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THE KINETIC FOKKER-PLANCK EQUATION WITH
WEAK CONFINEMENT FORCE

CHUQI CAO

Version of January 30, 2018

ABSTRACT. We consider the kinetic Fokker-Planck equation with weak
confinement force which do not have an exponential convergence to the
equilibrium. We proved some (polynomial and sub-exponential) rate of
convergence to the equilibrium (depending on the space to which the
initial datum belongs). Our results generalized the result in [5] [1] [2] to
weak confinement case.
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1. INTRODUCTION

In this paper, we consider the weak hypocoercivity issue for the kinetic
Fokker-Planck(KFP for short) equation

(1.1) Of =Lf:=—v-Vof + V. V() Vyuf + Apf + divy(vf),

for a density function f = f(t,z,v), with t > 0, € R? v € R?. The
evolution equations are complemented with an initial data

£(0,)=fo on R*,
We make the fundamental assumption on the confinement potential V'

V(z) = ()",  ~€(0,1],

where (z)2 :=1 + |z|2.



2 CHUQI CAO

We make some fundamental observations. One is mass conservative,

M(fo) = M(f(t,.)), where we define

M(f):/Rd Rdfdxdv.

We also observe the existence of steady state G for the KFP models
LG =0, givenby G = Ce™V, W = % +V(z), C is the normalizing constant
such that

M(G) =1.

Also observe that contrary to the case v > 1, a Poincaré inequality of the

type

2 — X X C X 2613 — T Xz
3¢ >0, /Rdlf(zv)l exp(—V ())d < /Rdw ) eap(~V (x))d,
for f such that
/Rd f(@)exp(=V(x))dz = 0,

does not hold, but only a weaker version of this inequality remains true
(see [10], or below section 2). In particular, there is no spectral gap for the
associated operator £, nor is there an exponential trend to the equilibrium
for the associated semigroup.

In order to state our main result, we introduce some notations.

We will denote H =1+ J + K + Q, where J = 22, K = 2v - z,Q = 3v%.
Observe that 3(z? +v? +1) < H < 4(2? + v + 1), which means H is
equivalent to 22 + v2 + 1

For a given weight function m, we will denote LP(m) = {f|fm € LP} and
1fllze@my = Ilfmllzo.

With these notations we can introduce the main result of this paper:

Theorem 1.1. (1) For any initial data fo € L”(Gf(%l“)), pel,o0), e>
0 small, the associated solution f(t,.) of the kinetic Fokker-Planck equation

satisfies

1£(t,.) — M(fo) b1 S e fo = M(fo)

GHLp(G7 > ) G‘|LP(G7(p;1+€)).

ol
V0 <b< ——.
<b< 5

(2)Let m = H*, 0 < k , For any initial data fo € L'(m), the associated
solution f(t,.) of the kinetic Fokker-Planck equation satisfies

1£(ts) = M(fo)Gllpimey S (L +)7" |lfo — M(fo)Gll L1 (m)
k(1 —6)

Remark 1.2. The constant in the theorem does not depend on fy, only
depends on v, d, €, 0
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Remark 1.3. The Theorem also true when V' behaves like ()7, that is
for any V satisfying

Ci(z)” < V(z) < Cola)?, Vo €RY,
Cslz|(z)™! <x-V,V(x) < Cylz|{z)"!, Va € B,
and
|D2V (z)] < Cs(x)772, Vo € RY,
for some constant C; > 0, R > 0.

Remark 1.4. There are many classical results on the case 1 < «. In this
case there is an exponentially decay proved by Villani [5] and Dolbeault,
Mouhot, Schmeiser [1] [2]

For any initial data fo € L2(G~'/?), f(t,.) is the solution of (1.1 corre-
spond to this fy , we have:

1£(t,) = M(f)Gll 2612y S €Ol fo = M£o) Gl o1y -

Let us briefly explain the main ideas behind our method of proof.

We first introduce four spaces By = L?(G~Y/?),By = L*(G~ 12V (@),
E3 = L*(G=(F€)/2) and Ey = L>(G~'/2(z)7~1) (remember v € (0,1)), take
€1 > 0 and €3 > 0 small such that B3 C Fy C By C Eg C L?, and E; is an
exponentially interpolation between Ey and Fs. We first use an argument
as in [1][2] to prove, for any fy € Fs, the solution to the KFP equation
satisfies

%n FOll < =MFO| e,

for some constant A > 0. We use this and Duhamel formula to prove

1f Oz S Il follzs-

Combine the two inequalities and using a exponentially interpolation argu-
ment as in [3], we can have

(1.2) 1FOle S e || foll s,

for some a > 0,b € (0,1).

We then generalize the decay estimate to a wider class of Banach spaces
by adapting the extension theory introduced in [II] and developed in [4]
[12]. We first introduce a notation.

If 7; with ¢ = 1,2 are two given operator valued measurable functions
defined on (0, 00), we denote by

t
(T * To)(8) = /0 Ti(s)Ta(t - s)ds,

their convolution on R;. We then denote 700 := 1, TG := T and for
any k > 2, TekR) = gk=1) y T
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Then we consider two Banach spaces B4 = L'(m) and E5 = L'(m?), 6 ¢
(0,1). We introduce a splitting £ = A + B, where A is an appropriately
defined bounded operator so that B becomes a dissipative operator. Then
we can show that, for any integer k£ > 0, we have

(1.3) 1((S8A)™ * S5) ()| a5 € L' (RY),
and for some n large, we have

(1.4) 1(ASE)™ (t)l| ams s € L' (R4),

and our weight m is small such that

(1.5) HE—ps S 1.

Using the semigroup version of Duhamel formula

Sr :SB—FSB*(.ASE):SB-F(SB.A)*SL
= Sp + Sc * (ASB) = S + (ScA) * Si

Iterating this formula we get
n—1

(1.6) Se =S+ > (S)* (ASE)™) + Sp « (ASE(t)™",
=1

using the above formula ([1.6) and the estimates (1.3)) (1.4) (1.5) we can

conclude ||S¢||g, 5, € L'(R,), which is a rough version of the estimates
presented in Theorem

The organization of the following paper is as follows:

Section 2 we will prove a L? estimate for the KFP model.

In section 3 we will use the result in Section 2 to prove the L? convergence
for the KFP equation, which is the (1) p = 2 of the Theorem

Section 4 we introduce a splitting £ = A+ B and prove some L' estimate
on semigroup Sp.

Section 5 is the proof of a regularization estimate on Sz to go from L? to
L' and L™

Section 6 use the regularization lemma to prove LP convergence for KFP
equation, which is Theorem [I.1}

2. L? FRAMEWORK: DIRICHLET FORM AND RATE OF CONVERGENCE
ESTIMATE

For later discussion we introduce some notations for the whole paper. The
first is the splitting of the KFP operator £ =T + S, where T stand for the
transport part:

Tf = —U- vzf + vacv(x) ! vvfa

and S stand for the collision operator

Sf=Af+ divy(vf),
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We will denote the cut-off function y such that x(z,v) € [0,1], x(z,v) €
C>®, x(x,v) = 1 when 22 +v2 < 1, x(x,v) = 0 when 22 +v? > 2, and
denote xg = x(z/R,v/R).

We introduce the splitting of the KFP operator £ and denote it by

L=A+DB, A= Mxg(z,v).

We will denote S,(t) the semigroup associated with operator £, sim-
ilarly Sp(t) the semigroup associated with operator B. We use [ f in
place of [p4, pa fdxdv for short, similarly [ fdz means [p, fdz , [ fdv

means [pq fdv. Bjy<, is used to denote the ball such that {z € RY|z| <
p}similarly B, means the ball such that {z,v € R?||z|? + v? < p}.

For V(x) = (z)7,0 < v < 1, when we write the term (VV)~! and (VV),
(VV)~! means (z)'=7 , (VV) means (z)7"1 .

And we denote the projection operator IIf = M(f)G.

With these notations we introduce the Dirichlet form adapted to our
problem. We define

pr=olf) = [ fav. 3s=ilf) = [vsa

M = C’e_”2/2, /Mdv =1, nf = Mpy, at=1—n, ff=ntf.
Recall for the kinetic Fokker-Planck model
Sf=Auf+divy(vf), Tf=-v Vaof +VaV(x) Vo f,
define an elliptic operator and its dual
Ayu = divg(Veu+ Vi Vu), Aju=Ayu—V,V-V,u,
we define u = (A},) !¢ the solution to the above elliptic equation (note that
u can differ by a constant)

Abu =€ on RY, with 0 = (ue™V(VV)72) .= /ue_V(VV>_2dx,

we use this notation to define a scalar product by
((f.9) = ([, 9n+ (A Vaiy, (pge” (VV)?)) 12
+e((pre” (VV)?), Ay Vijg) 12
= (.9 +eliy, Va(AY) Hpge” (VV)?)) 12
+e(Va (A7) pre" (VV)?), dg) 12,
and we define
Dfl = (£}, [))
= (L in+ (A Vaj[=Lf], (pre” (VV)?) 2
+e((p[=Lf1e(VV)?), Ay Vajy) e
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With these notations we can come to our first theorem.

Theorem 2.1. For the kinetic Fokker-Planck model with V (z) = (z)7,0 <
v < 1, H = LA(G™Y?) Hy = LX(GV2(VV)), we define Hy = {h €
H, ffda:dv = 0}. Then there exists € > 0 small such that on Hy the norm
((f, f)) defined above is equivalent to the norm of H, moreover there exist
A >0, such that

DU = NI, VS € Ho

Remark 2.2. Note that
(pre" (VV)2e V(VV) H)da = /pfdx =0,

this is one of the core of the construction.

Remark 2.3. in Villani’s paper [5], a H' version of our theorem is established
for the kinetic Fokker-Planck operator for both the caser > 1 and 0 < r < 1.

Remark 2.4. Our first statement is a generalization of [I] [2], and the method
of our second estimate is based on [3].

Before proving the theorem, we need some lemmas.
First we need local Poincare inequality:

Lemma 2.5. We say that W satisfies a local Poincare inequality on a
bounded open set ) if there exist some constant kg > 0 such that:

1
REW < k / Vh2w+/hW2,
A @ Jo VT ey M)

for any nice function h : RY — R and where we denote W (Q) := (W1g).
Under the assumption W, W~ € L (Rd), we can prove that the function

loc
W satisfies the local Poincare inequality.

Prove of Lemma 2.5} see [9]
And the weak Poincaré inequality.

Lemma 2.6. For any u € D(R?) such that (ue™V(VV)~2) = 0, we have
el g2 wvye-vizy S IVUllpa(e-vrz)
Proof of Lemma : We need to prove for any h € D(R?) such that

/ he V(VV)™2 =0,
R4
we have

VeV > C / B2eV (2)20-1).
R4 Rd
Taking g = he_l/QV, we can have Vg = Vhe_%v — %VVhe—%V, SO
1 1
/\Vgl2 = / [Vh|*e™V + /h24|VV|2eV — / 5V(h2) VVeV

1 1
—/!Vh\ge_v—i—/hz(zAV— Z\va)e—V,
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from this we can deduce for some K and Ry > 0

1
/|Vh|26_v > /8h2<VV>26_V - K he V(VV) 2.

Br,
Define
€R ::/ €7V<VV>76,
;‘%
and
Zp = / e V(VV) 2,
Br
then by
/ he V(VV)~2 =0,
R4
we can get

-V —2\2 _ €_V —2\2
(f, pevwvinr = ([ ne v

R
S\/
Bg

< eR/ he V(VV)2

R

h2eV(VV)? / e V(vV)~6

By

Using Lemma |2.5| we have

/ e V(VV)™? < Cp / \Vh|2e—V<vv>—2+i( / he V(VV)72)?
Br Br ZR Br

< c;z/ \Vh|2ev+;R/ R2eV (VVY2.
Br R Br

Putting all the inequalities together we have

/ P V(VV)2 <8 / |Vh|?e™V + 8K h2e”V(VV) 2

Br,
/ 8K
< 8(1 +KCR)/ IVh|2e™V + 6R/ h2eV(VV)2,
Br R Br
by taking R large such that: % < %, we are done. ([

Lemma 2.7. (Elliptic Estimate) For any & € L>((VV)"'e™V/?) and & €
L%(eV/?), the solution u € L?*(e~"/?) to the elliptic equation

— Aju =& + V&, (ue”(VV)7%) =0,

satisfies

lull 2(wvye-viey HIIVUll p2e-vizy S A= &l 2wy -1e-vrzy + €2l 2 vr2y-
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Similarly for any & € L*(e~V/?), the solution uw € L(e~Y/?) to the elliptic
problem
—Apu=¢, (ue”V(VV)72) =0,
satisfies
(2.1)
ull L2 (owvyze-vimy HIVUll o wvye-vimy HI Dl 2 e-vizy S 1€l L2 e-vrzpgvy-1y-

Remark 2.8. Ibelieve in (2.1)) we can improve the last term from ||| 12 (-v/2(vvy-1)
to [|€][ L2(¢-v/2), but this result is enough to continue our proof.

Proof of Lemma First observe
eV divg[e7V Vau] = Agu — V,V - Vou = A,

integrate the equation by uwe™" and use this observation we get

- /evdivz[e_vvxu]ue_v = /(fl + V- &)ue V.

Performing integration by parts we have
/e_V\VmuIQ = /(élu 4+ & -Vu—& - VVu)e ",

by Lemma [2.6]
[ull 2(wvye-viey S VUl p2e-vrzy,
we deduce
HUH%2(<V\/>6—V/2) + ||vu||2Lz(e—V/2) S AX (HUHL2(<VV)€*V/2) + ”VU||L2(67V/2))7

so the proof for the first inequality is done.

For the second inequality, since (VV) < 1 so the only thing need to be
proved is the HDQUHLQ(er/Q) term, by integration by parts

d
/|D2u|26_v = Z /(iju)Qe_v

ij=1
d
=y / Oyu(05ud;V — O u)e™"
ij=1
d 1
-y / 1500 (Dhue™) — / (O5u)20,(8;Ve ")
7,7=1

= /(Au)(— x{/u)e_v—l—/|Vu]2(]VV]2 —AV)e ™V

SID?ull p2e-vi lEll 2 e-vrzy + IKVVIV 2 (o-vr2y,
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where in the third equality we have used
/ OZudud;Ve "V  =-— / 9iud;j(0;ud; Ve V)

= /ijuaiuaj‘/e_v - /((‘%u)z@j(ajVe_V),
which implies

1
/ O udud;Ve "V = -5 / (0;u)?0;(9;Ve™"),

and in the forth equality we have used

d
eV Z di(e7V o) = ¥ divyle™V Vyu] = u = Abu,
i=1

so our proof is done. U

Now we can turn to the proof of Theorem
Proof of Theorem [2.1] :First, we prove the equivalence of the norms (( , ))
and (1, ). by Cauchy-Schwarz inequality and Lemma we have

(G1: Va(AP) " pge (VV))) 12 < sl zaevry loge” (VV) 2l L2 wry-1e-vray,

and obviously

loge” (VV)2ll 2 wvy-1e-vizy = Ipgll2(wvyevry < Iogllzzevrny S gl

Using elementary observation

sl S ”fHL2(ev2/4) lprl < ||f||L2(ev2/4)a
we deduce

(5 ValAT) " oge (VV))) 12 S I Iaellgllne.

The third term in the definition of ((, )) can be estimated in the same way
and that ends the proof of equivalence of norms.
U

Now we turn to prove the main estimate of the theorem. We split the
DIf] into 3 parts

D[f] =T+ €ls + €15
with
Tl = (‘Cfv f)H
Ty = (A Vai[=LS) ) o (eviziovy)
T3 = ((AV)_lijfv p[_ﬁf])Lz(eVm(VV}) ’
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and compute them separately.
For the 77 term, we have

" =Tf+SfHu=Sfn
_ _/[Avf+dm(vf)]fM—1eV _ / IV, (f/M)[2MeY

>k / FIM = psPMeY = kyllf — pp M3, = Bl £ 12,

note in the last line we use the classical Poincare inequality.
For the T5 term, we split it as

Ty = (A Vai[=Lf pf) poeviziovy)
= (A Vi [=T7f), pr) p2evrziwvy)
HAV VG =T p5) p2evieeovy

+(AY Vi [-S S, Pr)L2(eVI2(wVY)
=151+ Tr2+Ts3.

We first observe
Trf=—v-VepiM —V,V -vpsM = —e"V Mv - Vy(ps/e),
so we can have
J=Trdl = wodye™ 0r, (ppfe™) = eV Valpg ),
next observe that
eV divg[e”V Vu] = A,
then we have
Ty = (=Trfl, VAR (pre (VV)))1e
= (ps [V dive (e " (AY) Hpse (VV))]) 12
= [lose" (VW) 172 = 7 f 13,

Using the notation 71 = (v @ vft) and Ngnp = (Va0 f+), observe that

] S 1 e says 12l S 1PN ooy
we compute
Top = (=T VAY)  (pre (VV)?) 12
= (D +mVV,V(AY) (pse¥ (VV)?)) 12
= (m, D*(A7) " (pre (VV)?) 12 + (02, VVV(AY) " (pre” (VV)?)) 12
= llmll p2eviy ID*(AV) " pge (VV)?)ll p2(e-vr2)
2l p2evi IVVV(AT) T pre  (VVY) | L2(e-vr),
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and by Lemma

Top S limlliaevryllose” (VY aeviziovy 1) + In2ll 2evre lore? (VY2 p2e-vizevy-1y
S I el flls -

For T5 3 using
J-SH =S = / VA S + divy (v 1) dv

—a [ Fredo S gy
we have by Lemma
Tz = (=51, VAV (o (VV)?) 12
< =Sl 2@evia IV (AV) " (pre” (V)| 2(e-vre)
S wllore” (V)2 2 wvy-1e-vre)
= 1 allogll e owvyevszy
SN el flls -

Finally we come to the T3 term using

-5f] = / Vo (Vof +vf)dv =

and
p[=Tf] = pvVaf—ViV(2)V,f]
= /vaf — V.,V (z)V,fdv
~V, / vfdy
= Vuilf
we have by V((VV)2) < (VV)? and <VV> < (VV) we get
T3 = ((Av) " "Vaip, pl= L) p2evie oy

= ((AV) Vil pl=T 1) L2 evrziovy

= (=11, V() p[=T £V (VV)?) 2

= (=1 V(A T (Vailfle (VV)?) 2

= 50 M 2y IV (AT) T IV (ire (VV)?) = VVijre (VV)? = V((VV)2)jre" N page-vizy,
again by Lemma [2.7] we have
Ty SN peevezy (lire” (VVY2 Nl o e-viziovy-1) + lire” VAVl 2 (wvy-1e-vrzy)

1
S Il f -
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Gathering all the term together we have for € > 0 small enough

DIf] = f 15+ elnfliF, — 2K Nl fllae — 2K £ allm I,
> |45+ ellmfllR, — (e +4€ ) K 15, — /24K | 113,

1 €
> 5(||le|% +ellrf ) = 31
so the proof is ended. O

V

3. L2 SUB-EXPONENTIAL DECAY FOR THE KINETIC FOKKER-PLANCK
EQUATION BASED ON A SPLITTING

Theorem 3.1. Using the notation and results in Theorem we have

1S () foll

_cp/ e
) ol

L2(G™ ? N L2(G~ (§+6))

for any fo € LZ(G7(§+E)) NHo, € > 0 small or equivalently

1S ()T = T0) fol| < eI — 1) fo

L2(G72) ~ L2(G=(3t9)y’

for any fo € L2(G_(%+E)) , € >0 small.

During the proof of Theorem [3.1] we will make use of the following Gron-
wall’s Lemma.

Lemma 3.2. (Gronwall’s Lemma) Suppose 0 < b, 0 < ¢, and 0 < u(t) €
Co(R,,R,) satisfying:
' (t) < —cu(t) +b,
in the sense of distribution D'((0,00)) we have:
b
u(t) < u(0)e™ + -,
c
Since the result is well-known, the proof is omitted. (I
Recall the splitting of £

L=A+DB, A= Mxg(z,v),

we first prove some convergence on the semigroup associated with B denoted
by Si(t).

Lemma 3.3. For any p € [1,00) we have
(1)For a given weight function m, we have

/fpl(ﬁf)G(pl)mg ;/fpg(pl)m

with
m=Am—Vym-v—VV(z) - Vym+uv-Vym,
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(2)Taking m = e e > 040 <6< 3, € small enough if 6 = 3,
H =3v2+2z-v+ 2%+ 1, we have

/fpl(Bf)G(pl)€€H5 S —C\/‘pr(pl)€EH5Hg+’Yl’

for some M and R large.
(8)Using the results in (2), we can prove

_p—2 p—1

Sp(t
5 )HLp(e2eH5G P Le(eeH G )
for some a > 0. In particular, this implies
N

—at2—
,(P—1+6) _p—1 56 @ .
v ) see )

t
IS8l
Prove of Lemma Step 1: Recall G~1 = Ce?”/2+V(®@) | We write
[riene e m= [ purne e ins [ poisne e m.

We first compute the contribution of the term with operator T

/fp—l(Tf)G—(p—l)m — ;/T(fp)g—(p—l)m
— —;/pr(G_(p‘l)m)
_ ]1) / FPG-D (4. Vym — VV (x) - Vym),
for the term with operator S , using integration by parts and we get
[ risne o m
= /fp‘l(Avf + divy(vf))G=P Dm
N _/vv((fGl)plm) (Vof +0f)
== / (fGYPIVum+ (p = D(FGT2VW(fGHm) - Vu(FGTHE

1
= - /(P ~ DIV (fGTHP(FGTH2Cm ~ Evv((fG_l)”) -(Vom)G,
performing another integration by parts on the latter term we have
[ risne o m
1
= /C|Vv(fG‘1)|2(fG_1)p‘2Gm+ SV (GVym)(fG™HP

- / —CIVo(fGHP(fG P2 Gm + ;mvm — - Vym) fPG-#7Y,
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putting together the two identities, we obtain the result
Step 2: We particular use m = e

— eH?

now, we easily compute
V.H V,m
= e
m

z V.H
T . O
Aym AH 2 |VoH|

o S 6€H1—5 (d¢) F2(-5)
We deduce that ¢ = % satisfies
¢H176
€d

< A H + 6‘v

recall H = 3v* + 2v -z + 2“4+ 1, we have

—v-VyH+v-V,H-V,V(z) V,H,
VoH =6v+22,V,H=2v+4+2z,A,H =6

so let € > 0 arbitrary if 0 < 2§ < v, € small if 2§ = v ,we have
AyH + 2¢€6

!V |2

+v-VyH—v-V,H—-V,V(z) V,H
2

_6+e5(6vj_;_;) + 20% 4 2z - v — 602

(202 + Crv + Cv® — 60°) +

< —Cyv —C5$'V1V( )+Cﬁ

< C7H%+MXR,

20-v—6v-V,V(x)—2z-V,;V(x)
(C3ed2® — 22 -V, V(z)) + C

for some C; > 0. Then we get ¢ <
ended.

solution to 0y f = Bf, f(0)

— + Mxg, the proof of (2)
fo. First we have by (2)
/fp (BHGPNEM <,
which implies

O
Step 3: During the proof of this part, we will denote f; = Sg(t)fo the

define

/fth p 1)6261{5 < /ng—(P—1)62eH5 — v,
Y = / PG =D eett?
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and making use of the results in (2), for any p > 0 we have

@ = / JIB G

< _a/ffG(pl)eeH5H5+;1

< _a/fth—(p—l)eeH‘s <:L,>26+'y—2

< —a/ fth—(p—l)eeH‘s <x>26+7—2.
Blz|<p

As 20+ < 2,50 0 < |z| < p can imply (2)20F772 > (p)29+772 we get

QY _a<p>25+’y—2 /B ffG_(p_l)GEHé

IN

dt

lz|<p

< _a<p>25+7—2y + a<p>26+'y—2/ ffG—(p—l)egH57
Bjz>p
and |z| > p can imply (@) > ¢<(P)* we have

SV < alpP Y g afp)? e 0 / PG00 (P el
B

lz|=p

< —a(p)Q‘Sﬂ_QY + a(p)25+v—2€—e<p)25 /ffg—(p—l)eemee(x)zs

< _a<p>25+'y—2y + a<p>25+’y—26—e<p)25 Y.
We can deduce from Gronwall’s Lemma
Y(t) <e ™77y () + Ce 0™y,
< (emale)* R Y1,

~

choosing p such that a(p)?T772t = ¢(p)? , that is (p)2~7 = Ct, then

+ e_€</7>25

25
Y(t) < Cre” @7y,
for some C; > 0, then the proof of Lemma, [3.3|is complete. O
Now we come to prove Theorem
Proof of Theorem By Theorem we have
1Sl L2 (G-172)512(G-12) S 1
recall A = Mg, so we have

HAHL2(0—1/2)_>L2(625H5G—1/2) S L,

and by Lemma [3.3| when p = 2

||SB(t)||L2(e2eH5G—1/2)_>L2(€eH5G—1/2) Se >
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gathering the three estimates and using Duhamel’s formula
Sr =S8+ SgAx*Sg,
we deduce
||S£(t)HLz(easHéG—1/2)%L2(66H<5g—1/2) S
taking 26 = ~, € small enough we have

ok J
/ftQGleeH2 Sc/ngIBZeHQ :2}/23,

- [ o

Using the result from Theorem we have

d

—Y; =2 -1
Y2 /ftﬁftG

and we define

as 2y < 2,50 0 < |z| < p can imply (x)20~1) > (p)20=D we have

d
G <-alppry [ po
14 B

lz|<p
S Tl
lz|>p

for any € > 0 small, we can find ez > 0 such that :eoV (z) < eH%, and |z| > p
can imply e2(®)7 > pe2{n)” g

in < —a(p)?0 Ny, + a<p>2(vl)662<p>V/ F2G eV @

. Biz|>p
o
< *CL<P>2(7_1)YQ + a<p>2(7_1)6—62(l’>7 /ft?G—leeH2

< —a(p)207VY, + a(p)20 Ve Oy,
we can deduce thanks to Gronwall’s Lemma
Ya(t) < e h?07Vy,(0) 4 ey,
< (em a0V | o)y
choosing p such that a({p)2(0"Vt = es(p)7 , that is (p)>~7 = Ct, then
Ya(t) < Cre=Ca/C Ny,
As H? < C’( + V(x)), we have:

J
66H2 < G—C’e’
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so taking € small the proof of Theorem is done. O

4. L' CONVERGENCE ON Sg
This section we prove the decay rate for Sg.
Theorem 4.1. Let H = 1 + 22 + 2(v,x) + 3v%, for any 6 € (0,1) and for
VI > 0, we have
SO L1 (51— 0y S (X +1)77,
with
(1—40
a = (77),
l—3

To continue our proof we first need a lemma.

Lemma 4.2. For the kinetic Fokker Planck operator L |, let m be a weight
function, for any p € [1,00] we have

/ (L) P mP = —(p— 1) / IV (mf)P(mfP? + / o,
with ,
2 |V,
o= 2] m?;%l y

in particular when p =1

2 A,m d V.m Tm
— 1) + .

P m P m m

A,m Vom  Tm
¢ = - -
m

m m

Proof of Lemma d.2tFirst we have
[engtme = [ poisgme s [ T,
we first compute the contribution of the term with operator 7, we have
[ = [ = - [ parign = [ ol
then we come to the term with operator S
Jesnprtme = [ tme (@, + div(wh) = €+ o

we first compute the Cs term

Cs :/fp_lmp(divvvf—i—v-vvf)

= /fp(divvv)mp ;/fpdwv(vmp)
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and we turn to the C; term
Cy :/fp_lmpAvf:_/vv(fp_lmp)'vvf
= [~to= 0P = [ VgV,
using V,(mf) =mV,f + fV,m, we have

G =—(p-1) / Vo (mf) P + (p— 1) / Vym|? fPmp=2

2(pp§ 2 / Vo(f?) - Vo(mP) - ; / Vo(f?) - Vo(mP)

— - 1) [ IR 2+ (o= 1) [ [Fomf e
-2
22 [ am
p
using A,mP = pA,m mP~L 4+ p(p — 1)|V,ym|?mP~2, we can conclude

¢ =~ [ [WutmpP 22+ [ parC-nS o -

Combining the equalities above we are done. U

+

)|va|2
p’ m?

].

Proof of Theorem [4.1]: From Lemma [.2] we have
@y [Bpptmr = [t

— (1) / Vo (m )2 (m )2 + / PP,

with
2 |V,ml|? 2 A,m d Vom  Tm
o=l 2R 4 T TR,
p m p m p m m
for p =1, we have
gb:Avm_v.va_'Tm_]wxpu
m m m

(1) Let m = H”, we have
Vym _kVUH Vam kva

m H’ m  H'’
and
Aym  kAH | k(k— 1)|V,H|?
m " H?2 ’
in sum we have for ¢
2
T:AUH—F(k:—l)mH{:”—U-VvH+v-VxH—VmV(:U)-VUH—MXR,
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Recall H = 3v? + 2(v,z) + 2%, we have
VoH =6v+22,V,H=2v+2x,A,H =6,
we compute

2
AH + (5 — 1)V

_6+%—1ﬂm;f@2

—2z-v—6v-V,V(x)—2x-V,;V(2)

< (20?2 + Cv —6v%) — 22 -V, V(z) + C
< —Cy? — Cyz -V, V(z) + Cs

< —C4H? + Mixg,,

Y v VoH —v-VoH — V,V(z) Vo H

+ 202 + 22 - v — 602

so taking M and R very large, we have ¢ < —CH %_1, taking this result

into equation (4.1]), we have:
(4.2)

vitt) = [ sl = [ sion(is)BIs0H* < ~C [ o) HE k>0,

using this result, first we have for any [ large fixed, we can take M and R
large such that

o [ sl <o,

/Ifzs(t)IHl s/fo|H’ —Ys,

and using Holder’s inequality:

[1sao1" < ([ a3 sl

-k
Cl-k+1-3

which implies

with
€ [0,1],

which means

([ 1@ ([ 1ol < [ 1at)at

with
l—k
SR S ——
taking the Holder’s inequality into we have

d a1
Vi) < —C(Yi(t)=Y; *
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using Y4(0) < Y5, we deduce by a simple argument
1

(1+t)7=

which means we get a polynomial decay

1SBO N Lo (rty—rrs) S 1+

Yy(t) < Ca Vs,

with
I —

2’
1 2

o

a =

VO < k <,

we can write it in this way

ISBO Lo (Hty— L0y S (L +1)7,
with

VO <0 <1,0<,

so the proof is ended O

5. REGULARIZATION LEMMA

This section we prove a regularization lemma.
In this section we will denote L* = L =8 — T be the dual operator

G-1/2
of £ on L*(G~'/?) such that
[wense = [wose

for any smooth function f, g, and denote B* = L* — Mxg

Lemma 5.1. For any 0 < § < 1, there exist n > 0 such that

1
1SB() fll L2 (172040 S BT 11l 112048y, ¥t € [0,7).
2

and for B* we have similar result

1
188 () fll 212040y S BT 1l L1 g-1r2a48)), V€ [0, 7).
2

in particular by duality this implies
1
1S5(8) fll oo (G-1/2) S BT 1flz2(g-1/2), Yt €[0,7].
2

We start with some elementary lemmas.

Lemma 5.2. For any 0 < § < 1, we have

/ F(Lg)G 0+ 4 / go(LNHG-0H) = o / V,(fGY) - Vy(gGH)GI

+6d / FgG~UF9) _5(1 —§) / V2 fgG+9)
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in particular

/f(ﬁf)G‘“*‘” = —/IVU(fG_1)|2G1_5+52d/f2g—(1+6)
6(1 6) 2 2 —(1 5
S et

we also have another version of [ f(Lf)G~(1+9)

/f(ﬁf)G(lJré) /‘v f‘ G~ 1+5)+ 5(1;5)/ 2f2 —(1+49)
HEEOE [ g,

and all the results above remain true when L is replaced by L*.

Proof of Lemma First remember 7 (G~0+%)) = 0, so we have

[ rga i / TG g =~ [(Tpge 09,

which implies

/ f(Tg)Ga 0+ 4 / (TgG 0+ —q,

AsL=8S+T,L=8—T, as the T term is 0, so the computation result of
L and L* is the same, for the term with operator & we have

[ 1061 == [9,(56-04) - (99 +vg)
= — /(va + (1 +8)vf) - (Vog +vg)G~1HD
—/Vv(fGl)-Vv(gGl)G15 —/5v2ng<1+5> —/5fv.vng<1+5>,
using integration by parts, we have
/ SvfV,ugG 0+ — / 59V, - (vfG~UH)
- ‘/ Su -V, fgG0H) / 0df g~ — / 5(1+8)0* fgG— 0+,

SO

[0+ sy
= —2/Vv(fG—1> . Vu(gG_l)G1_5 +5d/ng_(1+6) o 5(1 o 5)/,‘)2ng—(1+6)7
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Gathering the two terms, the proof of the first two equalities are done. [
For the last equality, we have:

/ fSFGTIH) = — / (Vof + (14 0)0f) - (Vof + )G+
= — / |vvf|2G7(1+5) — /(]_ + 5)U2f2G*(1+5) _ /(2 +6)fv- vvfo(lJré)
= — / |va|2G—(1+6) _ /(1 + 5)U2f2G—(1+6) + Q?S/Vu . (vG_(1+5))f2

o(1+06 24 8)d
= —/\VUfPG_(H‘S) +(2+)/U2f2G—(1+5) +(z)/f2G_(l+6)'

Putting together the above equality with [ f7fG~U%9 = 0 the proof is
done. 0

Note in the following of this section we will split into two cases, and de-
note f; in two ways, fy = Sg(t) fo or fi = Sp«(t) fo.

Lemma 5.3. When f; = Sg(t) fo, we define an energy functional
]:(t> ft) = AHftHiZ(G—l/?(lJré)) + atQvaft|‘i2(g—1/2(1+6)))
+2ct (VY fi, V:vft>i2(g—l/2(1+5)) + bt6vaft||%2(g—l/2(1+5)))a
when fi = Sg=(t) fo, we define an energy functional
Ft, fr) = A\|ft”%2((;—1/2<1+5>) + at2vaftHi%G*l/?(lJré)))
—2ctM(Vy fy, fot>%2((;71/2<1+5)) + thchcft||%2(gfl/2(l+5)))a

with a,b,¢ > 0,¢ < vab and A large enough. Then for both cases we have

d

%F(t, fi) < _K(vaft||L2(G*1/2(1+5)) + t4vaftHL?(G*lﬂ(Hé))) + C/ftQG_(l'HS),

for allt € [0,7n] and for some K > 0,C > 0.

Proof of Lemma (.3
We split the computation into several parts and then put them together.
Step 1: (1)For the case f; = Sg(t)fo, first using both two equalities in

Lemma [5.2] we have

d _ _
dt/f2G (1+5) :/f(c_MXR)fG (1+5)
=50 [rese o 208 [ pepete0 - [angra (o9
1-— 1
— 50 [uspe i - 222 [, e hpett e [ e

< —1;5/‘V»Uf2G_(1+6)+C/f2G_(1+5).

IN
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(2)As Lemma is also true for £*, so the above inequality is also true for

L*.
Step 2 :(1)For the case f; = Sg(t)fo, we easily compute

d
Op Lf = LIy, f + 85, (VoV () - Vo f) = LIy, f + Z 07,2,V f,

j=1
using this and Lemma we have
G J@urrae - / O, 0, (£ — M) fG~ 0+

6(1l—=96 B
_<2)/ ((%;lf —(1+49) /6$zfz V@v]fG (14+9)
- [ Mxnlon fPG 0 4 [ Mo g0, s G0,
using Cauchy-Schwarz inequality and summing up by i, we get
i 2 ~—(146)
& [1varte
- 5(1—19)
_Z/ |Vv((9xifG*1)|2G176 _ 2/ 2(v,1)2G —(1+9)
=1
+C/ Vo f2G~0+0) 4 C/ Vo fl2G— 040 4 C/ |f|2G— (1),

for some C' > 0.
(2)For the case f; = Sp«(t)fo, we have

amzﬁ*f = E*aivzf - aﬂ«“z(vxv(x) ‘C*&Tzf Z mlm]V6vjf,

using the same argument we still have the same result as above.
Step 3:(1)For the case f; = Sp(t)fo, we similarly compute

avzﬁf = ‘Ca’vlf_ax-bf—‘f_avlf)
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using this inequality and Lemma [5.2] we have

& J@ura e < [ o, g0, - armre0+)
—— [Wu@usGEe 4 5 [@u e
St / v (0 2G0T — / Oui O, fG~UH)
+ / 00 fPG70F) / Mxr|0u, fPG~0F) + My, 0, xrf G0,

using Cauchy-Schwarz inequality and summing up by i we get

i 2 ~—(1496)

& [wure
d

- —Z/Ivv(awa‘l)lgGl—(s+C/|wf|\vvfya—<1+a>
=1

+C/ IV, f2PG~ 0+ 4 C’/ |f]2G—0+9) — 5(12_5) /UZ(VUf)2G(1+5).
For the case f; = Sp~(t) fo, we have

avlﬁ*f — £*avif+azif+av¢fa

using the same argument we still have the same result as above.
Step 4:(1)For the case f; = Sp(t)fo, for the crossing term we have

jt / 200, fOu fG~UH = ( / Dy, f O, LFGUHO) 4 / Doy L0y, fG~ 10

‘(/ Oy, O (M xR )G + / O, (M xR )0y, G0+
= W1+ Wa,

we split it into two parts, for the first part still using
d
Ou L = L4, + 05, (Vo V(@) - Vo f) = LIy f + D 0%, VO, f.
=1

and
Op Lf = LOy, f — Oz, f + Oy, [,

we have

= [0u5£0.0G 00+ [ L@ onsG 0

- awfzamj 200,670 [0, P64 [0, 50, 167019,
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using Lemma [5.2] we have
W o= / 9V, (B0, fC) - Vo (0, S GG + 5 / Dy, [0, fG— 1+

d
—6(1—9) / V20, fOu, FG™T) 4 / Do, £ Oy, V()00 fGUH0)
j=1

~ [1nsra 0 1 [ o, g0, 560
For the W5 term we have
We= _/ Do f 0, (M xR f)G~ ) - / O (MxR )y fG~ 1)
- —/ZMXRawifavifG_(l—i-S) +/8vifM6x¢XRfG_(1+5) +/M8’UiXRf8xifG_(1+6)

<C [10. 110,164 4 C [0, 1151670 ¢ [ Ifn.flc ),

combining the two parts ,using Cauchy-Schwarz inequality and summing up

by i we get

d
- V.f -V (1+4)
t/2 i of G

d
< —Z/wv(avifc—l) V(0 fGTHG ;/|vxf|2G—<1+5>
=1

+C’/ Vo fI2G=(F9) 4 c/ |F2G~0+0) —§(1 — ) /ﬁvvf Vo fGUF0),
(2For the case f; = Sp+(t)fo using
d
Ou, L°f = L200,f — 00, (VaV (2) - Vo f) = L*0u, f — > 02, VO, .
j=1
and
8v1£*f = 'C*avzf + axzf + avifa

we will get a slightly different result

d
— V.f -V (1+6)
: 2V, f ofG

d
< 2/2%(8%%?1)-VU((9:,;Z.fG1)GI‘5 - ;/mﬂzgmz&)
=1

+C’/]va|2G_(1+5) +C/]f]2G‘(1+5) +6(1—5)/v2vvf-vfo_(1+5).
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Step 5: (1)For the case f; = Sg(t) fo, gathering all the terms together, recall
F(t, fo) = A||ft||i2(a—1/2(1+a>) + atQHvuftﬂiz(g—l/z(u«s)))
+2ct1(V, fi, V:rft>i2(g—l/2(1+6)) + bt6Hvzft||%z(c—1/2<1+é>>),

with a,b,c > 0,c < vab and A large enough. We easily compute

d

%‘F(tv ft)

d d
= Aa”ft”iz(gflﬂ(lH)) + aﬁ@Hv”ftH%Q(G”/Q(”‘”)

d d
+26t4@<v’uft7 v$ft>iQ(G71/2(l+6)) + btﬁa”vzftHiz(GAm(lJré))
+2at| Vo fell 72 g-1/2040) + 8t (Vo fe. Vafi) 1o g1/2040) + B0 Ve fell72 g1/2040))-

Using the results in Step 1-4 and gathering all the terms together we have

d
@‘F(ta ft)
< (2at — AL-9) + Cat? + 2Ct*c + Cbt%) / IV, fe|2G~0+9)

+(6bt° — ct* + Cbt%) / IV fe 2G04+ 4 ¢ / F2q—(+9)

+(8¢t® + Cat?) / Vo il [V fi] G040

d d
@Y [19,0.AGPG 4103 [ Va0 fiG PG
=1 =1

(1 —8)
2

d
2 Y [ 29,00, 67 Va0 £GTHG) - (@t [ R(TuppG 0
=1

+bt" / 03 (Vo f)2G~0F0) 4 oett / V2V, f - Va fG~ (149,
by our taking on a, b, c we can have
12t / VIV, f - Vo fG 00| < af? / (Vo f)2G 49 4 b / (Vo f)2G(1F0),

and

d
264 S [ 2V,(0L G Vo0 fiGTHG
=1

d d
< at22/\vv(aviftc—l)\201—5+thZ/\vv(aziftc—l)yzel—{
i=1 =1
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by taking A large and 0 < n small (¢ € [0,7]), we have for some K > 0:

d _
a}—(ta ft) < _K(vaft”L2(G*1/2(1+5)) + t4HvxftHLg(G,l/g(Hé))) + C/ftzG (1+6)

(2)For the case f; = Sp=(t)fo, the only change is that the last three terms
changes to

(Cat? — 8ct?) / Vo fil [V folG (140

d d
—(atQZ/|Vv(8viftG_1)|2G1_‘5+bt62/|Vv(8$iftG_1)]2G1_5
i=1 =1

5(1 - 6)
2

d
—2ct* > / 2V, (00, iG ™) - V(0 iG ™G %) — (at? / V¥ (Vo f)?G- 00
=1

+bt" / V2(Vaf)2G~1F0) — oct? / V2V, f -V fG~(1H9))

which will not change the result. The proof of Lemma [5.3] is ended. O
The following proof of this section is true for both cases.

To prove Lemma [5.1] we still need some other lemmas.

Lemma 5.4. For any 0 < <1 we have
/’Vzv(fG_l/Q(l-Hs))‘Q S/‘va;'uf|2G_(1+6)+C/f2G_(l+6),

Prove of Lemma : For any weight function m we have
[1vatm = [192fmt Gomgf
= / V. fPm? + / \Vam|2f? + /2fvzfmvzm
= [1VutPu + [P~ [ 5 Pa0n)
= [1VutPu? - [(9amP = S22,
taking m = G~1/2049) we have
/\Vx(fGl/Q(”‘S))]Q

1 _
= / |fo|2G—(1+5) + /(‘VxG—l/Q(l'HS)‘Q _ iAxG (1—}—6))]@2

_ 1+6)2 140 _
= [19arpe 0+ [0 v @)p + L0 A v @) a0

S/‘vfoG_(l—Hs)+C/f2G_(1+6),
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similarly
/|VU(fG‘1/2(1+5))|2
:/|va‘2G(1+§ +/ |v G~ 1/2( 1+5)‘ UGf(lJré))fQ
2

_ §)? 1+5
:/|vuf|2G (1+5 ‘I’/ 2 )f2 1+5

< /|vvf|2G(1+5 )

Putting together the two inequalities we obtain the result. ]

Lemma 5.5. Nash’s inequality: for any f € L'(R?) N HY(R?),there exist a
constant Cy such that:

d
17115 < Call FIPPAA T f g

Proof of Nash’s inequality: For any R > 0 we have

I =11 = [ Ife [ g
[§I<R l§I=R
1 .
<%mwmw+m/ls%P

< caR?f3 + 25 IV S 1B

1
taking an optimal R by setting R = (|| f||22/callf]|2,)#2, we are done the
proof. O

Lemma 5.6. For any 0 < <1 we have

d/‘f|G_1/2(1+6) <d/|f|G—1/2(1+5)
dt - ’

which implies

/|ft|G1/2(1+5) S Cedt/|f0’G1/2(1+6),

i particular we have

/mm*mHﬁsq/mm*mH% vt € (0,7,



THE KINETIC FOKKER-PLANCK EQUATION WITH WEAK CONFINEMENT FORCE9
Proof of Lemma [5.6}For the case f; = Sg(t) fo, by Lemma we have
d
da G-1/20+9)
a1
_ / FI(AG G240 4y, 172040

+v - VIG*1/2(1+6) —VV(x)- VUG—1/2(1+5) _ MXRG,l/Q(H(;))
144 1+0)(1—-9 _ B
g/m( 2 a - L= oy S/!f\dG 12049)

4

as TG~1/2049) = 0, the result is still true for the case f; = Sp«(t)fo g
Now we come to the proof of our original lemma.
Proof of Lemma Bt We define

g(tvft) = BHftHil(Gfl/Z(lM)) +tz-7:(t7 ft)7

with Z > 0 to be fixed and F defined in Lemma/[5.3] It’s important to recall
here that

Ft, fr) = A||ft||%z(g—1/2(1+s>) + atz!\vatfliz(g—1/2<1+s>>)
+2Ct4<vvft, vxft>%2(€—l/2(1+6)) + btﬁHvxft||%2(G—1/2(1+6)))-

We choose ¢ € [0,7] ,n small such that (a + b+ ¢)Zt?+! < 1KtZ (K is also
in Lemma . Then by Lemma and Lemma

d _
9 ) < dB| fill 71 (g-1/2049 + Zt77VF(t fr)

_KtZ(HvatHi2(G—1/2(1+6)) + t4|‘met||%2(G_1/2(1+5)))
+Ct? / £2G-014+)
< dBHftH%I(Gflm(lJﬂ;)) + Ctzfl / ftZGf(lJr(S)
K 4
—=t
2
Nash’s inequality and Lemma [5.4] implies

/ffG—(H&) < (/|ft|G-1/2(1+5))dfig(/|vw(ﬁG—l/z(H(s))|2)di2
: (/ |Fil G120z / Ve fil 2G04 € / 2G040y ats.

using Young’s inequality we have

(vaftniz(g—l/z(l-&-é)) + t4 vaft||%2(g—l/2(1+5)))a

—5d
el srmarory < Ot 1P omymarsny Het® (Vo fel 22 s/acaony O el 22 s/acissy):
we deduce

—5d 2
||ft||%2(G—1/2(1+5)) S 2Cet 5 ”f”%1(0—1/2(1+5)) + 26t5||vz,vft||L2(G—1/2(1+5))a
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taking e small we have

d 1

%g(t, ft) < dBHftH%l(G—l/?(l+5)) + CltZ ! 5d”ft”il(G—1/2(1+6>)7
finally choose Z = 1 + 5d,and using Lemma, [5.6] then we deduce
Vit € [0777]7 g(ta ft) < g(O? fO)+01Hf0||%1((;—1/2(1+5)) < C2||f0“%1(g—1/2(1+5)),
the proof is ended. O

6. LP CONVERGENCE FOR THE KFP MODEL
To reach the final convergence we first need:

Lemma 6.1. Recall A= Mxgr, B= L—Mxg, using the estimates in former
sections, for any € > 0 small, we can have some estimates on ASp(t)

2
—at=—"
Se :

HASB(t)HLz(Gf(%JrE))ﬁ\L%G*(%*E))

and

e
< ,—at?=7
HL1(G7<%+6))%L1(G*(%+5)) ~ € ’

for some a > 0, and for any 0 < b < % we have

I ASB(?)

< tfaefatb

”ASB(t)HLl(G,(%+€))_)L2(G,(%+€)) ~

)

5d+1
2

for a = and some a > 0.

Proof of Lemma : (1) Using the result in Lemma [3.3| we have

~
—at2—
”SB(t)||L2(G7(%+5))_>L2(G7%) S € ¢ )

recall A = Mg, so
[A]

<
LG b2ty S b
combining the above 2 inequalities we are done.
(2) Also by Lemma [3.3| we have

25
IS L1 (G-t S e,
and obviously

||A||L1_>L1(G7(%+e)) 5 1)

so combine the 2 inequalities we are done.
(3) For the third inequality, we split it into two parts. When ¢ € [0,7] ,
0l

e e
e~ > ema*™ 7 and A < MI, using Lemma [5.1] we have

R
_ —a _—at2—
MSBO 1 vy a@-Groy SET ST @ a>0,vt € [0,7].
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When t > n, by Lemma [5.1] we have
HSB(U)HLQ(G_(%+E))4)L2(G_(%+€)) 5 /r’a S 17
using Lemma [3.3]we have
1SB(t —n)

for A obviously

e e
—a(t—n)2—" —at?—
HLQ(G*(%*FE))*)[;(G*%) < Ce < Ce

)

HA”L2(G7%)~>L2(G7(%+€)) S, 17

when t > 7, gathering all the inequalities above, we have

26
[ASBE(O)| L1 (G-1/20420) 5 2(G-1/20420) S emat?T < yragmat’,

for any 0 < b < ﬁ, combining the two cases, the proof is ended. O

Lemma 6.2. similarly as Lemma for any p € (2,0), we have

1S8()All L2(-1/2)— 12(6-172) S et

Y

and

2
—at=—"
Se ;

”SB(t)AHLP(G’*l/Q)—>LP(G*1/2)
for some a > 0, and for any 0 < b < ﬁ we have
— _4b
||SB(t)AHLQ(G71/2)_>Lp(G71/2) S tPemat ,
for some B > 0 and some a > 0.

Proof of Lemma [6.2|: (1) Using the result in Lemma [3.3| we have

v
—at2—
”SB(t)||L2(G7(%+E))—>L2(G7%) 5 € “

)

recall A = Mg, so

<1

||AHL2(G_1/2)%L2(G7<%+5>) ~

)

combining the above 2 inequalities we are done.
(2) Also by Lemma [3.3| we have

1SB@)]l

—1 —1
(G TN ST )

and obviously

_ <
HAHLP(G*I/2)~>LP(G7<%+E>) ~
so combine the 2 inequalities we are done.
(3) For the third inequality, we split it into two parts. Interpolate between
Lemma [3.3] and Lemma, [5.1] we have
-8
”SB(t)||L2(G7(%+5))_>LP(G_1/2) 5 t )
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for some 8 > 0.
e e
When t € [0,7] , e=®*7 > e~ ™" and A < MI, we have

IS5 All L2172y s o1z SEP S P57 0> 0,t € [0, 7).

When t > 7, interpolate between Lemma/[3.3]and Lemmal5.T]and take 26 =
we have

HSB(U)HL2(66H5G71/2)_>Lp(071/2) S 77_5 <1,
using Lemma [3.3]we have
— —n)2— —at2—
|Sa(t — 77)||L2(e2eH5G—1/2)_)L2(65H6G—1/2) Se alt=m)*™ Se ot ’,

for A obviously
HAHLZ(G—I/Q)_>L2(625H5G—1/2) 5 L,

when ¢ > 7, gathering all the inequalities above, we have

o
”ASB(t)HLl(G71/2(1+2e))_>L2(Gf1/2(1+2e)) < et < tiﬁefatb.

for any 0 < b < ﬁ, combining the two cases, the proof is ended. ([
Then we need an abstract lemma like Lemma 2.4 in [3].

Lemma 6.3. let X,Y be two Banach spaces, S(t) a semigroup such that
for all t > 0and some 0 < a,0 < b < 1 we have

_ath b
1S(B)]lx—x < Cxe ™, [IS(@)[ly—y < Cye ",
and for some 0 < a, we have
_ __4b
1S(t)|x=y < Cxyt e ™.
Then we can have that for all integer n > 0
1SE™ (1) xox < Cxut™ te ot
stmalarly
ISE@B)lly—y < Cynt™ e,
and
b
||S(*n) (t)”X%Y < CX,antn—oz—le—at :
in particular for o +1 < n, and Vb* < b
IS @)lxoy < Cxyme™
Proof of Lemma We use the fact that t* < s® + (t — s)® for any
0<s<t,0<b<1, by induction
t t
|’S*(n+1)(t)”X—>X < / HS(t . S)S*n(S)HX—)X < Cn/ e—a(t—s)be_asbsn—lds
0 0
t

b _ b
< Che / s" 1d8=0n+1€ at™n.
0
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and we compute
t/2
15D (1)]|x sy S/ 15 (t = )l x v [1S(s) | x> xds
0
t
+/ 1S (& = ) [y v [1S(s) [l x -
t/2
t/2 , ,
< CnC1/ (t . S)n—a—le—a(t—s) e~ ds
0

t
+CnC1/ (t _ S)n—le—a(t—s)bs_ae—asbds
t/2
\ 1/2 1
< CpCre i / (1— 7)o ldr + / (1— 7" rdr)
0 1/2

S Cn_i_ltnfaefatb’
the proof of the lemma is ended. O

Then we come to the final proof.
Proof of Theorem We only prove the case when m = H¥ the case

1
m=G pT(l + €) is similar. By Duhamel formula, we have

Sr ZSB+SB*(AS[;) ZSB-F(SB.A)*SZ
= Sp + Sc * (ASB) = S + (ScA) * S,

iterate the formula in this way

S =S+ (S+ Sc*(ASB)) * (ASB)
= Sp+ Sp * (ASB) + Sr * (ASg)*?)
=S+ (SB.A) * Sp 4+ Sp * (-ASB)(*Q):

we can get
n—1
SeI-T) =T -1){Sg+ Y (SpA) «(Sp)}

=1
(I =TS} * (ASB(t))™.

For the first term we have from Theorem (4.1
IS8 1 my—r1(moy S (L 4+1)7%
For the second term, we have by Lemma (3.3

e/
—at2—

1S8()All L1 (m)y—11(m) S € ,
so by Lemma |6.3

.
1CSBA) 2y 21y S 1T
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For the last term we have from Theorem [4.1]

e
—at2—
HASB(t)||L1(m)_>L1(G—(%+E)) S e “ ’Y?
by Lemma for any 0 < b < 21—7, we have
I(ASg) "1 (#)]

by Theorem (3.1

V9 _ b
na2€at’

<
Ll(G_(%+€>)—>L2(G_(%+€)) ~

20

—at2—7
||Sﬁ(t)(l - H)||L2(G—(%+e))_>L2(G,1/2) S € ¢ 77

and for the identity operator I, obviously we have
<
||IHL2(G_%)—>L1(W6) ~ ]"

so taking n > a + 2 and gathering all the terms together, and use this
inequality for any € > 0

t + 1 t
/ (1+t—s5) "% ds < / (ﬁ)ae_csbds =1+ t)_a/ (14 5) % “"ds
0 o 1+t 0

t€ t
= (1 +t>‘“</ +/ )1+ 5) "% ds < (14 )79*,
0 t€

we deduce
1S =) 11y prmey S (1 +1)70F,

(B5+e)

for the case m = G~ , the only change is this time we have

1S5l

using similar argument we can get

2"/
—at=—"
p—1 S € )

-1
(@ TN e )

5
< e—at?*"/

1Sc(8)(I — 1) N

(=1, _p=1
HLP(G Bt )

which implies Theorem [1.1 (Il
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