lo = MG, ot
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for any b € (0, ﬁ) and some constant C > 0.

(2) For any initial datum fo € L'(m), m = H*, H = 2% + 42, 1 < k,
the associated solution f(t,-) of the kinetic Fokker-Planck equation
satisfies

1f(E,) = M(fo)Gllr S (1 +8)"%fo = M(fo)GllL1(m)s

forany 0 < a < 11“1. The constants in the estimates do not depend on fy,

but rely on v,d, €, 6’,2p, k.

Remark 1.2. Theorem is also true when V' (z) behaves like (x)7, that is
for any V(z) satisfying

Ci(z)” < V(z) < Co(z)?, Vo eRY,

Cslz|(z)?™! <2 -V, V(x) < Cylz|{x)"!, Vxc B,
and
D2V ()| < Cs(x)772, Yz € R,
for some constant C; > 0, R > 0.

Remark 1.3. There are many classical results on the case v > 1. In this
case there is an exponentially decay, and we refer the interested readers to
[211, [, 5, (11, @, 10} [1].

Remark 1.4. There are already some convergence results for the weak con-
finement case proved by probability method on some particular L' or L2
spaces in [I] and [6], this paper extend the result to LP spaces and more
larger spaces.

Let us briefly explain the main ideas behind our method of proof.

We first introduce four spaces Fy = L2(G~1/2), By = L2(G~1/2e1V (),
Es = L2(G-(+)/2) and Ey = L*(G~Y%(z)"" 1), with ¢, > 0 and €3 > 0
small such that E3s ¢ Ey C E; C Ey € L?. Thus E; is an interpolation
space between Ey and Fs. We first use a hypocorecivity argument as in
[4, 5] to prove that, for any fy € E3, the solution to the KFP equation
satisfies

d
A HOI PSSO
for some constant A > 0. We use this and the Duhamel formula to prove

IF Oz < [ foll2s-

Combining the two inequalities and using a interpolation argument as in
[12], we get

_ath
(1.3) 1F Oz S eIl foll e,
for some a > 0,b € (0,1).
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We then generalize the decay estimate to a wider class of Banach spaces
by adapting the extension theory introduced in [18] and developed in [14] [§].
For any operator L, denote S, (t) the associated semigroup. We introduce a
splitting £ = A+ B, where A is an appropriately defined bounded operator
so that B becomes a dissipative operator. By proving some regularization
estimate in Sg in LP

ISBE | Lo (my)—L2(me) ST VE € 10,7,
for some weight function my, mo and some «,n > 0, and using the iterated
Duhamel’s formula

n—1

(1.4) Se=Sg+ Y _(Sp)* (ASE)*) + Sp * (ASa(t)™",
=1

we deduce the LP convergence on Sy, where the convolution of two semi-
groups S(t) Sg(t)is defined by

t
(S % S5)(1) = /0 Sa(s)Ss(t — )ds.

Let us end the introduction by describing the plan of the paper. In Section
2, we will develop a hypocoercivity argument to prove a weighted L? estimate
for the KFP model. In section 3, we introduce a splitting £ = A + B and
using the L? estimate, we prove a L? convergence. In Section 4 we present
the proof of a regularization estimate on Sg from L? to LP. In Section 5 we
prove some L' estimate on the semigroup Sp. Finally in Section 6 we use
the above regularization estimate to conclude the LP convergence for KFP
equation.

Acknowledgment. The author thanks to S. Mischler for furitful dis-
cussions on the full work of the paper. This work was supported by grants
from Région Ile-de-France the DIM program.

2. L? FRAMEWORK: DIRICHLET FORM AND RATE OF CONVERGENCE
ESTIMATE

For later discussion, we introduce some notations for the whole paper.
We split the KFP operator as

L=T+S,
where 7T stands for the transport part
Tf=-v-Vof +VoV(z)-Vyf,
and S stands for the collision part

Sf=A,f +divy(vf).
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We will denote the cut-off function x such that x(z,v) € [0, 1], x(z,v) € C*,
x(z,v) = 1 when 22 +v? < 1, x(z,v) = 0 when 22 4+ v? > 2, and then
denote xg = x(z/R,v/R).

We may also define another splitting of the KFP operator £ by

(2.1) L=A+B, A=Kxg(z,v).

with K, R > 0 to be chosen later.
We use [ f in place of [4, pa fdzdv for short, similarly [ fdz means [pq fdx
, [ fdv means [p4 fdv. By <, is used to denote the ball such that {z €
R4||z| < p}, similarly B, means the ball such that {z,v € R?||z|? +v? < p}.
For V(x) = (x)7,0 < v < 1, we also denote (VV) for (z)7~!, and (VV)~!
for (x)1=7.
With these notations we introduce the Dirichlet form adapted to our
problem. We define the 0 order and first order moments

oy =olfl = [ fdv. 3y =il = [ erd
then we define a projection operator 7 by
nf =Mps, M=Ce /% /Mdv =1,

and the complement of 7 by
t=1-n, ft=xntF
We define an elliptic operator Ay and its dual Aj, by
Ayu = divg(Vau + Vi Vu), vu = Ayu—V,V - V,u,
let u = (A},)71¢ be the solution to the above elliptic equation
vu=¢ on RY,

note that u can differ by a constant, we also requires that
/ueV(VV)2d:U =0,

using these notations, define a scalar product by
(£,9) = (f,9)n+ (DAY Vais. (pge” (VV)*)) 2
+e((pre” (VV)?), AV Vajg) 12
= ([,9)u + €l Va(AY) " pge” (VV)?)) 12
+e((Va(AY) eV (VV)?), o) 2

for some € > 0 to be specified later.
We then define the Dirichlet form

D[f] = ((-Lf.[))
= (—Lf, )+ (A Vai[=LF], (pre¥ (VV)2)) 12
+e((p[—Lf1e” (VV)?), AL Vi) 2.
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Finally we define # = L*(G~/2), H; = L*(G~Y/?(VV)) and
Ho={h € H,/fdxdv =0}
where we recall that G has been introduced in . With these notations
we can come to our first theorem.

Theorem 2.1. There exists € > 0 small enough, such that on Hg the norm

((f, f))% defined above is equivalent to the norm of H, moreover there exist
A >0, such that

DIf] = Alf 3, VS € Ho.
As a consequence, for any fo € Ho, we have

d —_ —
(2.2) G -0 [ paiape,
for some constant C' > 0. In particular for any fo € Ho, we have
(2.3) 196 o3, S Ol g3,

for some constant C > 0.

Remark 2.2. In Hg we have
/pfev<VV>26_V(VV)_2dx—/pfdx— /fdxdv =0,

so the term (A},) ™! (pge¥ (VV)?) is well defined in Ho.

Remark 2.3. (1) By little modifying the method in Villani’s paper [21], a
H! version of our theorem can be established.
(2) Our statement is a generalization of [4] [5].

Before proving the theorem, we need some lemmas.
We say that W satisfies a local Poincaré inequality on a bounded open
set Q if there exist some constant xq > 0 such that:

1
h2ngQ/ Vh2w+/hw2,
I o VI ey UMY

for any nice function A : RY — R and where we denote W (Q) := (W1lg).
Lemma 2.4. Under the assumption W,W~! € L (RY), the function W

loc

satisfies the local Poincaré inequality for any ball 2 € RY.
For the proof of Lemma [2.4] we refer to [19] Lemma 2.3.

Lemma 2.5. (weak Poincaré inequality) There exist a constant A > 0 such
that

HUHLZ((VV>6*V/2) < )‘HquL%e*Vﬂ)
for any u € D(R?) such that

/ ue”V(VV)2dr =0
R4



THE KFP EQUATION WITH WEAK CONFINEMENT 7

Proof of Lemma . We prove for any h € D(R?) such that

(2.4) /R ) he™V(VV)™2 =0,

we have

|Vh[2e™V > )\/ h2eV (2)20—1),
Rd Rd

for some A > 0. Taking g = he/2V, we have Vg = Vhe 2V — %VVhefév,
so that
1

0< /\Vgl2
1
— /yvm?e—V+/h2(2AV— Zyvvy?)e—v.

We deduce for some K, Ry > 0

1 1
/|Vh]26V+/h24|VV\26V—/2V(h2)-VVeV

1
/|Vh|2€_v > /8h2<vv>26—‘f - K h2e”V(VV) 2.
Br,

Defining
= [ VOV Zei= [ V)
B Br

c
R

and using , we get
([ ne vy = ([ heViwvyy
Br B

R
S /
B

< eR/ h2e”V(VV)2.
B

c
R

h’e”V(VV)? / e V(VV)"

By

Using the local Poincaré inequality in Lemma [2.4] we deduce
1
/ e V(VV)™2 < Cgr / IVh|2e™V (V)2 4 ——( / he™V(VV)72)?
Br Br ZR JBg

cl, / VhZeY + B / B2V (VY.
Br ZR JBg

Putting all the inequalities together and taking R > Ry, we finally get

IN

/ 2 V(VV)? < 8 / |Vh|?e™" + 8K hle=V(VV)~2
Br,

. 8K
< 8(1+KCR)/|Vh]26‘V+6R/ h2e V(VV)?,
Zr JBg

and we conclude by taking R large such that: %;,R < % [l
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Lemma 2.6. (Elliptic Estimate) For any & € L*((VV) le=V/?) and & €
L%(eV/?), the solution u € L?*(e~"/?) to the elliptic equation

2.5 u =& + Vo, ue”V(VV)2dz = 0,
(2.5) Ay
satisfies
(2.6)
ull 2 ((wvye-vrzy + IVUll poe-vizy S 1€l L2 wvy-1e-vrzy + €2l 2 e-vr2)-

Similarly for any & € L*(e~V/2), the solution u € L(e~Y/?) to the elliptic
problem

Aju =&, /ue_V<VV>_2 =
satisfies
(2.7)
[l 22 owvyze-vimy HIVUll 2 owvye-vimy HI Dl page-vizy S 1€l L2 e-vrzegvy-1y-
Proof of Lemma . Multiply by ue~" and observes that
(2.8) eV div, [e—szu] = Ayu—V,V - -Vyu=Aju,

we have after integration

- /evdivx[e_vvxu]ue_v = /(51 + V- &)ueV

Performing one integration by parts, we deduce
[Vl = [+ vu-g vV,

using Lemma we obtain (2.6). In inequality (2.7, the first two terms
are easily bounded by (2.6) and (VV) < 1, we then only need to prove the
bound for the third term. By integration by parts, we have

/|D2u\26_v = Z/

= /8u82u8V 3 u)e™V

_ /(Au)(— *u)e /yvu\ (VVE = AV)e-
S D ull o e-viy €l L2 e-vizy + KV V) V]| g2 vy,
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where in the third equality we have used

/8i2ju8iu(‘)jVe_V = —/@-u@j(@iuaﬂ/e_v)

- — / D2 udiud; Ve " — / (0u)20;(8;Ve™),
which implies
1
/ Pudhudyve " = / (D)0, VeV,

and in the fourth equality we have used ([2.8]). That concludes the proof. [
Now we turn to the proof of Theorem

Proof of Theorem[2.1] First we prove the equivalence of the norms associated
to ((, )) and (, )y. By Cauchy-Schwarz inequality and Lemma we
have

(7, Va9 (0ge¥ (TVI2)) 2 < sl 2oy 10ge” (VV) 2l 2y -te-viny:
and obviously
"pgev<vv>2||L2((VV)_16*V/2) = ”pg||L2((VV)eV/2) < ||PgHL2(eV/2) < llgllu-
Using the elementary observations
’jf’ S HfHLz(ev?M) ‘Pf‘ S ”fHL2(ev2/4)>

we deduce

(s Va(AT) " pge" (VV)) 12 S I1F 19l
The third term in the definition of ((, )) can be estimated in the same way
and that ends the proof of equivalence of norms. O

Now we prove the main estimate of the theorem. We split the Dirichlet
term D[f] into 3 parts

D[f] =T, + €Iy + €T3,

with
Tl = (Efvf)H
Ty = (AY'Vail=LSf] pp)rzevieeovy
Tz = ((Av) " 'Vaip, pl=Lf]) p2eviz oy

and compute them separately.
For the T term, using the classical Poincaré inequality, we have

Ty = (“TF+Sf D= (-SF Fu
- - / (Ao + divy (0 FM e = / W (f/M)PMeY

>y [ /M = g PMEY = T = oM =l
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for some £, > 0. We split the 75 term as

Ty = (AY'Vai[=LS) p5) 2evie vy
= (Ao [=Twf), pp) p2evieeovy
+(A§1ij[_TfL]’ PF)L2(eVI2(wVY)
+H(AV Vi [=8 1, pF) 2 evizwvy)
= Toq +Too+Tos.
First observe
Trnf=—v-VeprM =V, V -vps M = —e VM- Vx(pf/efv),
so that we have
J=Trf) = (oe)e™ 0 (g /e™) = eV Valpgfe).
Next by , we have
Ty = GI=Trf], VAV (pret (VV)?)) 12
= (ps.[e"divy (e V)][(A)(pre (VV))]) 12
= lpse"* (V)72 = lIn f 1134, -

Using the notation 71 = (v ® vft) and 99 s = (Va Oy f+), and observing
that

m| < HfJ_HL2(8v2/4)7 2| < ”fLHL2(ev2/4)a

we compute
Do = (=T VAY) pre (VV)?)) 12

= (D +mVV,V(A}) H(pre" (VV)?)) 2

= (m. DX(AV) Hpge" (VV)) 12 + (02, VVV(AY) " (pseV (VV)?)) 12
111l 2 eviey [ D*(AV) " pre (Y V) p2e-vry
el p2evin IVVV(AT) " pre (VV)) | 2e-vry.
By Lemma we estimate

Too S Imllpeevrzyllore” (VVI2Il oe-viz gy -1y
+H772HL2(3V/2)”pfev<vv>2”L2(e—V/2<VV)*1)
S Wil -

Using
J=SA=il=S1Y = = [ ol + divy(ofHldo
= [ Frodo S 1 gpgnrny
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and Lemma [2.6] we have
Tz = (j[-Sf1,V(AY)  (pre" (VV)?)) 12
< =511l 2evrey IV AT) " pre  (VV)) [l 2 (e-vr2y
S W lwllore” (VV) 2l e ovy-1e-vrey
= HflHHprHLQ((VV>eV/2)

< N il -

Finally we come to the T5 term. Using

pl-Sf] = / Vo (Vof +0f)dv =0,

and
pl=Tf] = ploVaef—VV(2)V,yf]
= /vaf — V.V (2)V,fdv
= Vailfl,

because V((VV)2) < (VV)2 and (VV)2 < (VV), we get

T3 = ((Av)""Vaidp, pl= L) r2evieovy

= ((AV)'Vailf 1 pl=T ) 2 evie (wvy
=11 V(AN (Vailfle (VV)?) 12

i 2 IV (AT) V(e (VV)?)

—VVise" (VV)? = V((VV)*)jreV ] 2 ge-vry,

using again Lemma [2.6] we have

Ts S 130 gz evrey (e (Y V21l L evrz oy -1y
+ijevv(<vv>2)HL2(<VV)*13*V/2))
S P T WAL

Putting all the terms together and choosing ¢ > 0 small enough, we can
deduce

DIf] koll S 11 + ellmfll3s, — 2K 1S~ | iy — 2K el fllae,

Foll /13 + ellm f I3, — (2€ + 462V K| fH17, — 24K | f 3,
k n €
B 008, + el 1) = ol

for some M > 0. O

AVARY)

v
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3. L2 SUB-EXPONENTIAL DECAY FOR THE KINETIC FOKKER-PLANCK
EQUATION BASED ON A SPLITTING TRICK

In this section we establish a first decay estimate on S, which is a par-
ticular case in the result of Theorem [L.1l

Theorem 3.1. Using the notation and results in Theorem we have

1S () foll

—_Cctv/(2=v)
LQ(ij 6 HfOHLQ G~ (2+e))
for any fo € L2(G_(%+E)) NHo, € > 0 small enough.

Remark 3.2. It’s worth emphasizing that we deduce immediately part (1) of
Theorem [1.1]in the case p = 2 by considering the initial datum fo — M(fo)

for any fp € LQ(G_%"’E).

Recall the splitting £ = A + B introduced in (2.1]), we first prove some
decay estimate on the semigroup Sp.

Lemma 3.3. Let us fix p € [1,00).
(1) For any given smooth weight function m, we have

(3.1) [riene v vm == [ pe-ovi

with
m=Am—Vym-v—VV(z) - Vym+uv-Vym.

(2) Taking m = eH e>0if0<b< 2, € small enough if 6 = 7,
H =3v2+2z-v+ 2%+ 1, we have

(3-2) /fpl(Bf)G(pl)eeHé < _C/fpg(pl)eeH“H§+717

for some K and R large.
(3) With the same notation as above, there holds

20

3.3 Sp(t _ < —at2—7
( ) H B( )HLP(EQGHSGipr%);)Lp(eeHsG*ppil) ~ € s
for some a > 0. In particular, this implies
—atTH

— 4 <
155 Ly 250 o2ty < €

Proof of Lemma . Step 1. Recall (|1.2]), we write

[rienc e n= [ purne e ins [ prisne e
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We first compute the contribution of the term with operator T
p—1 —(p-1) _ 1 P\~ (P—1)
ST HG mo= TG m
— _1/fp7'(G—(p—1)m)
p
1
- p/pr_(”_l)(v-meVV(x)-VUm).

For the the term with operator S , we use one integration by parts, and we
get

/fp—l(gf)G—(p—l)m
= /f”‘l(Avf+ div, (vf))G~"Vm
— -~ [Vuueyim) - V(566
=~ [0 DIV.FEPUET P2 6m UG (Tum)G.
Performing another integration by parts on the latter term, we have
[ isne o m
= [~ DIVLIGPUET 2 Gm Y, (GTm) (G
p
Identity follows by putting together the two identities.

N /_(p )V (G PGP 2Gm + (A — v - Vym) PG,

Step 2. We particular use m = e * and we easily compute
Vom 5 VoH — Vym 5 V.H
m CCHIY m Y
and
A,m AH o |V, H|?
- < 56H1_5 + (Je) TR

We deduce that ¢ = % satisfies

H176 H 2
¢ S A’l}H + E(S‘VU ’

€l H1-6 —v-VoH +v-V, H — vxv(x) -V, H.

From the very definition of H, we have

VoH =6v+2x, V.H=2v+2x, A,H=6.



14 CHUQI CAO

Choosing € > 0 arbitrary if 0 < 2§ < 7, € small enough if 26 = v ,we deduce

IV H?
AH +2ed—tmi +v- Vol —v-V,H =V, V(2) - V. H
6v + 2x)*
= 6—1—65(1};—1_?+2v2+2$-U—602—2$'v—6v-VzV(x)—2x-VxV(;U)

(202 + C1v + Cov® — 602) + (Czedz® — 22 -V, V(x)) + C
—COp? = Csz - V.V (z)+ Cs
—C7H% + Kxr,

INIA A

for some constants C;, K, R > 0. As a consequence, we have proved

¢— Kxgr < m <0,
which is nothing but (3.2]).
Step 3. In the following, denote f; = Sp(t)fo the solution to the evolution
equation 9, f = Bf, f(0) = fo. On the one hand, by (3.2) we have

- / PG o) et _ / FUBA)G D EH <)

which implies
/fg’G(pUeZEH’S < /fg)’G(pl)e?‘fH5 =Yy, Vt>0
On the other hand, defining
vie [ G net,

using again (3.2)), we have
d

Gy = v [ rrBaG e

< _a/fth(pl)eeH‘sHéJrgl
< _a/fth—(p—l)eeH6<x>25+’y—2

< —CL/ ffG_(p_l)é’EH& <x>25+’y—2’
B

lz|<p

for any p > 0 and for some a > 0. As 26 +v < 2, 0 < |z| < p implies
(2)20+772 > (p)20+772 we deduce

d
$Y < _a<p>2§+72/ tpCva(pfl)eeH‘s
B

|z|<p

< _a<p>2§+’yf2y + a<p>25+’}/2/ fthf(pfl)eeH‘sj

Bla|>p
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Using that ec(2)? > (P on lx| > p, we get
d
@Y < —a<p>25+’7—2Y+a<p>26+’y—2€—6(p>26/B ffg—(p—l)eemeem”

lz|>p

< —a<p>25+7_2Y+a<p>25+7—26—6<0>25 /ffG—(p—l)eeH5€€<x>2a

< _a<p>26+772y + a<p>26+772676<p)250Y1'

Thanks to Gronwall’s Lemma, we obtain
Y(t) < e 0Ty (0) 4 Ce 0y,
< (emale)TT ey

~

Choosing finally p such that a(p)29+t7=2t = ¢(p)? | that is (p)>~7 = Ct, we
deduce s

Y(t) < Cre @Yy,
for some C; > 0, and we deduce the proof of (3.3]). O
Now we come to prove Theorem

Proof of Theorem We recall that from ([2.3)), we have
1Sc(Oll 21251212 S, VE20
From the very definition of A we have

HAHLZ(Gfl/Q)_)LQ(eQeH‘sG71/2) S 1.

From Lemma [3.3] case p = 2, we have
26

HSB(t)||L2(626H5G—l/z)ﬁLz(ee}ﬂG—uz) 5, 6iat27w, vt > 0.
Gathering the three estimates and using Duhamel’s formula
Sp =8+ SpAxS,
we deduce
”Sﬁ(t)||L2(626H6G71/2)_>L2(65H6071/2) S 1, Vi>0.

In the following, we denote f; = S, (t)fo the solution to the evolution equa-
tion ,f = Lf, f(0,-) = fo. Taking 2§ = 7, € small enough, we have in

particular
X 2
/ffG_leEHz < c/fga—le2€H2 =: V3.
We define

Ya(t) == ((f, 1)),
with ((,)) is defined in Theorem Thanks to the result in (2.2)), we have

Gr < o [ paiEpe

dt
o G,
B

lz|<p

IN

IN
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for any p > 0, using the same argument as Lemma we deduce
Ya(t) < Ce P77Vt (0) 4+ Cem ) y;
< (emalel?OTVE | ey,
Choosing p such that a(p)20~Vt = ey (p)? | that is (p)2~7 = Ct, we conclude

Ya(t) < 016_02”/(277)1/3

for some constants C; > 0. As H? < C( + V(z)), we have

~
6eH? < G—C’e’

Taking € small, the proof of Theorem is done. O

4. REGULARIZATION PROPERTY OF Sp

In this section we will denote £* = L7, , , =S — T be the dual operator

of £ on L*(G~'/?). In other words, L* is defined by the identity

Jwense = [wose

for any smooth function f,g. We also denote B* = L* — Kxp. The aim of
this section is to establish the following regularization property. The proof
closely follows the proof of similar results in [10] 14} 21]

Theorem 4.1. For any 0 < § < 1, there exist n > 0 such that
1
HSB(t)f”L%G*l/Z(lH)) S tijfHLl(G’*l/Q(lJr@)v vt € [0,7).
2
Similarly, for any 0 < 6 < 1, there exist n > 0 such that

1
||SB* (t)f||L2(G—1/2(1+5)) 5 t5d+1 HfHLl(G—1/2(1+5))a vt € [0)77]
2

As a consequence, for any 0 < § < 1, there exist n > 0 such that

1
1S8() fll Lo (G-172) S Pz 1/l 2172y, VE€[0,7]-
2

We start with some elementary lemmas.

Lemma 4.2. For any 0 < < 1, we have
[t +oeme1 = <2 [ V.67 VileG G

(4.1) + / (6d — 6(1 — 0)v?) fgG~(1+9)
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in particular, this implies

/f(ﬁf)G—(ler) = —/IVv(fG_l)\2G1_5+(S;Z/fQG_(H‘S)
5(1—-9
(4.2) _ A . )/ v f2G(1+0).
similarly, for any 0 < § < 1, we have
/f(ﬁf)G—(lM) = _/‘va‘QG—(l—&-é)_i_M/v2f2G—(1+5)
2
(2+5)d/ 2 o (146)
(4.3) + e :

All the equalities remain true when L is replaced by L*.

Proof of Lemma Recall 7(G~(49)) = 0, we have
[ 79600 = [ 7600y =~ [(7e6-019)

which implies

[ 1Tae s [(The6-0 o

for the term with operator S we have
[ 19610 =~ [9,(56709) - (V.94 09
- /(vuf (14 8)0f) - (Vg + vg) G050
= / Vo (fG7Y) - Vo (gG~HG

- / (502 fg + 6fv- Vug) G-+,

using integration by parts

/5fv-vaG(1+5) = —/5ng-(vfG(1+5))
= / Squ - Vo fG~1F9)

— / (6d + 6(1 + 6)0?) fgG— 1+,
so we deduce

[ (59 + g(s e
= —2/v (fG™H -V, (¢9GHG ™ + /(5d—5(1—5)v2)fgc—<1+5>
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so (4.1)) and (4.2)) are thus proved by combining the two terms above. Finally,
we compute

/foG(lJré)
= - /(va + (1 +8vf) - (Vof +vf)G- 0+
= — / ‘vaIQG*(lJrS) — /(1 + (5)1)2f2G*(1+5) _ /(2 + 5)fU . vaGf(1+§)
= — / \va’2G—(1+6) — /(1 + 6)v2f2G—(1+6) + 22i5 /Vv ) (vG_(1+5))f2

o(1+6 24 8)d
= —/\VUJL"?G(lJﬂS)_i_(2+)/,02f2G(1+6)+(‘;)/sz(lJra)7

so (4.3)) follows by putting together the above equality with

/ FTG=0+9 =,

Since the term associated with 7 is 0, by L=8+T,L* =8 — T, we know
the same equalities will remain true when L is replaced by L£*. O

Lemma 4.3. When f; = Sp(t) fo, define an energy functional

]:(ta ft) = A||ft||%2(G71/2(1+5)) +at2Hv’uftH%Q(Gfl/Q(1+6)))
(4.4) + 2t (Vo fi, Vaft)taig-12000) + 0 Ve fill3a g1 /2040

when fi = Sg«(t) fo, define another energy functional

f*(taft) = A||ft||i2(a—1/2(1+6)) +atQHVUftHiZ(G—l/Q(l+6)))
(4.5) - 26t4(vvft7 fot)%2(0—1/2(1+6)) + th”met”iz(g—lﬂ(l-»—&)))v

with a,b,¢ > 0,¢ < Vab and A large enough. Then for both cases we have

d

@F(t’ ft) < _L(vaftui2(cfl/2(1+6)) + t4Hvzftué(cfl/?(l%))) + HftH%p(Gfl/?(Hé))a

for allt € [0,n], for some L >0,C >0 and F = F or F*.

Proof of Lemma We only prove the case F' = F, the proof for F' = F*
is the same. We split the computation into several parts and then put them
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together. First using and we have
d [ 2 (146)
i) 1
— [ 1e - Kxwre
1-6 146
_ 2/f£fG_(1+6) + —;/fﬁfG_(l—Hs) o /KXRfQG—(1+5)
1—6 _ 140 _ _ _
< 50 [warpert - L vy atpet o [ e

< _1;5/’vvf’2G(1+5)+C/f2G(1+§)

By
d
(4.6) 8xl£f = ‘Caxzf + Z agixj Vavj f’
j=1
and we have
a 25— (1+9)

— [ 0nf0n (L - Kxwpre 4
— — [Iuute e+ 5 [@upe
d
D 20260+ [ oy 0, vo, 160
j=1

_\/KXRlaxifPG(lJré) N /KamfaszRfG(lJré)

Using Cauchy-Schwarz inequality and summing up by i, we get

1 2 ~—(146)
& [1vare
- 5(1 - )
-3 [ Wu@nsahpe - S [, e
=1

+C/|v”f|2G(1+5)+C/|fo2G(1+5)+C/\f|2G(1+5)7

IN

for some C' > 0. Similarly using
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and (4.2)), we have

d 2 ~—(1+96)

= /%favi(ﬁ — Kxg)fG~0+9

- _/W“(avifG_l)l2Gl‘5+ (Sgd/(amf)%:—(lm
5(1 - 4)

S et - [ofa, 60
2 7 7 K3

+ [ 102600 — [ Knlo, P60 — [ K0, 10, xf G0
Using Cauchy-Schwarz inequality and summing up by i we get
4 2G-(1+9)
& [ vaee
d
< =Y 19016 PG 4 [ 9190160
i=1
2 ~—(149) 9 —(4s) 01 =0) [ 2 —(149)
+C [ Vo fI°G +C | |fI°G - [ (V)G :

For the crossing term, we split it also into two parts

d
- —(146)
N (/ Do, [0z LIG™ ) + / Dy, Lf D, G~ 1H0))

= / Ov, [0, (K xR [)G™ 0 + / Or (KX f)0u, fG~1H)
= Wi+ Ws.

Using and we have
Wi = /3vz~f£(3mf)G‘(l+5)+/£(avif)amifg—<1+5)
d
+/8’Uz'fzamimjv<$)8vij_(1+6) _/’axif’2G—(1+5)
j=1

* / 8xifavifG_(1+6)-
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By , we deduce
W o= - / IV (8, fFGTY) - Vo (8, FGTHGY 0 + 6d / Oy, f O, FG—1F0)
d
_6(1 - 5) /'UQavifaxifG_(l—Hs) + /8vifZaxixjv(.%')avij_(l+6)
j=1

‘/ |0z fPG 00 4 / Oy, [y, FG—F0),

For the W5 term we have

Wy = - / B, [0, (KX R[)G™OT) — / Oz, (KXR )y, fG~UFY)

— —/QKXRaxifc%ifG(H&) +/Kf(a’uiXRaxif—’_avifaxiXR)G(1+6)

IN

¢ [ o flonsic™0 ¢ [1o.slsi6-0 + ¢ [ 1o ri6709),

Combining the two parts, using Cauchy-Schwarz inequality, and summing
up by i we get

d
at . —(1+49)
7 2V.f -V, fG

IN

d
—2/2%(6wa‘1)-vv(axifa—l)c;l—é_ ;/|fo|2(;—(1+5)
=1

+C/ VPG / 260+ — 5(1 — ) / PV, f - Vo f G,

For the very definition of F in (4.4)), we easily compute

d
&F(tv ft)

d d
- A%Hﬁ”%%c—l/?(lw)) + aﬂa||vat||2LQ(G_1/2(1+5))

d d
+2Ct4£<v’uft7 fot>iQ(G_l/2(1+5)) + bt6%HvlftHiZ(G—l/Q(l-&-é))

+2at||vvft ||iz(G—1/2(1+6)) + 86t3<vvfta vxft>iz(a—1/2(1+5))
+6bt5 vaft |‘%2(G—1/2(1+5))-
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Gathering all the inequalities above together, we have

IN

(2at — 17_5) + Cat? + 2Ct*c 4+ Cbt%) / Vo fi2G~(1+9)

2

O — St ) / Vol 2G04 4 (8¢f® 4 Cat?) / Vo fil Ve fil G

d
~@? Y [ 106 PG 5+bt62/v (00, G PG
=1
d
+2ct4g / vv(avifta1)-vv<axiftG1)G15)—5(12_5)( / “(Vof)*G

+bt6/ ( mf) —(1+9) +20t4/ QV f V. fG 1+§ +C/f2 1+5)

for some C' > 0. We observe that

|2¢t? / V2V, f - Ve fG=1F9)]

< af? / 2(V, )26+ 4 6 / R (V26059

and

d
2ct*> / 2V (Do, f:G 1) - Vo (0, 1GTHG
i=1

d
< a?Y [ 9,056 PE 5+bt62/|v (0., 5iGPG
=1

by our choice on a, b, c. So by taking A large and 0 < n small (¢ € [0,7]), as
a consequence

da
dt
for some L,C > 0, and that ends the proof. O

Remark 4. 4 For the case F' = F* the only difference in the proof is to

change (4.6) and ( into
d
O, L5f = L0y, f — 02,(VaV(x) - Vyf) = L0y, [ — Z inxj Vo, f,

and

The following proof of this section is true for both cases.

Ft, f1) < =LUVofil 2 g-12a40) + 1V fill T2 g-1/2010)) + Cllfel 22 120109

—(1+4)
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Lemma 4.5. For any 0 <6 < 1, we have
/]va(fG1/2(1+6))‘2 S/|vxvf|2G(1+6)+C/f2G(1+5),

Prove of Lemma [£.5] For any weight function m we have
[19:0m? = [ 19apm+ Vo
= / Ve fIPm? + / [Vam|* % + /vaxfmvmm
1
= [ (VatPr s [(Vamf? = At 2,
taking m = G~1/20+49) we have
/’Vx(fG1/2(1+5))|2
144

= [wsre s [ (O v v@p s 1 A e-es

4
/fo|2G(1+5)+C/f2G(l+5).

Similarly, we have

/ |V, (G200 2
2
_ /‘va‘2G—(1+6)+/_((125) 1}2+ 1;5d)f2G—(1+6)
< / Vo /G0,

Putting together the two inequalities we obtain the result. ([

IN

Lemma 4.6. Nash’s inequality: for any f € L'(RY) N HY(R?),there exist a
constant Cy such that:

142 2/d
£l 2% < Call FIPA NV o f 2

For the proof of Nash’s inequality, we refer to [13], Section 8.13 for instance.
[l

Lemma 4.7. For any 0 < < 1 we have

(48) & [ < [ipeee,

which implies

~1/2(148) < (rodt ~1/2(1+6)
|flG < Ce™ [ |folG
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In particular we have
@9 [IHG R <o [1RlGA, v

for some constant C' > 0.

Proof of Lemma (4.7, By Lemma [5.2] in the next section, letting p = 1, we

have
i —1/2(149)
7 / |f1G

N /f|(A”G_1/2(1+5)—v-va—1/2(1+5)

+v -V, G~1/20046) _ VV(z) - VUG”/Q(”‘” _ KXRG”/Q(”‘;))
< /f‘ 1+ 5 (1 + 5)(1 - 5) )G—1/2(1+5 /de 1/2(1+4)

4
o (4.8) is proved. As TG~1/2049) = 0, the result is still true when F =
F*. O

Now we come to the proof of Theorem
Proof of Theorem .1l We define

g(tv ft) = B||ft||il(cfl/2(1+6)) + tZ]:(t’ ft)’

with B, Z > 0 to be fixed and F defined in Lemma[4.3] We choose t € [0, 7]
, n small such that (a + b+ ¢)Zn?™! < $Ln? (a,b,c, L are also defined

Lemma , by (4.8) and Lemma we have

d _
ag(t,ft) < dBHftH%l(g—l/?(l-Fé))+ZtZ YE(t, f)

—LtZ(Hvat‘&2(071/2(1%)) + t4HV:cft“%2(071/20%)))
+C| il 21204

dB”ftHil(G—l/Q(l‘H;)) + CtZ_lHft\\%z(g—l/zum)
L ,

_Et (||vat||%2(g—1/2(1+6)) + t4||vxft‘|i2(g—l/2(1+6)))'

Nash’s inequality and Lemma implies
/ftQG_(”‘” < (/|fze\G_1/2(1+‘”)"’i"(/’Va:v(ftG_l/Q(lJ“‘s))|2)di2

= (/ ’ft‘GW(M))diz(/ VaufiPG~00 +C / 26049yl

Using Young’s inequality, we have

IA

HftH%Q(G,l/QOJr(;)) S C€t75dHf“%l(g—l/2(1+6))+6t5(”vx,’uftHLZ(G 1/2( 1+5) +CHftHL2 G- 1/2(1+6)))
Taking e small such that Cen® < %, we deduce

Hft”%?(G—l/Q(l'*‘é)) < 2C€t_5d”f”%1(0—1/2(1+5)) + 26t5||vz,vft||%2(G—1/2(1+5))-
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Taking € small we have
d 1
%g(ta ft) < dBHft‘|%1(G_1/2(1+5)) + CltZ ! 5d”ftH%1(G—1/2(1+6))7

for some C7 > 0. Choosing Z = 1 + 5d, and using (4.9)), we deduce
vt e [0777]7 g(t>ft) < g(O? fO)+02Hf0||%1((;—1/2(1+5)) < C3||f0“il(0—1/2(1+6))7
which ends the proof. O

5. Sp DECAY IN LARGER SPACES

The aim of this section is to prove the following decay estimate for the
semigroup Sy which will be useful in the last section where we will prove
Theorem [I.1] in full generally.

Theorem 5.1. Let H = 1+ 2%+ 2v-2+ 302, for any 0 € (0,1) and for any
>0, we have

SO Lty ey S (1 +1)7%
where

We start with an elementary identity.

Lemma 5.2. For the kinetic Fokker Planck operator L , let m be a weight
function, for any p € [1,00] we have

[enetme == [19.mpRwsp2+ [ ruvo,

with

2 |V,ml|? 2 A,m d Vom  Tm
¢:7/| ’02| +(771) v +*,*U' v . .
m P m P m m
In particular when p =1, we have

A,m Vom  Tm
¢ = - -
m

m m

Proof of Lemma/[5.2 We split the integral as

[enmtme = [ pspmes [ 7

First compute the contribution of the term with operator T
1
/fP—ITfmp — /T(fp)mp — _/fpmpm.
D m

Concerning the term with operator S, we split it also into two parts

/ (SF) P P = / PP (A f + dive(uf)) = C1 + Co.
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We first compute the C5 term, we have
Co = [Pl - Vo)
= /dfpmp— /fpdlvv vm?)
/fp (1—- d oy Yo ] mP.
We turn to the Cy term, we have
= [ptweas = [V ) Vs
= /—(p— DIV f2f772mP — ;/vap - Vym?.
Using V,(mf) = mV,f + fV,ym, we deduce
G = ~p=1) [I9mpP P4 (= 1) [ 1V,mP g

sl / Vo(f) - Vo(mP) — ; / Vo) - Vol(mP)
- -1 / Vo(mf)P 7 2mP 4 (p— 1) / V[ P2
p—2 PA. mP
+p2/f AymP.

Using that Aym? = pA,m mP~1 + p(p — 1)|V,m|*>mP~2, we obtain

m U’mQ
Cr == 1) [ IWump)P 22+ [ i - nS2 o - HITEL

p’ m
We conclude by combining the above equalities. ([

Proof of Theorem From Lemma we have
G.1) [Bpetme = [(e- i
== 1) [ [Vlmp)Pmpr2+ [ frunvo,

with

2 |[V,m]?2 2 A d \Y T
o= 2l 2 o 4, Tom T ),
p m P m p m m

When p = 1, we have
A,m Vem  Tm

p="0 oy DI Ay
m m m

Let m = H*. We have
Vom kVUH Vem kVJ;H
m  H’ m  H
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and
Aun__kAvH%_Mk—lﬂvaP
m — H H? '
Summing up, we have for ¢
H JHI?
¢k =A,H + (k— )|VH| —v-VoH+v-V,H—-V,V(x) - VyH — MxRg,

From the very definition of H, we have
VoH =6v+2x, V.H=2v+2x, A,H=06.
We then compute

H2
At 4 (b= )YV E G eV V() - Vol
9 2
= 6+(k:—l)w+202+2:n-v—6v2

—2z-v—>6v-V,V(z)—2x-V,V(x)
(202 + Cv — 60%) — 2z - V,V(z) + C
—C1v? = Cha - V.V (x)+ Cs
~CyH? + Kixg,,

for some C; > 0. Taking K and R 1arge enough, we have ¢ < —CH?z>!
using this inequality in equation (5 , we deduce

(5.2) ;%Yi : dt/Wﬁ; ()| H" ::l/sanb@»Bﬁﬁﬂﬂk
< —C [Iatoimt,

for any k£ > 1. In particular for any [ > 1, we can find K and R large enough

such that 4
— HH <0
& [ s <o
which readily implies

/Ifzs(t)IHl S/folHl — Y.

-k
Cl—k+1-13

INIA A

Denoting
E (07 1) 9y

the Holder’s inequality

/ Fo(t)[H* < ( / [ (0) 1) / s (t) [
([ s ([ 1ol < [ 1faat,

implies
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From this inequality and (5.2)), we get

d 1 a1
SVilt) < ~COAN)Y T
Using Y4(0) < Y5, after an integration, we deduce

1
Yit) < Co——— Y5,

(141t)T==
which is nothing but the polynomial decay on Sp

ISBO Loty rrr) S (1 +8)7
with
-k
a=——, YO<k<l 1<I.

_ 2’
1 2

We conclude Theorem [5.1] by writing k =10, 0 < 6 < 1.

6. LP CONVERGENCE FOR THE KFP MODEL

Before going to the proof of our main theorem, we need two last deduced
results.

Lemma 6.1. For any € > 0 small enough, we have

N
—at2—
HASB(t)HLQ(G—(%+5))_)L2(G_(%+€)) Se? , Vt>0,
and

~
—at2—
HASB(t)HLl(Gf(%Jre))_}Ll(Gf(%Jre)) S € “ ’ Vt Z 07

for some a > 0. Similarly for any 0 < b < ﬁ
enough, we have

—a —atb
HASB(t)”Ll(G_(%+€))—>L2(G_(%+€)) S t %@ , Vvt > O,

and for any € > 0 small

for a = MTH and some a > 0.

Proof of Lemma [6.1, The first two inequalities are obtained obviously by
Lemma [3.3] and the property of A = Myg. For the third inequality we split
it into two parts, t € [0, 7] and t>n, Where n is defined in Theorem [4.1]

When t € [0,7] , we have e ~at™ > e 9""" by Theorem |4.1} we have

— —a — tf
HASB(t)HLl(g*(%+€))_>L2(G*(%+e)) 5 e S e 7’ Vit € [0’77]’

for some a > 0. When t > 7, by Theorem we have
1S8(n) ‘31

and by Lemma

S5(t —n

HLz(Gf(%Jre))ﬁLz(G*(%Jre)) S/ n

0 e
< ,—a(t—n)2=7 ~ —at?=7
)||L2(G7(%+5))_>L2(G7%) ~ € ~ € )
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gathering the two inequalities, we have

N
_ — _ __4b
HASB(t)||L1(G—1/2(1+2€))—>L2(G—1/2(1+2€)) Se at?= St % o , Vi >m,

for any 0 < b < ﬁ, the proof is ended by combining the two cases above.
U

Lemma 6.2. Similarly as Lemma . For any p € (2,00), we have

e
”SB(t)AHLQ(G*1/2)—>L2(071/2) S efatQ—'v7 Vi Z 0.
and .
||SB(t)AHLP(Gfl/2)—>LP(G’—1/2) 5 efatQ—’Y7 Vit 2 0.
for some a > 0. And for any 0 < b < 5= we have
2—y

_ _atb
1S5(&)All L2(G-1/2) s o172 S TP, V=0,
for some B >0 and some a > 0.

The proof of Lemma [6.2] is similar to the proof of Lemma and thus
skipped.

Lemma 6.3. let X,Y be two Banach spaces, S(t) a semigroup such that
for allt > 0and some 0 < a,0 < b < 1 we have

18(0)lx-x < Cxe™, [S(0)lyoy < Cre™,

and for some 0 < o, we have
_ _qtb
ISl x—y < Cxyt™ e "
Then we can have that for all integer n > 0
IS“ (D)llx-x < Cxant™ e,
stmilarly
(*n) n—1_—at?
[SY () |ly»y < Cypnt™ e )
and ,
IS @) xmy < Oyt 0T
In particular for o +1 < n, and for any b* < b
IS @lxy < Cxyme™ .

Proof of Lemma The proof is the same as Lemma 2.5 in [15], plus the
facttb§8b+(t—s)foranyogsgt,0<b<1. O
Then we come to the final proof.
=11 4¢)

Proof of Theorem We only prove the case when m = G » , DE
[1,2], for the proof of the other cases, one need only replace the use of
Lemma [6.1] in the following proof by Lemma [6.2] and Theorem [£.1] We will
prove p = 1 first, this time we need to prove

_ath
1Sc(I =ID)(E) || 12 (G-e)rr S €,
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for any 0 < b < ﬁ, where I is the identity operator and II is a projection
operator defined by

I(f) = M(f)G.

First, Iterating the Duhamel’s formula we split it into 3 terms
n—1

Se(I—T) = (I-T){Ss+ Y (S8A)™ x (S5)}
=1

(I = ID)Se}* (ASB(t)™,
and we will estimate them separately. By Lemma [3.3] we have

~
—atT
IS5l L1yt S e,

the first term is thus estimated. For the second term, still using Lemma |3.3
we get

5
=
1S8(0)All L1 G-yt S e,

by Lemma [6.3], we have
.
— —at2—
1S A) |1 (e)mrr St
thus the second term is estimated. For the last term by Lemma

5
—at2—
HASB(t)“Ll(G_E)—)Ll(G_(%+€)) S € “ .

By Lemma [6.1] and for any 0 < b < ﬁ, we have
*n—1 —a—2_—at®
||(ASB)( " )(t)||L1(G7(%+6>)—>L2(G7<%Jre)) 5 tn « € ¢
finally by Theorem we have

)

~
—at2—
HSE(t)(I — H)HLQ(G*(%Jre))*)LQ(G*l/Q) ~ t vy

Taking n > a + 2 the third term is estimated thus the proof of case p =1 is

concluded by gathering the inequalities above. As the case p = 2 ia already
proved in Theorem the case p € (1,2) follows by interpolation. ([l
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