THE KINETIC FOKKER-PLANCK EQUATION WITH WEAK CONFINEMENT FORCE

Chuqi Cao

To cite this version:

Chuqi Cao. THE KINETIC FOKKER-PLANCK EQUATION WITH WEAK CONFINEMENT FORCE. 2018. hal-01697058v2

HAL Id: hal-01697058
 https://hal.science/hal-01697058v2

Preprint submitted on 7 Jun 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE KINETIC FOKKER-PLANCK EQUATION WITH WEAK CONFINEMENT FORCE

CHUQI CAO

Version of June 7, 2018

Abstract

We consider the kinetic Fokker-Planck equation with weak confinement force. We proved some (polynomial and sub-exponential) rate of convergence to the equilibrium (depending on the space to which the initial datum belongs). Our results generalized the result in 4,5 [21, 11, 10, 9, 1, 14 to weak confinement case.

Mathematics Subject Classification (2000): 47D06 One-parameter semigroups and linear evolution equations [See also 34G10, 34K30], 35P15 Estimation of eigenvalues, upper and lower bounds [See also 35P05, 45C05, 47A10], 35B40 Asymptotic behavior of solutions [see also 45C05, 45K05, 35410], 35Q84 Fokker-Planck equations.

Keywords: weak hypocoercivity; weak hypodissipativity; Fokker-Planck equation; semigroup; weak Poincaré inequality; rate of convergence.

Contents

1. Introduction	1	
2.	L^{2} framework: Dirichlet form and rate of convergence estimate	4
3.	L^{2} sub-exponential decay for the kinetic Fokker-Planck equation	
based on a splitting trick		12
4.	Regularization property of $S_{\mathcal{B}}$	16
5.	$S_{\mathcal{B}}$ decay in larger spaces	25
6.	L^{p} convergence for the KFP model	28
References	30	

1. Introduction

In this paper, we consider the weak hypocoercivity issue for the kinetic Fokker-Planck (KFP for short) equation

$$
\begin{equation*}
\partial_{t} f=\mathcal{L} f:=-v \cdot \nabla_{x} f+\nabla_{x} V(x) \cdot \nabla_{v} f+\Delta_{v} f+\operatorname{div}_{v}(v f) \tag{1.1}
\end{equation*}
$$

for a density function $f=f(t, x, v)$, with $t \geq 0, x \in \mathbb{R}^{d}, v \in \mathbb{R}^{d}$. The evolution equation is complemented with an initial datum

$$
f(0, \cdot)=f_{0} \text { on } \mathbb{R}^{2 d}
$$

We make the fundamental assumption on the confinement potential V

$$
V(x)=\langle x\rangle^{\gamma}, \quad \gamma \in(0,1),
$$

where $\langle x\rangle^{2}:=1+|x|^{2}$.
Let us make some elementary but fundamental observations. First, the equation is mass conservative, that is

$$
\mathcal{M}\left(f_{0}\right)=\mathcal{M}(f(t, \cdot)),
$$

where we define the mass of f by

$$
\mathcal{M}(f)=\int_{R^{d} \times R^{d}} f d x d v .
$$

Next, we observe that

$$
\begin{equation*}
G=Z^{-1} e^{-W}, \quad W=\frac{v^{2}}{2}+V(x), \quad Z \in \mathbb{R}_{+} \tag{1.2}
\end{equation*}
$$

is a positive normalized steady state of the KFP model, precisely

$$
L G=0, \quad G>0, \quad \mathcal{M}(G)=1,
$$

by choosing the normalizing constant $Z>0$ appropriately. Finally we observe that, contrary to the case $\gamma \geq 1$, a Poincaré inequality of the type

$$
\exists c>0, \quad \int_{\mathbb{R}^{d}}|f(x)|^{2} \exp (-V(x)) d x \leq c \int_{\mathbb{R}^{d}}|\nabla f(x)|^{2} \exp (-V(x)) d x,
$$

for any smooth function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that

$$
\int_{\mathbb{R}^{d}} f(x) \exp (-V(x)) d x=0,
$$

does not hold. Only a weaker version of this inequality remains true (see [20], or below Section 2). In particular, there is no spectral gap for the associated operator \mathcal{L}, nor is there an exponential trend to the equilibrium for the associated semigroup.

For a given weight function m, we will denote $L^{p}(m)=\left\{f \mid f m \in L^{p}\right\}$ the associated Lebesgue space and $\|f\|_{L^{p}(m)}=\|f m\|_{L^{p}}$ the associated norm.

The notation $A \lesssim B$ means $A \leq C B$ for some constant $C>0$.
With these notations, we can introduce the main result of this paper.
Theorem 1.1. (1) For any initial datum $f_{0} \in L^{p}\left(G^{-\left(\frac{p-1}{p}+\epsilon\right)}\right), p \in[1, \infty)$, $\epsilon>0$ small, the associated solution $f(t, \cdot)$ of the kinetic Fokker-Planck equation (1.1) satisfies

$$
\left\|f(t, \cdot)-\mathcal{M}\left(f_{0}\right) G\right\|_{L^{p}\left(G^{-\frac{p-1}{p}}\right)} \lesssim e^{-C t^{b}}\left\|f_{0}-\mathcal{M}\left(f_{0}\right) G\right\|_{L^{p}\left(G^{-\left(\frac{p-1}{p}+\epsilon\right)}\right)},
$$

for any $b \in\left(0, \frac{\gamma}{2-\gamma}\right)$ and some constant $C>0$.
(2) For any initial datum $f_{0} \in L^{1}(m), m=H^{k}, H=x^{2}+v^{2}, 1 \leq k$, the associated solution $f(t, \cdot)$ of the kinetic Fokker-Planck equation (1.1) satisfies

$$
\left\|f(t, \cdot)-\mathcal{M}\left(f_{0}\right) G\right\|_{L^{1}} \lesssim(1+t)^{-a}\left\|f_{0}-\mathcal{M}\left(f_{0}\right) G\right\|_{L^{1}(m)}
$$

for any $0<a<\frac{k}{1-\frac{\gamma}{2}}$. The constants in the estimates do not depend on f_{0}, but rely on $\gamma, d, \epsilon, \theta, p, k$.
Remark 1.2. Theorem 1.1 is also true when $V(x)$ behaves like $\langle x\rangle^{\gamma}$, that is for any $V(x)$ satisfying

$$
\begin{gathered}
C_{1}\langle x\rangle^{\gamma} \leq V(x) \leq C_{2}\langle x\rangle^{\gamma}, \quad \forall x \in \mathbb{R}^{d}, \\
C_{3}|x|\langle x\rangle^{\gamma-1} \leq x \cdot \nabla_{x} V(x) \leq C_{4}|x|\langle x\rangle^{\gamma-1}, \quad \forall x \in B_{R}^{c},
\end{gathered}
$$

and

$$
\left|D_{x}^{2} V(x)\right| \leq C_{5}\langle x\rangle^{\gamma-2}, \quad \forall x \in \mathbb{R}^{d}
$$

for some constant $C_{i}>0, R>0$.
Remark 1.3. There are many classical results on the case $\gamma \geq 1$. In this case there is an exponentially decay, and we refer the interested readers to [21, 4, 5, 11, 9, 10, 1].

Remark 1.4. There are already some convergence results for the weak confinement case proved by probability method on some particular L^{1} or L^{2} spaces in [1] and [6, this paper extend the result to L^{p} spaces and more larger spaces.

Let us briefly explain the main ideas behind our method of proof.
We first introduce four spaces $E_{1}=L^{2}\left(G^{-1 / 2}\right), E_{2}=L^{2}\left(G^{-1 / 2} e^{\epsilon_{1} V(x)}\right)$, $E_{3}=L^{2}\left(G^{-\left(1+\epsilon_{2}\right) / 2}\right)$ and $E_{0}=L^{2}\left(G^{-1 / 2}\langle x\rangle^{\gamma-1}\right)$, with $\epsilon_{1}>0$ and $\epsilon_{2}>0$ small such that $E_{3} \subset E_{2} \subset E_{1} \subset E_{0} \subset L^{2}$. Thus E_{1} is an interpolation space between E_{0} and E_{2}. We first use a hypocorecivity argument as in [4. [5] to prove that, for any $f_{0} \in E_{3}$, the solution to the KFP equation (1.1) satisfies

$$
\frac{d}{d t}\|f(t)\|_{E_{1}} \leq-\lambda\|f(t)\|_{E_{0}}
$$

for some constant $\lambda>0$. We use this and the Duhamel formula to prove

$$
\|f(t)\|_{E_{2}} \lesssim\left\|f_{0}\right\|_{E_{3}} .
$$

Combining the two inequalities and using a interpolation argument as in [12], we get

$$
\begin{equation*}
\|f(t)\|_{E_{1}} \lesssim e^{-a t^{b}}\left\|f_{0}\right\|_{E_{3}}, \tag{1.3}
\end{equation*}
$$

for some $a>0, b \in(0,1)$.

We then generalize the decay estimate to a wider class of Banach spaces by adapting the extension theory introduced in [18] and developed in [14, 8]. For any operator \mathcal{L}, denote $S_{\mathcal{L}}(t)$ the associated semigroup. We introduce a splitting $\mathcal{L}=\mathcal{A}+\mathcal{B}$, where \mathcal{A} is an appropriately defined bounded operator so that \mathcal{B} becomes a dissipative operator. By proving some regularization estimate in $S_{\mathcal{B}}$ in L^{p}

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L^{p}\left(m_{1}\right) \rightarrow L^{2}\left(m_{2}\right)} \lesssim t^{-\alpha}, \quad \forall t \in[0, \eta],
$$

for some weight function m_{1}, m_{2} and some $\alpha, \eta>0$, and using the iterated Duhamel's formula

$$
\begin{equation*}
S_{\mathcal{L}}=S_{\mathcal{B}}+\sum_{l=1}^{n-1}\left(S_{\mathcal{B}}\right) *\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* l)}+S_{\mathcal{L}} *\left(\mathcal{A} S_{\mathcal{B}}(t)\right)^{* n} \tag{1.4}
\end{equation*}
$$

we deduce the L^{p} convergence on $S_{\mathcal{L}}$, where the convolution of two semigroups $S_{\mathcal{A}}(t) S_{\mathcal{B}}(t)$ is defined by

$$
\left(S_{\mathcal{A}} * S_{\mathcal{B}}\right)(t)=\int_{0}^{t} S_{\mathcal{A}}(s) S_{\mathcal{B}}(t-s) d s
$$

Let us end the introduction by describing the plan of the paper. In Section 2 , we will develop a hypocoercivity argument to prove a weighted L^{2} estimate for the KFP model. In section 3, we introduce a splitting $\mathcal{L}=\mathcal{A}+\mathcal{B}$ and using the L^{2} estimate, we prove a L^{2} convergence. In Section 4 we present the proof of a regularization estimate on $S_{\mathcal{B}}$ from L^{2} to L^{p}. In Section 5 we prove some L^{1} estimate on the semigroup $S_{\mathcal{B}}$. Finally in Section 6 we use the above regularization estimate to conclude the L^{p} convergence for KFP equation.

Acknowledgment. The author thanks to S. Mischler for furitful discussions on the full work of the paper. This work was supported by grants from Région Ile-de-France the DIM program.

2. L^{2} FRAMEWORK: Dirichlet form and rate of convergence estimate

For later discussion, we introduce some notations for the whole paper. We split the KFP operator as

$$
\mathcal{L}=\mathcal{T}+\mathcal{S},
$$

where \mathcal{T} stands for the transport part

$$
\mathcal{T} f=-v \cdot \nabla_{x} f+\nabla_{x} V(x) \cdot \nabla_{v} f,
$$

and \mathcal{S} stands for the collision part

$$
\mathcal{S} f=\Delta_{v} f+\operatorname{di} v_{v}(v f) .
$$

We will denote the cut-off function χ such that $\chi(x, v) \in[0,1], \chi(x, v) \in C^{\infty}$, $\chi(x, v)=1$ when $x^{2}+v^{2} \leq 1, \chi(x, v)=0$ when $x^{2}+v^{2} \geq 2$, and then denote $\chi_{R}=\chi(x / R, v / R)$.
We may also define another splitting of the KFP operator \mathcal{L} by

$$
\begin{equation*}
\mathcal{L}=\mathcal{A}+\mathcal{B}, \quad \mathcal{A}=K \chi_{R}(x, v) . \tag{2.1}
\end{equation*}
$$

with $K, R>0$ to be chosen later.
We use $\int f$ in place of $\int_{\mathbb{R}^{d} \times R^{d}} f d x d v$ for short, similarly $\int f d x$ means $\int_{\mathbb{R}^{d}} f d x$, $\int f d v$ means $\int_{\mathbb{R}^{d}} f d v . B_{|x| \leq \rho}$ is used to denote the ball such that $\{x \in$ $\left.\mathbb{R}^{d}| | x \mid \leq \rho\right\}$, similarly B_{ρ} means the ball such that $\left\{x,\left.v \in \mathbb{R}^{d}| | x\right|^{2}+v^{2} \leq \rho\right\}$.

For $V(x)=\langle x\rangle^{\gamma}, 0<\gamma<1$, we also denote $\langle\nabla V\rangle$ for $\langle x\rangle^{\gamma-1}$, and $\langle\nabla V\rangle^{-1}$ for $\langle x\rangle^{1-\gamma}$.

With these notations we introduce the Dirichlet form adapted to our problem. We define the 0 order and first order moments

$$
\rho_{f}=\rho[f]=\int f d v, \quad j_{f}=j[f]=\int v f d v,
$$

then we define a projection operator π by

$$
\pi f=M \rho_{f}, \quad M=C e^{-v^{2} / 2}, \quad \int M d v=1
$$

and the complement of π by

$$
\pi^{\perp}=1-\pi, \quad f^{\perp}=\pi^{\perp} f
$$

We define an elliptic operator Δ_{V} and its dual Δ_{V}^{*} by

$$
\Delta_{V} u:=\operatorname{div}_{x}\left(\nabla_{x} u+\nabla_{x} V u\right), \quad \Delta_{V}^{*} u=\Delta_{x} u-\nabla_{x} V \cdot \nabla_{x} u,
$$

let $u=\left(\Delta_{V}^{*}\right)^{-1} \xi$ be the solution to the above elliptic equation

$$
\Delta_{V}^{*} u=\xi \text { on } \mathbb{R}^{d},
$$

note that u can differ by a constant, we also requires that

$$
\int u e^{-V}\langle\nabla V\rangle^{-2} d x=0
$$

using these notations, define a scalar product by

$$
\begin{aligned}
((f, g)):= & (f, g)_{\mathcal{H}}+\epsilon\left(\Delta_{V}^{-1} \nabla_{x} j_{f},\left(\rho_{g} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \\
& +\epsilon\left(\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right), \Delta_{V}^{-1} \nabla_{x} j_{g}\right)_{L^{2}} \\
= & (f, g)_{\mathcal{H}}+\epsilon\left(j_{f}, \nabla_{x}\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{g} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \\
& +\epsilon\left(\left(\nabla_{x}\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right), j_{g}\right)_{L^{2}},\right.
\end{aligned}
$$

for some $\epsilon>0$ to be specified later.
We then define the Dirichlet form

$$
\begin{aligned}
D[f]:= & ((-\mathcal{L} f, f)) \\
= & (-\mathcal{L} f, f)_{\mathcal{H}}+\epsilon\left(\Delta_{V}^{-1} \nabla_{x} j[-\mathcal{L} f],\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \\
& +\epsilon\left(\left(\rho[-\mathcal{L} f] e^{V}\langle\nabla V\rangle^{2}\right), \Delta_{V}^{-1} \nabla_{x} j_{f}\right)_{L^{2}} .
\end{aligned}
$$

Finally we define $\mathcal{H}=L^{2}\left(G^{-1 / 2}\right), \mathcal{H}_{1}=L^{2}\left(G^{-1 / 2}\langle\nabla V\rangle\right)$ and

$$
\mathcal{H}_{0}=\left\{h \in \mathcal{H}, \int f d x d v=0\right\}
$$

where we recall that G has been introduced in (1.2). With these notations we can come to our first theorem.

Theorem 2.1. There exists $\epsilon>0$ small enough, such that on \mathcal{H}_{0} the norm $((f, f))^{\frac{1}{2}}$ defined above is equivalent to the norm of \mathcal{H}, moreover there exist $\lambda>0$, such that

$$
D[f] \geq \lambda\|f\|_{\mathcal{H}_{1}}^{2}, \quad \forall f \in \mathcal{H}_{0} .
$$

As a consequence, for any $f_{0} \in \mathcal{H}_{0}$, we have

$$
\begin{equation*}
\frac{d}{d t}((f, f)) \leq-C \int f^{2} G^{-1}\langle x\rangle^{2(\gamma-1)} \tag{2.2}
\end{equation*}
$$

for some constant $C>0$. In particular for any $f_{0} \in \mathcal{H}_{0}$, we have

$$
\begin{equation*}
\|f(t, \cdot)\|_{L^{2}\left(G^{-\frac{1}{2}}\right)} \leq C\left\|f_{0}\right\|_{L^{2}\left(G^{-\frac{1}{2}}\right)}, \tag{2.3}
\end{equation*}
$$

for some constant $C>0$.
Remark 2.2. In \mathcal{H}_{0} we have

$$
\int \rho_{f} e^{V}\langle\nabla V\rangle^{2} e^{-V}\langle\nabla V\rangle^{-2} d x=\int \rho_{f} d x=\int f d x d v=0
$$

so the term $\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{g} e^{V}\langle\nabla V\rangle^{2}\right)$ is well defined in \mathcal{H}_{0}.
Remark 2.3. (1) By little modifying the method in Villani's paper [21], a H^{1} version of our theorem can be established.
(2) Our statement is a generalization of [4, 5].

Before proving the theorem, we need some lemmas.
We say that W satisfies a local Poincaré inequality on a bounded open set Ω if there exist some constant $\kappa_{\Omega}>0$ such that:

$$
\int_{\Omega} h^{2} W \leq k_{\Omega} \int_{\Omega}|\nabla h|^{2} W+\frac{1}{W(\Omega)}\left(\int_{\Omega} h W\right)^{2},
$$

for any nice function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and where we denote $W(\Omega):=\left\langle W 1_{\Omega}\right\rangle$.
Lemma 2.4. Under the assumption $W, W^{-1} \in L_{l o c}^{\infty}\left(\mathbb{R}^{d}\right)$, the function W satisfies the local Poincaré inequality for any ball $\Omega \in \mathbb{R}^{d}$.
For the proof of Lemma 2.4 we refer to [19] Lemma 2.3.
Lemma 2.5. (weak Poincaré inequality) There exist a constant $\lambda>0$ such that

$$
\|u\|_{L^{2}\left((\nabla V\rangle e^{-V / 2}\right)} \leq \lambda\|\nabla u\|_{L^{2}\left(e^{-V / 2}\right)}
$$

for any $u \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that

$$
\int_{\mathbb{R}^{d}} u e^{-V}\langle\nabla V\rangle^{-2} d x=0
$$

Proof of Lemma 2.5. We prove for any $h \in \mathcal{D}\left(\mathbb{R}^{d}\right)$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} h e^{-V}\langle\nabla V\rangle^{-2}=0, \tag{2.4}
\end{equation*}
$$

we have

$$
\int_{\mathbb{R}^{d}}|\nabla h|^{2} e^{-V} \geq \lambda \int_{\mathbb{R}^{d}} h^{2} e^{-V}\langle x\rangle^{2(\gamma-1)},
$$

for some $\lambda>0$. Taking $g=h e^{-1 / 2 V}$, we have $\nabla g=\nabla h e^{-\frac{1}{2} V}-\frac{1}{2} \nabla V h e^{-\frac{1}{2} V}$, so that

$$
\begin{aligned}
0 \leq \int|\nabla g|^{2} & =\int|\nabla h|^{2} e^{-V}+\int h^{2} \frac{1}{4}|\nabla V|^{2} e^{-V}-\int \frac{1}{2} \nabla\left(h^{2}\right) \cdot \nabla V e^{-V} \\
& =\int|\nabla h|^{2} e^{-V}+\int h^{2}\left(\frac{1}{2} \Delta V-\frac{1}{4}|\nabla V|^{2}\right) e^{-V}
\end{aligned}
$$

We deduce for some $K, R_{0}>0$

$$
\int|\nabla h|^{2} e^{-V} \geq \int \frac{1}{8} h^{2}\langle\nabla V\rangle^{2} e^{-V}-K \int_{B_{R_{0}}} h^{2} e^{-V}\langle\nabla V\rangle^{-2} .
$$

Defining

$$
\epsilon_{R}:=\int_{B_{R}^{c}} e^{-V}\langle\nabla V\rangle^{-6}, \quad Z_{R}:=\int_{B_{R}} e^{-V}\langle\nabla V\rangle^{-2},
$$

and using (2.4), we get

$$
\begin{aligned}
\left(\int_{B_{R}} h e^{-V}\langle\nabla V\rangle^{-2}\right)^{2} & =\left(\int_{B_{R}^{c}} h e^{-V}\langle\nabla V\rangle^{-2}\right)^{2} \\
& \leq \int_{B_{R}^{c}} h^{2} e^{-V}\langle\nabla V\rangle^{2} \int_{B_{R}^{c}} e^{-V}\langle\nabla V\rangle^{-6} \\
& \leq \epsilon_{R} \int_{B_{R}^{c}} h^{2} e^{-V}\langle\nabla V\rangle^{2} .
\end{aligned}
$$

Using the local Poincaré inequality in Lemma 2.4, we deduce

$$
\begin{aligned}
\int_{B_{R}} h^{2} e^{-V}\langle\nabla V\rangle^{-2} & \leq C_{R} \int_{B_{R}}|\nabla h|^{2} e^{-V}\langle\nabla V\rangle^{-2}+\frac{1}{Z_{R}}\left(\int_{B_{R}} h e^{-V}\langle\nabla V\rangle^{-2}\right)^{2} \\
& \leq C_{R}^{\prime} \int_{B_{R}}|\nabla h|^{2} e^{-V}+\frac{\epsilon_{R}}{Z_{R}} \int_{B_{R}} h^{2} e^{-V}\langle\nabla V\rangle^{2} .
\end{aligned}
$$

Putting all the inequalities together and taking $R>R_{0}$, we finally get

$$
\begin{aligned}
\int h^{2} e^{-V}\langle\nabla V\rangle^{2} & \leq 8 \int|\nabla h|^{2} e^{-V}+8 K \int_{B_{R_{0}}} h^{2} e^{-V}\langle\nabla V\rangle^{-2} \\
& \leq 8\left(1+K C_{R}^{\prime}\right) \int|\nabla h|^{2} e^{-V}+\frac{8 K \epsilon_{R}}{Z_{R}} \int_{B_{R}} h^{2} e^{-V}\langle\nabla V\rangle^{2},
\end{aligned}
$$

and we conclude by taking R large such that: $\frac{8 K \epsilon_{R}}{Z_{R}} \leq \frac{1}{2}$.

Lemma 2.6. (Elliptic Estimate) For any $\xi_{1} \in L^{2}\left(\langle\nabla V\rangle^{-1} e^{-V / 2}\right)$ and $\xi_{2} \in$ $L^{2}\left(e^{-V / 2}\right)$, the solution $u \in L^{2}\left(e^{-V / 2}\right)$ to the elliptic equation

$$
\begin{equation*}
-\Delta_{V}^{*} u=\xi_{1}+\nabla \xi_{2}, \quad \int u e^{-V}\langle\nabla V\rangle^{-2} d x=0 \tag{2.5}
\end{equation*}
$$

satisfies

$$
\begin{equation*}
\|u\|_{L^{2}\left((\nabla V) e^{-V / 2}\right)}+\|\nabla u\|_{L^{2}\left(e^{-V / 2}\right)} \lesssim\left\|\xi_{1}\right\|_{L^{2}\left(\langle\nabla V)^{-1} e^{-V / 2}\right)}+\left\|\xi_{2}\right\|_{L^{2}\left(e^{-V / 2}\right)} . \tag{2.6}
\end{equation*}
$$

Similarly for any $\xi \in L^{2}\left(e^{-V / 2}\right)$, the solution $u \in L\left(e^{-V / 2}\right)$ to the elliptic problem

$$
-\Delta_{V}^{*} u=\xi, \quad \int u e^{-V}\langle\nabla V\rangle^{-2}=0
$$

satisfies
$\|u\|_{L^{2}\left(\langle\nabla V\rangle^{2} e^{-V / 2}\right)}+\|\nabla u\|_{L^{2}\left(\langle\nabla V\rangle e^{-V / 2}\right)}+\left\|D^{2} u\right\|_{L^{2}\left(e^{-V / 2}\right)} \lesssim\|\xi\|_{L^{2}\left(e^{-V / 2}(\nabla V\rangle^{-1}\right)}$.
Proof of Lemma 2.6. Multiply 2.5) by $u e^{-V}$ and observes that

$$
\begin{equation*}
e^{V} \operatorname{div}_{x}\left[e^{-V} \nabla_{x} u\right]=\Delta_{x} u-\nabla_{x} V \cdot \nabla_{x} u=\Delta_{V}^{*} u \tag{2.8}
\end{equation*}
$$

we have after integration

$$
-\int e^{V} \operatorname{div}_{x}\left[e^{-V} \nabla_{x} u\right] u e^{-V}=\int\left(\xi_{1}+\nabla \cdot \xi_{2}\right) u e^{-V}
$$

Performing one integration by parts, we deduce

$$
\int e^{-V}\left|\nabla_{x} u\right|^{2}=\int\left(\xi_{1} u+\xi_{2} \cdot \nabla u-\xi_{2} \cdot \nabla V u\right) e^{-V}
$$

using Lemma 2.5 we obtain 2.6). In inequality (2.7), the first two terms are easily bounded by 2.6 and $\langle\nabla V\rangle \leq 1$, we then only need to prove the bound for the third term. By integration by parts, we have

$$
\begin{aligned}
\int\left|D^{2} u\right|^{2} e^{-V} & =\sum_{i, j=1}^{d} \int\left(\partial_{i j}^{2} u\right)^{2} e^{-V} \\
& =\sum_{i, j=1}^{d} \int \partial_{i} u\left(\partial_{i j}^{2} u \partial_{j} V-\partial_{i j j}^{3} u\right) e^{-V} \\
& =\sum_{i, j=1}^{d} \int \partial_{j j} u \partial_{i}\left(\partial_{i} u e^{-V}\right)-\frac{1}{2} \int\left(\partial_{i} u\right)^{2} \partial_{j}\left(\partial_{j} V e^{-V}\right) \\
& =\int(\Delta u)\left(-\Delta_{V}^{*} u\right) e^{-V}+\int|\nabla u|^{2}\left(|\nabla V|^{2}-\Delta V\right) e^{-V} \\
& \lesssim\left\|D^{2} u\right\|_{L^{2}\left(e^{-V / 2}\right)}\|\xi\|_{L^{2}\left(e^{-V / 2}\right)}+\|\langle\nabla V\rangle \nabla u\|_{L^{2}\left(e^{-V / 2}\right)}
\end{aligned}
$$

where in the third equality we have used

$$
\begin{aligned}
\int \partial_{i j}^{2} u \partial_{i} u \partial_{j} V e^{-V} & =-\int \partial_{i} u \partial_{j}\left(\partial_{i} u \partial_{j} V e^{-V}\right) \\
& =-\int \partial_{i j}^{2} u \partial_{i} u \partial_{j} V e^{-V}-\int\left(\partial_{i} u\right)^{2} \partial_{j}\left(\partial_{j} V e^{-V}\right),
\end{aligned}
$$

which implies

$$
\int \partial_{i j}^{2} u \partial_{i} u \partial_{j} V e^{-V}=-\frac{1}{2} \int\left(\partial_{i} u\right)^{2} \partial_{j}\left(\partial_{j} V e^{-V}\right),
$$

and in the fourth equality we have used (2.8). That concludes the proof.
Now we turn to the proof of Theorem 2.1.
Proof of Theorem[2.1]. First we prove the equivalence of the norms associated to $(()$,$) and (,)_{\mathcal{H}}$. By Cauchy-Schwarz inequality and Lemma 2.4 , we have

$$
\left(j_{f}, \nabla_{x}\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{g} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \leq\left\|j_{f}\right\|_{L^{2}\left(e^{V / 2}\right)}\left\|\rho_{g} e^{V}\langle\nabla V\rangle^{2}\right\|_{L^{2}\left(\langle\nabla V\rangle^{-1} e^{-V / 2}\right)}
$$

and obviously

$$
\left\|\rho_{g} e^{V}\langle\nabla V\rangle^{2}\right\|_{L^{2}\left((\nabla V\rangle^{-1} e^{-V / 2}\right)}=\left\|\rho_{g}\right\|_{L^{2}\left((V V\rangle e^{V / 2}\right)} \leq\left\|\rho_{g}\right\|_{L^{2}\left(e^{V / 2}\right)} \lesssim\|g\|_{\mathcal{H}} .
$$

Using the elementary observations

$$
\left|j_{f}\right| \lesssim\|f\|_{L^{2}\left(e^{v^{2} / 4}\right)}\left|\rho_{f}\right| \lesssim\|f\|_{L^{2}\left(e^{v^{2} / 4}\right)},
$$

we deduce

$$
\left(j_{f}, \nabla_{x}\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{g} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \lesssim\|f\|_{\mathcal{H}}\|g\|_{\mathcal{H}},
$$

The third term in the definition of $(()$,$) can be estimated in the same way$ and that ends the proof of equivalence of norms.

Now we prove the main estimate of the theorem. We split the Dirichlet term $D[f]$ into 3 parts

$$
D[f]=T_{1}+\epsilon T_{2}+\epsilon T_{3},
$$

with

$$
\begin{aligned}
& T_{1}:=(\mathcal{L} f, f)_{\mathcal{H}} \\
& T_{2}:=\left(\Delta_{V}^{-1} \nabla_{x} j[-\mathcal{L} f], \rho_{f}\right)_{L^{2}\left(e^{V / 2}\langle\nabla V\rangle\right)} \\
& T_{3}:=\left(\left(\Delta_{V}\right)^{-1} \nabla_{x} j_{f}, \rho[-\mathcal{L} f]\right)_{L^{2}\left(e^{V / 2}\langle\nabla V\rangle\right)},
\end{aligned}
$$

and compute them separately.
For the T_{1} term, using the classical Poincaré inequality, we have

$$
\begin{aligned}
T_{1} & :=(-\mathcal{T} f+\mathcal{S} f, f)_{\mathcal{H}}=(-\mathcal{S} f, f)_{\mathcal{H}} \\
& =-\int\left[\Delta_{v} f+\operatorname{div}_{v}(v f)\right] f M^{-1} e^{V}=\int\left|\nabla_{v}(f / M)\right|^{2} M e^{V} \\
& \geq k_{p} \int\left|f / M-\rho_{f}\right|^{2} M e^{V}=k_{p}\left\|f-\rho_{f} M\right\|_{\mathcal{H}}^{2}=k_{p}\left\|f^{\perp}\right\|_{\mathcal{H}}^{2},
\end{aligned}
$$

for some $k_{p}>0$. We split the T_{2} term as

$$
\begin{aligned}
T_{2}:= & \left(\Delta_{V}^{-1} \nabla_{x} j[-\mathcal{L} f], \rho_{f}\right)_{L^{2}\left(e^{V / 2}\langle\nabla V\rangle\right)} \\
= & \left.\left(\Delta_{V}^{-1} \nabla_{x} j[-\mathcal{T} \pi f], \rho_{f}\right)_{L^{2}\left(e^{V / 2}\right.}(\nabla V\rangle\right) \\
& \left.+\left(\Delta_{V}^{-1} \nabla_{x} j\left[-\mathcal{T} f^{\perp}\right], \rho_{f}\right)_{L^{2}\left(e^{V / 2}\right.}(\nabla V\rangle\right) \\
& +\left(\Delta_{V}^{-1} \nabla_{x} j[-\mathcal{S} f], \rho_{f}\right)_{L^{2}\left(e^{V / 2}\langle\nabla V\rangle\right)} \\
:= & T_{2,1}+T_{2,2}+T_{2,3} .
\end{aligned}
$$

First observe

$$
\mathcal{T} \pi f=-v \cdot \nabla_{x} \rho_{f} M-\nabla_{x} V \cdot v \rho_{f} M=-e^{-V} M v \cdot \nabla_{x}\left(\rho_{f} / e^{-V}\right),
$$

so that we have

$$
j[-\mathcal{T} \pi f]=\left\langle v v_{k} M\right\rangle e^{-V} \partial_{x_{k}}\left(\rho_{f} / e^{-V}\right)=e^{-V} \nabla_{x}\left(\rho_{f} / e^{-V}\right)
$$

Next by (2.8), we have

$$
\begin{aligned}
T_{2,1} & =\left(j[-\mathcal{T} \pi f], \nabla\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \\
& =\left(\rho_{f},\left[e^{V} d i v_{x}\left(e^{-V} \nabla\right)\right]\left[\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right]\right)_{L^{2}} \\
& =\left\|\rho_{f} e^{V / 2}\langle\nabla V\rangle\right\|_{L^{2}}^{2}=\|\pi f\|_{\mathcal{H}_{1}}^{2} .
\end{aligned}
$$

Using the notation $\eta_{1}=\left\langle v \otimes v f^{\perp}\right\rangle$ and $\eta_{2, \alpha \beta}=\left\langle v_{\alpha} \partial_{v_{\beta}} f^{\perp}\right\rangle$, and observing that

$$
\left|\eta_{1}\right| \lesssim\left\|f^{\perp}\right\|_{L^{2}\left(e^{v^{2} / 4}\right)},\left|\eta_{2}\right| \lesssim\left\|f^{\perp}\right\|_{L^{2}\left(e^{v^{2 / 4}}\right)}
$$

we compute

$$
\begin{aligned}
T_{2,2}= & \left(j\left[-\mathcal{T} f^{\perp}\right], \nabla\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \\
= & \left(D \eta_{1}+\eta_{2} \nabla V, \nabla\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \\
= & \left(\eta_{1}, D^{2}\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}}+\left(\eta_{2}, \nabla V \nabla\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \\
= & \left\|\eta_{1}\right\|_{L^{2}\left(e^{V / 2}\right)}\left\|D^{2}\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right\|_{L^{2}\left(e^{-V / 2}\right)} \\
& +\left\|\eta_{2}\right\|_{L^{2}\left(e^{V / 2}\right)}\left\|\nabla V \nabla\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right\|_{L^{2}\left(e^{-V / 2}\right)} .
\end{aligned}
$$

By Lemma 2.6, we estimate

$$
\begin{aligned}
T_{2,2} \lesssim & \left\|\eta_{1}\right\|_{L^{2}\left(e^{V / 2}\right)}\left\|\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right\|_{L^{2}\left(e^{-V / 2}\langle\nabla V\rangle^{-1}\right)} \\
& +\left\|\eta_{2}\right\|_{L^{2}\left(e^{V / 2}\right)}\left\|\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right\|_{L^{2}\left(e^{-V / 2}\langle\nabla V\rangle^{-1}\right)} \\
\lesssim & \left\|f^{\perp}\right\|_{\mathcal{H}}\|\pi f\|_{\mathcal{H}_{1}} .
\end{aligned}
$$

Using

$$
\begin{aligned}
j[-\mathcal{S} f]=j\left[-\mathcal{S} f^{\perp}\right] & =-\int v\left[\Delta_{v} f^{\perp}+\operatorname{di} v_{v}\left(v f^{\perp}\right)\right] d v \\
& =d \int f^{\perp} v d v \lesssim\left\|f^{\perp}\right\|_{L^{2}\left(e^{v^{2} / 4}\right)}
\end{aligned}
$$

and Lemma 2.6, we have

$$
\begin{aligned}
T_{2,3} & =\left(j[-S f], \nabla\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right)_{L^{2}} \\
& \leq\|j[-S f]\|_{L^{2}\left(e^{V / 2}\right)}\left\|\nabla\left(\Delta_{V}^{*}\right)^{-1}\left(\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right\|_{L^{2}\left(e^{-V / 2}\right)} \\
& \lesssim\left\|f^{\perp}\right\|_{\mathcal{H}}\left\|\rho_{f} e^{V}\langle\nabla V\rangle^{2}\right\|_{L^{2}\left(\langle\nabla V\rangle^{-1} e^{-V / 2}\right)} \\
& =\left\|f^{\perp}\right\|_{\mathcal{H}}\left\|\rho_{f}\right\|_{L^{2}\left(\langle\nabla V\rangle e^{V / 2}\right)} \\
& \lesssim\left\|f^{\perp}\right\|_{\mathcal{H}}\|\pi f\|_{\mathcal{H}_{1}} .
\end{aligned}
$$

Finally we come to the T_{3} term. Using

$$
\rho[-S f]=\int \nabla_{v} \cdot\left(\nabla_{v} f+v f\right) d v=0
$$

and

$$
\begin{aligned}
\rho[-T f] & =\rho\left[v \nabla_{x} f-\nabla_{x} V(x) \nabla_{v} f\right] \\
& =\int v \nabla_{x} f-\nabla_{x} V(x) \nabla_{v} f d v \\
& =\nabla_{x} j[f],
\end{aligned}
$$

because $\nabla\left(\langle\nabla V\rangle^{2}\right) \lesssim\langle\nabla V\rangle^{2}$ and $\langle\nabla V\rangle^{2} \lesssim\langle\nabla V\rangle$, we get

$$
\begin{aligned}
T_{3}= & \left(\left(\Delta_{V}\right)^{-1} \nabla_{x} j_{f}, \rho[-\mathcal{L} f]\right)_{L^{2}\left(e^{V / 2}\langle\nabla V\rangle\right)} \\
= & \left(\left(\Delta_{V}\right)^{-1} \nabla_{x} j\left[f^{\perp}\right], \rho[-\mathcal{T} f]\right)_{L^{2}\left(e e^{V / 2}\langle\nabla V\rangle\right)}= \\
= & \left(j\left[-f^{\perp}\right], \nabla\left(\Delta_{V}^{*}\right)^{-1}\left(\nabla_{x} j[f] e^{V}\langle\nabla V\rangle^{2}\right)_{L^{2}}\right. \\
= & \left\|j\left[f^{\perp}\right]\right\|_{L^{2}\left(e e^{V / 2}\right)} \| \nabla\left(\Delta_{V}^{*}\right)^{-1}\left[\nabla_{x}\left(j_{f} e^{V}\langle\nabla V\rangle^{2}\right)\right. \\
& \left.-\nabla V j_{f} e^{V}\langle\nabla V\rangle^{2}-\nabla\left(\langle\nabla V\rangle^{2}\right) j_{f} e^{V}\right] \|_{L^{2}\left(e^{-V / 2}\right)},
\end{aligned}
$$

using again Lemma 2.6, we have

$$
\begin{aligned}
T_{3} \lesssim & \left\|j\left[f^{\perp}\right]\right\|_{L^{2}\left(e^{V / 2}\right)}\left(\left\|j_{f} e^{V}\langle\nabla V\rangle^{2}\right\|_{L^{2}\left(e^{-V / 2}\langle\nabla V\rangle^{-1}\right)}\right. \\
& \left.+\left\|j_{f} e^{V} \nabla\left(\langle\nabla V\rangle^{2}\right)\right\|_{L^{2}\left(\langle\nabla V\rangle^{-1} e^{-V / 2}\right)}\right) \\
\lesssim & \left\|f^{\perp}\right\|_{\mathcal{H}}\|f\|_{\mathcal{H}_{1}} .
\end{aligned}
$$

Putting all the terms together and choosing $\epsilon>0$ small enough, we can deduce

$$
\begin{aligned}
D[f] & \geq k_{p}\left\|f^{\perp}\right\|_{\mathcal{H}}^{2}+\epsilon\|\pi f\|_{\mathcal{H}_{1}}^{2}-\epsilon 2 K\left\|f^{\perp}\right\|_{\mathcal{H}}\|f\|_{\mathcal{H}_{1}}-\epsilon 2 K\left\|f^{\perp}\right\|_{\mathcal{H}}\|\pi f\|_{\mathcal{H}_{1}} \\
& \geq k_{p}\left\|f^{\perp}\right\|_{\mathcal{H}}^{2}+\epsilon\|\pi f\|_{\mathcal{H}_{1}}^{2}-\left(2 \epsilon+4 \epsilon^{1 / 2}\right) K\left\|f^{\perp}\right\|_{\mathcal{H}}^{2}-\epsilon^{3 / 2} 4 K\|\pi f\|_{\mathcal{H}_{1}}^{2} \\
& \geq \frac{k_{p}}{2}\left(\left\|f^{\perp}\right\|_{\mathcal{H}}^{2}+\epsilon\|\pi f\|_{\mathcal{H}_{1}}^{2}\right) \geq \frac{\epsilon}{M}\|f\|_{\mathcal{H}_{1}},
\end{aligned}
$$

for some $M>0$.
3. L^{2} sub-exponential decay for the kinetic Fokker-Planck EQUATION BASED ON A SPLITTING TRICK

In this section we establish a first decay estimate on $S_{\mathcal{L}}$ which is a particular case in the result of Theorem 1.1.

Theorem 3.1. Using the notation and results in Theorem 2.1, we have

$$
\left\|S_{\mathcal{L}}(t) f_{0}\right\|_{L^{2}\left(G^{-\frac{1}{2}}\right)} \lesssim e^{-C t^{\gamma /(2-\gamma)}}\left\|f_{0}\right\|_{L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right)},
$$

for any $f_{0} \in L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \cap \mathcal{H}_{0}, \epsilon>0$ small enough.
Remark 3.2. It's worth emphasizing that we deduce immediately part (1) of Theorem 1.1 in the case $p=2$ by considering the initial datum $f_{0}-\mathcal{M}\left(f_{0}\right)$ for any $f_{0} \in L^{2}\left(G^{-\frac{1}{2}+\epsilon}\right)$.

Recall the splitting $\mathcal{L}=\mathcal{A}+\mathcal{B}$ introduced in (2.1), we first prove some decay estimate on the semigroup $S_{\mathcal{B}}$.

Lemma 3.3. Let us fix $p \in[1, \infty)$.
(1) For any given smooth weight function m, we have

$$
\begin{equation*}
\int f^{p-1}(\mathcal{L} f) G^{-(p-1)} m=\frac{1}{p} \int f^{p} G^{-(p-1)} \tilde{m} \tag{3.1}
\end{equation*}
$$

with

$$
\tilde{m}=\Delta_{v} m-\nabla_{v} m \cdot v-\nabla V(x) \cdot \nabla_{v} m+v \cdot \nabla_{x} m .
$$

(2) Taking $m=e^{\epsilon H^{\delta}}, \epsilon>0$ if $0<\delta<\frac{\gamma}{2}$, ϵ small enough if $\delta=\frac{\gamma}{2}$, $H=3 v^{2}+2 x \cdot v+x^{2}+1$, we have

$$
\begin{equation*}
\int f^{p-1}(\mathcal{B} f) G^{-(p-1)} e^{\epsilon H^{\delta}} \leq-C \int f^{p} G^{-(p-1)} e^{\epsilon H^{\delta}} H^{\frac{\delta}{2}+\gamma-1} \tag{3.2}
\end{equation*}
$$

for some K and R large.
(3) With the same notation as above, there holds

$$
\begin{equation*}
\left\|S_{\mathcal{B}}(t)\right\|_{L^{p}\left(e^{2 \epsilon H^{\delta}} G^{-\frac{p-1}{p}}\right) \rightarrow L^{p}\left(e^{\epsilon H^{\delta}} G^{-\frac{p-1}{p}}\right)} \lesssim e^{-a t^{\frac{2 \delta}{2-\gamma}}}, \tag{3.3}
\end{equation*}
$$

for some $a>0$. In particular, this implies

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L^{p}\left(G^{-\left(\frac{p-1}{p}+\epsilon\right)}\right) \rightarrow L^{p}\left(G^{-\frac{p-1}{p}}\right)} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}
$$

Proof of Lemma 3.3. Step 1. Recall (1.2), we write

$$
\int f^{p-1}(\mathcal{L} f) G^{-(p-1)} m=\int f^{p-1}(\mathcal{T} f) G^{-(p-1)} m+\int f^{p-1}(\mathcal{S} f) G^{-(p-1)} m
$$

We first compute the contribution of the term with operator \mathcal{T}

$$
\begin{aligned}
\int f^{p-1}(\mathcal{T} f) G^{-(p-1)} m & =\frac{1}{p} \int \mathcal{T}\left(f^{p}\right) G^{-(p-1)} m \\
& =-\frac{1}{p} \int f^{p} \mathcal{T}\left(G^{-(p-1)} m\right) \\
& =\frac{1}{p} \int f^{p} G^{-(p-1)}\left(v \cdot \nabla_{x} m-\nabla V(x) \cdot \nabla_{v} m\right)
\end{aligned}
$$

For the the term with operator \mathcal{S}, we use one integration by parts, and we get

$$
\begin{aligned}
& \int f^{p-1}(\mathcal{S} f) G^{-(p-1)} m \\
= & \int f^{p-1}\left(\Delta_{v} f+\operatorname{div}_{v}(v f)\right) G^{-(p-1)} m \\
= & -\int \nabla_{v}\left(\left(f G^{-1}\right)^{p-1} m\right) \cdot \nabla_{v}\left(f G^{-1}\right) G \\
= & -\int(p-1)\left|\nabla_{v}\left(f G^{-1}\right)\right|^{2}\left(f G^{-1}\right)^{p-2} G m-\frac{1}{p} \nabla_{v}\left(\left(f G^{-1}\right)^{p}\right) \cdot\left(\nabla_{v} m\right) G .
\end{aligned}
$$

Performing another integration by parts on the latter term, we have

$$
\begin{aligned}
& \int f^{p-1}(\mathcal{S} f) G^{-(p-1)} m \\
= & \int-(p-1)\left|\nabla_{v}\left(f G^{-1}\right)\right|^{2}\left(f G^{-1}\right)^{p-2} G m+\frac{1}{p} \nabla_{v} \cdot\left(G \nabla_{v} m\right)\left(f G^{-1}\right)^{p} \\
= & \int-(p-1)\left|\nabla_{v}\left(f G^{-1}\right)\right|^{2}\left(f G^{-1}\right)^{p-2} G m+\frac{1}{p}\left(\Delta_{v} m-v \cdot \nabla_{v} m\right) f^{p} G^{-(p-1)} .
\end{aligned}
$$

Identity (3.1) follows by putting together the two identities.
Step 2. We particular use $m=e^{\epsilon H^{\delta}}$ and we easily compute

$$
\frac{\nabla_{v} m}{m}=\delta \epsilon \frac{\nabla_{v} H}{H^{1-\delta}}, \quad \frac{\nabla_{x} m}{m}=\delta \epsilon \frac{\nabla_{x} H}{H^{1-\delta}},
$$

and

$$
\frac{\Delta_{v} m}{m} \leq \delta \epsilon \frac{\Delta_{v} H}{H^{1-\delta}}+(\delta \epsilon)^{2} \frac{\left|\nabla_{v} H\right|^{2}}{H^{2(1-\delta)}} .
$$

We deduce that $\phi=\frac{\tilde{m}}{m}$ satisfies

$$
\frac{\phi H^{1-\delta}}{\epsilon \delta} \leq \Delta_{v} H+\epsilon \delta \frac{\left|\nabla_{v} H\right|^{2}}{H^{1-\delta}}-v \cdot \nabla_{v} H+v \cdot \nabla_{x} H-\nabla_{x} V(x) \cdot \nabla_{v} H .
$$

From the very definition of H, we have

$$
\nabla_{v} H=6 v+2 x, \quad \nabla_{x} H=2 v+2 x, \quad \Delta_{v} H=6 .
$$

Choosing $\epsilon>0$ arbitrary if $0<2 \delta<\gamma, \epsilon$ small enough if $2 \delta=\gamma$, we deduce

$$
\begin{aligned}
& \Delta_{v} H+2 \epsilon \delta \frac{\left|\nabla_{v} H\right|^{2}}{H^{1-\delta}}+v \cdot \nabla_{x} H-v \cdot \nabla_{v} H-\nabla_{x} V(x) \cdot \nabla_{v} H \\
= & 6+\epsilon \delta \frac{(6 v+2 x)^{2}}{H^{1-\delta}}+2 v^{2}+2 x \cdot v-6 v^{2}-2 x \cdot v-6 v \cdot \nabla_{x} V(x)-2 x \cdot \nabla_{x} V(x) \\
\leq & \left(2 v^{2}+C_{1} v+C_{2} v^{2 \delta}-6 v^{2}\right)+\left(C_{3} \epsilon \delta x^{2 \delta}-2 x \cdot \nabla_{x} V(x)\right)+C \\
\leq & -C_{4} v^{2}-C_{5} x \cdot \nabla_{x} V(x)+C_{6} \\
\leq & -C_{7} H^{\frac{\gamma}{2}}+K \chi_{R},
\end{aligned}
$$

for some constants $C_{i}, K, R>0$. As a consequence, we have proved

$$
\phi-K \chi_{R} \leq \frac{-C}{H^{1-\delta-\frac{\gamma}{2}}} \leq 0
$$

which is nothing but (3.2).
Step 3. In the following, denote $f_{t}=S_{\mathcal{B}}(t) f_{0}$ the solution to the evolution equation $\partial_{t} f=\mathcal{B} f, f(0)=f_{0}$. On the one hand, by (3.2) we have

$$
\frac{d}{d t} \int f_{t}^{p} G^{-(p-1)} e^{2 \epsilon H^{\delta}}=\int f_{t}^{p-1}\left(\mathcal{B} f_{t}\right) G^{-(p-1)} e^{2 \epsilon H^{\delta}} \leq 0
$$

which implies

$$
\int f_{t}^{p} G^{-(p-1)} e^{2 \epsilon H^{\delta}} \leq \int f_{0}^{p} G^{-(p-1)} e^{2 \epsilon H^{\delta}}:=Y_{1}, \quad \forall t \geq 0
$$

On the other hand, defining

$$
Y:=\int f_{t}^{p} G^{-(p-1)} e^{\epsilon H^{\delta}},
$$

using again (3.2), we have

$$
\begin{aligned}
\frac{d}{d t} Y & =p \int f_{t}^{p-1} \mathcal{B} f_{t} G^{-(p-1)} e^{\epsilon H^{\delta}} \\
& \leq-a \int f_{t}^{p} G^{-(p-1)} e^{\epsilon H^{\delta}} H^{\delta+\frac{\gamma}{2}-1} \\
& \leq-a \int f_{t}^{p} G^{-(p-1)} e^{\epsilon H^{\delta}}\langle x\rangle^{2 \delta+\gamma-2} \\
& \leq-a \int_{B_{|x| \leq \rho}} f_{t}^{p} G^{-(p-1)} e^{\epsilon H^{\delta}}\langle x\rangle^{2 \delta+\gamma-2},
\end{aligned}
$$

for any $\rho>0$ and for some $a>0$. As $2 \delta+\gamma<2,0 \leq|x| \leq \rho$ implies $\langle x\rangle^{2 \delta+\gamma-2} \geq\langle\rho\rangle^{2 \delta+\gamma-2}$, we deduce

$$
\begin{aligned}
\frac{d}{d t} Y & \leq-a\langle\rho\rangle^{2 \delta+\gamma-2} \int_{B_{|x| \leq \rho}} f_{t}^{p} G^{-(p-1)} e^{\epsilon H^{\delta}} \\
& \leq-a\langle\rho\rangle^{2 \delta+\gamma-2} Y+a\langle\rho\rangle^{2 \delta+\gamma-2} \int_{B_{|x| \geq \rho}} f_{t}^{p} G^{-(p-1)} e^{\epsilon H^{\delta}}
\end{aligned}
$$

Using that $e^{\epsilon\langle x\rangle^{2 \delta}} \geq e^{\epsilon\langle\rho\rangle^{2 \delta}}$ on $|x| \geq \rho$, we get

$$
\begin{aligned}
\frac{d}{d t} Y & \leq-a\langle\rho\rangle^{2 \delta+\gamma-2} Y+a\langle\rho\rangle^{2 \delta+\gamma-2} e^{-\epsilon\langle\rho\rangle^{2 \delta}} \int_{B_{|x| \geq \rho}} f_{t}^{p} G^{-(p-1)} e^{\epsilon H^{\delta}} e^{\epsilon\langle x\rangle^{2 \delta}} \\
& \leq-a\langle\rho\rangle^{2 \delta+\gamma-2} Y+a\langle\rho\rangle^{2 \delta+\gamma-2} e^{-\epsilon\langle\rho\rangle^{2 \delta}} \int f_{t}^{p} G^{-(p-1)} e^{\epsilon H^{\delta}} e^{\epsilon\langle x\rangle^{2 \delta}} \\
& \leq-a\langle\rho\rangle^{2 \delta+\gamma-2} Y+a\langle\rho\rangle^{2 \delta+\gamma-2} e^{-\epsilon\langle\rho\rangle^{2 \delta}} C Y_{1} .
\end{aligned}
$$

Thanks to Grönwall's Lemma, we obtain

$$
\begin{aligned}
Y(t) & \leq e^{-a\langle\rho\rangle^{2 \delta+\gamma-2} t} Y(0)+C e^{-\epsilon\langle\rho\rangle^{2 \delta}} Y_{1} \\
& \lesssim\left(e^{-a\langle\rho\rangle^{2 \delta+\gamma-2} t}+e^{-\epsilon\langle\rho\rangle^{2 \delta}}\right) Y_{1},
\end{aligned}
$$

Choosing finally ρ such that $a\langle\rho\rangle^{2 \delta+\gamma-2} t=\epsilon\langle\rho\rangle^{2 \delta}$, that is $\langle\rho\rangle^{2-\gamma}=C t$, we deduce

$$
Y(t) \leq C_{1} e^{-C_{2} t^{\frac{2 \delta}{2-\gamma}}} Y_{2},
$$

for some $C_{i}>0$, and we deduce the proof of (3.3).
Now we come to prove Theorem 3.1.
Proof of Theorem 3.1. We recall that from (2.3), we have

$$
\left\|S_{\mathcal{L}}(t)\right\|_{L^{2}\left(G^{-1 / 2}\right) \rightarrow L^{2}\left(G^{-1 / 2}\right)} \lesssim 1, \quad \forall t \geq 0
$$

From the very definition of \mathcal{A} we have

$$
\|\mathcal{A}\|_{L^{2}\left(G^{-1 / 2}\right) \rightarrow L^{2}\left(e^{2 \epsilon H^{\delta} G^{-1 / 2}}\right)} \lesssim 1
$$

From Lemma 3.3 case $p=2$, we have

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L^{2}\left(e^{2 \epsilon H^{\delta}} G^{-1 / 2}\right) \rightarrow L^{2}\left(e^{\epsilon H^{\delta}} G^{-1 / 2}\right)} \lesssim e^{-a t^{\frac{2 \delta}{2-\gamma}}}, \quad \forall t \geq 0 .
$$

Gathering the three estimates and using Duhamel's formula

$$
S_{\mathcal{L}}=S_{\mathcal{B}}+S_{\mathcal{B}} \mathcal{A} * S_{\mathcal{L}}
$$

we deduce

$$
\left\|S_{\mathcal{L}}(t)\right\|_{L^{2}\left(e^{2 \epsilon H^{\delta}} G^{-1 / 2}\right) \rightarrow L^{2}\left(e^{\epsilon H^{\delta}} G^{-1 / 2}\right)} \lesssim 1, \quad \forall t \geq 0
$$

In the following, we denote $f_{t}=S_{\mathcal{L}}(t) f_{0}$ the solution to the evolution equation $\partial_{t} f=\mathcal{L} f, f(0, \cdot)=f_{0}$. Taking $2 \delta=\gamma, \epsilon$ small enough, we have in particular

$$
\int f_{t}^{2} G^{-1} e^{\epsilon H^{\frac{\gamma}{2}}} \leq C \int f_{0}^{2} G^{-1} e^{2 \epsilon H^{\frac{\gamma}{2}}}=: Y_{3}
$$

We define

$$
Y_{2}(t):=((f, f)),
$$

with $(()$,$) is defined in Theorem 2.1. Thanks to the result in 2.2, we have$

$$
\begin{aligned}
\frac{d}{d t} Y_{2} & \leq-a \int f_{t}^{2} G^{-1}\langle x\rangle^{2(\gamma-1)} \\
& \leq-a \int_{B_{|x| \leq \rho}} f_{t}^{2} G^{-1}\langle x\rangle^{2(\gamma-1)}
\end{aligned}
$$

for any $\rho \geq 0$, using the same argument as Lemma 3.3, we deduce

$$
\begin{aligned}
Y_{2}(t) & \leq C e^{-a\langle\rho\rangle^{2(\gamma-1)} t} Y_{2}(0)+C e^{-\epsilon_{2}\langle\rho\rangle^{\gamma}} Y_{3} \\
& \lesssim\left(e^{-a\langle\rho\rangle^{2(\gamma-1)} t}+e^{-\epsilon_{2}\langle\rho\rangle^{\gamma}}\right) Y_{3} .
\end{aligned}
$$

Choosing ρ such that $a\langle\rho\rangle^{2(\gamma-1)} t=\epsilon_{2}\langle\rho\rangle^{\gamma}$, that is $\langle\rho\rangle^{2-\gamma}=C t$, we conclude

$$
Y_{2}(t) \leq C_{1} e^{-C_{2} t^{\gamma /(2-\gamma)}} Y_{3},
$$

for some constants $C_{i}>0$. As $H^{\frac{\gamma}{2}} \lesssim C\left(\frac{v^{2}}{2}+V(x)\right)$, we have

$$
e^{\epsilon H^{\frac{\gamma}{2}}} \leq G^{-C \epsilon},
$$

Taking ϵ small, the proof of Theorem 3.1 is done.

4. Regularization property of $S_{\mathcal{B}}$

In this section we will denote $\mathcal{L}^{*}=\mathcal{L}_{G^{-1 / 2}}^{*}=\mathcal{S}-\mathcal{T}$ be the dual operator of \mathcal{L} on $L^{2}\left(G^{-1 / 2}\right)$. In other words, L^{*} is defined by the identity

$$
\int(\mathcal{L} f) g G^{-1}=\int\left(\mathcal{L}^{*} g\right) f G^{-1}
$$

for any smooth function f, g. We also denote $\mathcal{B}^{*}=\mathcal{L}^{*}-K \chi_{R}$. The aim of this section is to establish the following regularization property. The proof closely follows the proof of similar results in [10, 14, 21]

Theorem 4.1. For any $0 \leq \delta<1$, there exist $\eta>0$ such that

$$
\left\|\mathcal{S}_{\mathcal{B}}(t) f\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)} \lesssim \frac{1}{t^{\frac{5 d+1}{2}}}\|f\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}, \quad \forall t \in[0, \eta]
$$

Similarly, for any $0 \leq \delta<1$, there exist $\eta>0$ such that

$$
\left\|\mathcal{S}_{\mathcal{B}^{*}}(t) f\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)} \lesssim \frac{1}{t^{\frac{5 d+1}{2}}}\|f\|_{L^{1}\left(G^{-1 / 2(1+\delta))}\right.}, \quad \forall t \in[0, \eta]
$$

As a consequence, for any $0 \leq \delta<1$, there exist $\eta>0$ such that

$$
\left\|\mathcal{S}_{\mathcal{B}}(t) f\right\|_{L^{\infty}\left(G^{-1 / 2}\right)} \lesssim \frac{1}{t^{\frac{5 d+1}{2}}}\|f\|_{L^{2}\left(G^{-1 / 2}\right)}, \quad \forall t \in[0, \eta]
$$

We start with some elementary lemmas.
Lemma 4.2. For any $0 \leq \delta<1$, we have

$$
\begin{align*}
\int(f(\mathcal{L} g)+g(\mathcal{L} f)) G^{-(1+\delta)} & =-2 \int \nabla_{v}\left(f G^{-1}\right) \cdot \nabla_{v}\left(g G^{-1}\right) G^{1-\delta} \\
& +\int\left(\delta d-\delta(1-\delta) v^{2}\right) f g G^{-(1+\delta)} \tag{4.1}
\end{align*}
$$

in particular, this implies

$$
\begin{align*}
\int f(\mathcal{L} f) G^{-(1+\delta)} & =-\int\left|\nabla_{v}\left(f G^{-1}\right)\right|^{2} G^{1-\delta}+\frac{\delta d}{2} \int f^{2} G^{-(1+\delta)} \\
& -\frac{\delta(1-\delta)}{2} \int v^{2} f^{2} G^{-(1+\delta)} \tag{4.2}
\end{align*}
$$

similarly, for any $0 \leq \delta<1$, we have

$$
\begin{align*}
\int f(\mathcal{L} f) G^{-(1+\delta)} & =-\int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}+\frac{\delta(1+\delta)}{2} \int v^{2} f^{2} G^{-(1+\delta)} \\
& +\frac{(2+\delta) d}{2} \int f^{2} G^{-(1+\delta)} \tag{4.3}
\end{align*}
$$

All the equalities remain true when \mathcal{L} is replaced by \mathcal{L}^{*}.
Proof of Lemma 4.2. Recall $\mathcal{T}\left(G^{-(1+\delta)}\right)=0$, we have

$$
\int f(\mathcal{T} g) G^{-(1+\delta)}=\int \mathcal{T}\left(f G^{-(1+\delta)}\right) g=-\int(\mathcal{T} f) g G^{-(1+\delta)}
$$

which implies

$$
\int f(\mathcal{T} g) G^{-(1+\delta)}+\int(\mathcal{T} f) g G^{-(1+\delta)}=0
$$

for the term with operator \mathcal{S} we have

$$
\begin{aligned}
\int f(\mathcal{S} g) G^{-(1+\delta)}= & -\int \nabla_{v}\left(f G^{-(1+\delta)}\right) \cdot\left(\nabla_{v} g+v g\right) \\
= & -\int\left(\nabla_{v} f+(1+\delta) v f\right) \cdot\left(\nabla_{v} g+v g\right) G^{-(1+\delta)} \\
= & -\int \nabla_{v}\left(f G^{-1}\right) \cdot \nabla_{v}\left(g G^{-1}\right) G^{1-\delta} \\
& -\int\left(\delta v^{2} f g+\delta f v \cdot \nabla_{v} g\right) G^{-(1+\delta)}
\end{aligned}
$$

using integration by parts

$$
\begin{aligned}
\int \delta f v \cdot \nabla_{v} g G^{-(1+\delta)}= & -\int \delta g \nabla_{v} \cdot\left(v f G^{-(1+\delta)}\right) \\
= & -\int \delta g v \cdot \nabla_{v} f G^{-(1+\delta)} \\
& -\int\left(\delta d+\delta(1+\delta) v^{2}\right) f g G^{-(1+\delta)}
\end{aligned}
$$

so we deduce

$$
\begin{aligned}
& \int(f(\mathcal{S} g)+g(\mathcal{S} f)) G^{-(1+\delta)} \\
= & -2 \int \nabla_{v}\left(f G^{-1}\right) \cdot \nabla_{v}\left(g G^{-1}\right) G^{1-\delta}+\int\left(\delta d-\delta(1-\delta) v^{2}\right) f g G^{-(1+\delta)},
\end{aligned}
$$

so (4.1) and 4.2) are thus proved by combining the two terms above. Finally, we compute

$$
\begin{aligned}
& \int f \mathcal{S} f G^{-(1+\delta)} \\
= & -\int\left(\nabla_{v} f+(1+\delta) v f\right) \cdot\left(\nabla_{v} f+v f\right) G^{-(1+\delta)} \\
= & -\int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}-\int(1+\delta) v^{2} f^{2} G^{-(1+\delta)}-\int(2+\delta) f v \cdot \nabla_{v} f G^{-(1+\delta)} \\
= & -\int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}-\int(1+\delta) v^{2} f^{2} G^{-(1+\delta)}+\frac{2+\delta}{2} \int \nabla_{v} \cdot\left(v G^{-(1+\delta)}\right) f^{2} \\
= & -\int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}+\frac{\delta(1+\delta)}{2} \int v^{2} f^{2} G^{-(1+\delta)}+\frac{(2+\delta) d}{2} \int f^{2} G^{-(1+\delta)},
\end{aligned}
$$

so (4.3) follows by putting together the above equality with

$$
\int f \mathcal{T} f G^{-(1+\delta)}=0
$$

Since the term associated with \mathcal{T} is 0 , by $\mathcal{L}=\mathcal{S}+\mathcal{T}, \mathcal{L}^{*}=\mathcal{S}-\mathcal{T}$, we know the same equalities will remain true when \mathcal{L} is replaced by \mathcal{L}^{*}.

Lemma 4.3. When $f_{t}=S_{\mathcal{B}}(t) f_{0}$, define an energy functional

$$
\begin{align*}
\mathcal{F}\left(t, f_{t}\right) & \left.:=A\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+a t^{2}\left\|\nabla_{v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta))}\right.}^{2}\right) \\
& +2 c t^{4}\left(\nabla_{v} f_{t}, \nabla_{x} f_{t}\right)_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+b t^{6}\left\|\nabla_{x} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta))}\right)}^{2} \tag{4.4}
\end{align*}
$$

when $f_{t}=S_{\mathcal{B}^{*}}(t) f_{0}$, define another energy functional

$$
\begin{align*}
\mathcal{F}^{*}\left(t, f_{t}\right) & :=A\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+a t^{2}\left\|\nabla_{v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta))}\right)}^{2} \\
.5) & -2 c t^{4}\left(\nabla_{v} f_{t}, \nabla_{x} f_{t}\right)_{L^{2}\left(G^{-1 / 2(1+\delta))}\right.}^{2}+b t^{6}\left\|\nabla_{x} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta))}\right)}^{2}, \tag{4.5}
\end{align*}
$$

with $a, b, c>0, c \leq \sqrt{a b}$ and A large enough. Then for both cases we have $\frac{d}{d t} F\left(t, f_{t}\right) \leq-L\left(\left\|\nabla_{v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+t^{4}\left\|\nabla_{x} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}\right)+\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}$, for all $t \in[0, \eta]$, for some $L>0, C>0$ and $F=\mathcal{F}$ or \mathcal{F}^{*}.

Proof of Lemma 4.3. We only prove the case $F=\mathcal{F}$, the proof for $F=\mathcal{F}^{*}$ is the same. We split the computation into several parts and then put them
together. First using $(4.2$ and (4.3) we have

$$
\begin{aligned}
& \frac{d}{d t} \int f^{2} G^{-(1+\delta)} \\
= & \int f\left(\mathcal{L}-K \chi_{R}\right) f G^{-(1+\delta)} \\
= & \frac{1-\delta}{2} \int f \mathcal{L} f G^{-(1+\delta)}+\frac{1+\delta}{2} \int f \mathcal{L} f G^{-(1+\delta)}-\int K \chi_{R} f^{2} G^{-(1+\delta)} \\
\leq & -\frac{1-\delta}{2} \int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}-\frac{1+\delta}{2} \int\left|\nabla_{v}\left(f G^{-1}\right)\right|^{2} G^{1-\delta}+C \int f^{2} G^{-(1+\delta)} \\
\leq & -\frac{1-\delta}{2} \int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}+C \int f^{2} G^{-(1+\delta)} .
\end{aligned}
$$

By

$$
\begin{equation*}
\partial_{x_{i}} \mathcal{L} f=\mathcal{L} \partial_{x_{i}} f+\sum_{j=1}^{d} \partial_{x_{i} x_{j}}^{2} V \partial_{v_{j}} f \tag{4.6}
\end{equation*}
$$

and 4.2 we have

$$
\begin{aligned}
& \frac{d}{d t} \int\left(\partial_{x_{i}} f\right)^{2} G^{-(1+\delta)} \\
= & \int \partial_{x_{i}} f \partial_{x_{i}}\left(\mathcal{L}-K \chi_{R}\right) f G^{-(1+\delta)} \\
= & -\int\left|\nabla_{v}\left(\partial_{x_{i}} f G^{-1}\right)\right|^{2} G^{1-\delta}+\frac{\delta d}{2} \int\left(\partial_{x_{i}} f\right)^{2} G^{-(1+\delta)} \\
& -\frac{\delta(1-\delta)}{2} \int v^{2}\left(\partial_{x_{i}} f\right)^{2} G^{-(1+\delta)}+\int \partial_{x_{i}} f \sum_{j=1}^{d} \partial_{x_{i} x_{j}}^{2} V \partial_{v_{j}} f G^{-(1+\delta)} \\
& -\int K \chi_{R}\left|\partial_{x_{i}} f\right|^{2} G^{-(1+\delta)}-\int K \partial_{x_{i}} f \partial_{x_{i}} \chi_{R} f G^{-(1+\delta)}
\end{aligned}
$$

Using Cauchy-Schwarz inequality and summing up by i, we get

$$
\begin{aligned}
& \frac{d}{d t} \int\left|\nabla_{x} f\right|^{2} G^{-(1+\delta)} \\
\leq & -\sum_{i=1}^{d} \int\left|\nabla_{v}\left(\partial_{x_{i}} f G^{-1}\right)\right|^{2} G^{1-\delta}-\frac{\delta(1-\delta)}{2} \int v^{2}\left(\nabla_{x} f\right)^{2} G^{-(1+\delta)} \\
& +C \int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}+C \int\left|\nabla_{x} f\right|^{2} G^{-(1+\delta)}+C \int|f|^{2} G^{-(1+\delta)}
\end{aligned}
$$

for some $C>0$. Similarly using

$$
\begin{equation*}
\partial_{v_{i}} \mathcal{L} f=\mathcal{L} \partial_{v_{i}} f-\partial_{x_{i}} f+\partial_{v_{i}} f \tag{4.7}
\end{equation*}
$$

and (4.2), we have

$$
\begin{aligned}
& \frac{d}{d t} \int\left(\partial_{v_{i}} f\right)^{2} G^{-(1+\delta)} \\
= & \int \partial_{v_{i}} f \partial_{v_{i}}\left(\mathcal{L}-K \chi_{R}\right) f G^{-(1+\delta)} \\
= & -\int\left|\nabla_{v}\left(\partial_{v_{i}} f G^{-1}\right)\right|^{2} G^{1-\delta}+\frac{\delta d}{2} \int\left(\partial_{v_{i}} f\right)^{2} G^{-(1+\delta)} \\
& -\frac{\delta(1-\delta)}{2} \int v^{2}\left(\partial_{v_{i}} f\right)^{2} G^{-(1+\delta)}-\int \partial_{x_{i}} f \partial_{v_{i}} f G^{-(1+\delta)} \\
& +\int\left|\partial_{v_{i}} f\right|^{2} G^{-(1+\delta)}-\int K \chi_{R}\left|\partial_{v_{i}} f\right|^{2} G^{-(1+\delta)}-\int K \partial_{v_{i}} f \partial_{v_{i}} \chi_{R} f G^{-(1+\delta)} .
\end{aligned}
$$

Using Cauchy-Schwarz inequality and summing up by i we get

$$
\begin{aligned}
& \frac{d}{d t} \int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)} \\
\leq & -\sum_{i=1}^{d} \int\left|\nabla_{v}\left(\partial_{v_{i}} f G^{-1}\right)\right|^{2} G^{1-\delta}+C \int\left|\nabla_{x} f\right|\left|\nabla_{v} f\right| G^{-(1+\delta)} \\
& +C \int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}+C \int|f|^{2} G^{-(1+\delta)}-\frac{\delta(1-\delta)}{2} \int v^{2}\left(\nabla_{v} f\right)^{2} G^{-(1+\delta)} .
\end{aligned}
$$

For the crossing term, we split it also into two parts

$$
\begin{aligned}
& \frac{d}{d t} \int 2 \partial_{v_{i}} f \partial_{x_{i}} f G^{-(1+\delta)} \\
= & \left(\int \partial_{v_{i}} f \partial_{x_{i}} \mathcal{L} f G^{-(1+\delta)}+\int \partial_{v_{i}} \mathcal{L} f \partial_{x_{i}} f G^{-(1+\delta)}\right) \\
& -\left(\int \partial_{v_{i}} f \partial_{x_{i}}\left(K \chi_{R} f\right) G^{-(1+\delta)}+\int \partial_{x_{i}}\left(K \chi_{R} f\right) \partial_{v_{i}} f G^{-(1+\delta)}\right) \\
:= & W_{1}+W_{2} .
\end{aligned}
$$

Using (4.6) and 4.7) we have

$$
\begin{aligned}
W_{1}= & \int \partial_{v_{i}} f \mathcal{L}\left(\partial_{x_{i}} f\right) G^{-(1+\delta)}+\int \mathcal{L}\left(\partial_{v_{i}} f\right) \partial_{x_{i}} f G^{-(1+\delta)} \\
& +\int \partial_{v_{i}} f \sum_{j=1}^{d} \partial_{x_{i} x_{j}} V(x) \partial_{v_{j}} f G^{-(1+\delta)}-\int\left|\partial_{x_{i}} f\right|^{2} G^{-(1+\delta)} \\
& +\int \partial_{x_{i}} f \partial_{v_{i}} f G^{-(1+\delta)} .
\end{aligned}
$$

By (4.1), we deduce

$$
\begin{aligned}
W_{1}= & -\int 2 \nabla_{v}\left(\partial_{v_{i}} f G^{-1}\right) \cdot \nabla_{v}\left(\partial_{x_{i}} f G^{-1}\right) G^{1-\delta}+\delta d \int \partial_{v_{i}} f \partial_{x_{i}} f G^{-(1+\delta)} \\
& -\delta(1-\delta) \int v^{2} \partial_{v_{i}} f \partial_{x_{i}} f G^{-(1+\delta)}+\int \partial_{v_{i}} f \sum_{j=1}^{d} \partial_{x_{i} x_{j}} V(x) \partial_{v_{j}} f G^{-(1+\delta)} \\
& -\int\left|\partial_{x_{i}} f\right|^{2} G^{-(1+\delta)}+\int \partial_{x_{i}} f \partial_{v_{i}} f G^{-(1+\delta)}
\end{aligned}
$$

For the W_{2} term we have

$$
\begin{aligned}
W_{2} & =-\int \partial_{v_{i}} f \partial_{x_{i}}\left(K \chi_{R} f\right) G^{-(1+\delta)}-\int \partial_{x_{i}}\left(K \chi_{R} f\right) \partial_{v_{i}} f G^{-(1+\delta)} \\
& =-\int 2 K \chi_{R} \partial_{x_{i}} f \partial_{v_{i}} f G^{-(1+\delta)}+\int K f\left(\partial_{v_{i}} \chi_{R} \partial_{x_{i}} f+\partial_{v_{i}} f \partial_{x_{i}} \chi_{R}\right) G^{-(1+\delta)} \\
& \leq C \int\left|\partial_{x_{i}} f\right|\left|\partial_{v_{i}} f\right| G^{-(1+\delta)}+C \int\left|\partial_{v_{i}} f\right||f| G^{-(1+\delta)}+C \int|f|\left|\partial_{x_{i}} f\right| G^{-(1+\delta)},
\end{aligned}
$$

Combining the two parts, using Cauchy-Schwarz inequality, and summing up by i we get

$$
\begin{aligned}
& \frac{d}{d t} \int 2 \nabla_{x} f \cdot \nabla_{v} f G^{-(1+\delta)} \\
\leq & -\sum_{i=1}^{d} \int 2 \nabla_{v}\left(\partial_{v_{i}} f G^{-1}\right) \cdot \nabla_{v}\left(\partial_{x_{i}} f G^{-1}\right) G^{1-\delta}-\frac{1}{2} \int\left|\nabla_{x} f\right|^{2} G^{-(1+\delta)} \\
& +C \int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}+C \int|f|^{2} G^{-(1+\delta)}-\delta(1-\delta) \int v^{2} \nabla_{v} f \cdot \nabla_{x} f G^{-(1+\delta)}
\end{aligned}
$$

For the very definition of \mathcal{F} in 4.4 , we easily compute

$$
\begin{aligned}
& \frac{d}{d t} \mathcal{F}\left(t, f_{t}\right) \\
= & A \frac{d}{d t}\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+a t^{2} \frac{d}{d t}\left\|\nabla_{v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2} \\
& +2 c t^{4} \frac{d}{d t}\left\langle\nabla_{v} f_{t}, \nabla_{x} f_{t}\right\rangle_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+b t^{6} \frac{d}{d t}\left\|\nabla_{x} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2} \\
& +2 a t\left\|\nabla_{v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+8 c t^{3}\left\langle\nabla_{v} f_{t}, \nabla_{x} f_{t}\right\rangle_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2} \\
& +6 b t^{5}\left\|\nabla_{x} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}
\end{aligned}
$$

Gathering all the inequalities above together, we have

$$
\begin{aligned}
& \frac{d}{d t} \mathcal{F}\left(t, f_{t}\right) \\
\leq & \left(2 a t-\frac{A(1-\delta)}{2}+C a t^{2}+2 C t^{4} c+C b t^{6}\right) \int\left|\nabla_{v} f_{t}\right|^{2} G^{-(1+\delta)} \\
& +\left(6 b t^{5}-\frac{c}{2} t^{4}+C b t^{6}\right) \int\left|\nabla_{x} f_{t}\right|^{2} G^{-(1+\delta)}+\left(8 c t^{3}+C a t^{2}\right) \int\left|\nabla_{v} f_{t}\right|\left|\nabla_{x} f_{t}\right| G^{-(1+\delta)} \\
& -\left(a t^{2} \sum_{i=1}^{d} \int\left|\nabla_{v}\left(\partial_{v_{i}} f_{t} G^{-1}\right)\right|^{2} G^{1-\delta}+b t^{6} \sum_{i=1}^{d} \int\left|\nabla_{v}\left(\partial_{x_{i}} f_{t} G^{-1}\right)\right|^{2} G^{1-\delta}\right. \\
& \left.+2 c t^{4} \sum_{i=1}^{d} \int \nabla_{v}\left(\partial_{v_{i}} f_{t} G^{-1}\right) \cdot \nabla_{v}\left(\partial_{x_{i}} f_{t} G^{-1}\right) G^{1-\delta}\right)-\frac{\delta(1-\delta)}{2}\left(a t^{2} \int v^{2}\left(\nabla_{v} f\right)^{2} G^{-(1+\delta)}\right. \\
& \left.+b t^{6} \int v^{2}\left(\nabla_{x} f\right)^{2} G^{-(1+\delta)}+2 c t^{4} \int v^{2} \nabla_{v} f \cdot \nabla_{x} f G^{-(1+\delta)}\right)+C \int f_{t}^{2} G^{-(1+\delta)},
\end{aligned}
$$

for some $C>0$. We observe that

$$
\begin{aligned}
& \left|2 c t^{4} \int v^{2} \nabla_{v} f \cdot \nabla_{x} f G^{-(1+\delta)}\right| \\
\leq & a t^{2} \int v^{2}\left(\nabla_{v} f\right)^{2} G^{-(1+\delta)}+b t^{6} \int v^{2}\left(\nabla_{x} f\right)^{2} G^{-(1+\delta)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|2 c t^{4} \sum_{i=1}^{d} \int 2 \nabla_{v}\left(\partial_{v_{i}} f_{t} G^{-1}\right) \cdot \nabla_{v}\left(\partial_{x_{i}} f_{t} G^{-1}\right) G^{1-\delta}\right| \\
\leq & a t^{2} \sum_{i=1}^{d} \int\left|\nabla_{v}\left(\partial_{v_{i}} f_{t} G^{-1}\right)\right|^{2} G^{1-\delta}+b t^{6} \sum_{i=1}^{d} \int\left|\nabla_{v}\left(\partial_{x_{i}} f_{t} G^{-1}\right)\right|^{2} G^{1-\delta} .
\end{aligned}
$$

by our choice on a, b, c. So by taking A large and $0<\eta$ small $(t \in[0, \eta])$, as a consequence
$\frac{d}{d t} \mathcal{F}\left(t, f_{t}\right) \leq-L\left(\left\|\nabla_{v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+t^{4}\left\|\nabla_{x} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}\right)+C\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}$,
for some $L, C>0$, and that ends the proof.
Remark 4.4. For the case $F=\mathcal{F}^{*}$, the only difference in the proof is to change (4.6) and (4.7) into

$$
\partial_{x_{i}} \mathcal{L}^{*} f=\mathcal{L}^{*} \partial_{x_{i}} f-\partial_{x_{i}}\left(\nabla_{x} V(x) \cdot \nabla_{v} f\right)=\mathcal{L}^{*} \partial_{x_{i}} f-\sum_{j=1}^{d} \partial_{x_{i} x_{j}}^{2} V \partial_{v_{j}} f
$$

and

$$
\partial_{v_{i}} \mathcal{L}^{*} f=\mathcal{L}^{*} \partial_{v_{i}} f+\partial_{x_{i}} f+\partial_{v_{i}} f .
$$

The following proof of this section is true for both cases.

Lemma 4.5. For any $0 \leq \delta<1$, we have

$$
\int\left|\nabla_{x, v}\left(f G^{-1 / 2(1+\delta)}\right)\right|^{2} \leq \int\left|\nabla_{x, v} f\right|^{2} G^{-(1+\delta)}+C \int f^{2} G^{-(1+\delta)},
$$

Prove of Lemma 4.5. For any weight function m we have

$$
\begin{aligned}
\int\left|\nabla_{x}(f m)\right|^{2} & =\int\left|\nabla_{x} f m+\nabla_{x} m f\right|^{2} \\
& =\int\left|\nabla_{x} f\right|^{2} m^{2}+\int\left|\nabla_{x} m\right|^{2} f^{2}+\int 2 f \nabla_{x} f m \nabla_{x} m \\
& =\int\left|\nabla_{x} f\right|^{2} m^{2}+\int\left(\left|\nabla_{x} m\right|^{2}-\frac{1}{2} \Delta_{x}\left(m^{2}\right)\right) f^{2},
\end{aligned}
$$

taking $m=G^{-1 / 2(1+\delta)}$ we have

$$
\begin{aligned}
& \int\left|\nabla_{x}\left(f G^{-1 / 2(1+\delta)}\right)\right|^{2} \\
= & \int\left|\nabla_{x} f\right|^{2} G^{-(1+\delta)}+\int-\left(\frac{(1+\delta)^{2}}{4}\left|\nabla_{x} V(x)\right|^{2}+\frac{1+\delta}{2} \Delta_{x} V(x)\right) f^{2} G^{-(1+\delta)} \\
\leq & \int\left|\nabla_{x} f\right|^{2} G^{-(1+\delta)}+C \int f^{2} G^{-(1+\delta)} .
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
& \int\left|\nabla_{v}\left(f G^{-1 / 2(1+\delta)}\right)\right|^{2} \\
= & \int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)}+\int-\left(\frac{(1+\delta)^{2}}{4} v^{2}+\frac{1+\delta}{2} d\right) f^{2} G^{-(1+\delta)} \\
\leq & \int\left|\nabla_{v} f\right|^{2} G^{-(1+\delta)} .
\end{aligned}
$$

Putting together the two inequalities we obtain the result.
Lemma 4.6. Nash's inequality: for any $f \in L^{1}\left(\mathbb{R}^{d}\right) \cap H^{1}\left(\mathbb{R}^{d}\right)$, there exist a constant C_{d} such that:

$$
\|f\|_{L^{2}}^{1+\frac{2}{d}} \leq C_{d}\|f\|_{L^{1}}^{2 / d}\left\|\nabla_{v} f\right\|_{L^{2}},
$$

For the proof of Nash's inequality, we refer to [13], Section 8.13 for instance.

Lemma 4.7. For any $0 \leq \delta<1$ we have

$$
\begin{equation*}
\frac{d}{d t} \int|f| G^{-1 / 2(1+\delta)} \leq d \int|f| G^{-1 / 2(1+\delta)} \tag{4.8}
\end{equation*}
$$

which implies

$$
\int\left|f_{t}\right| G^{-1 / 2(1+\delta)} \leq C e^{d t} \int\left|f_{0}\right| G^{-1 / 2(1+\delta)}
$$

In particular we have

$$
\begin{equation*}
\int\left|f_{t}\right| G^{-1 / 2(1+\delta)} \leq C \int\left|f_{0}\right| G^{-1 / 2(1+\delta)}, \quad \forall t \in[0, \eta] \tag{4.9}
\end{equation*}
$$

for some constant $C>0$.
Proof of Lemma 4.7. By Lemma 5.2 in the next section, letting $p=1$, we have

$$
\begin{aligned}
& \frac{d}{d t} \int|f| G^{-1 / 2(1+\delta)} \\
= & \int|f|\left(\Delta_{v} G^{-1 / 2(1+\delta)}-v \cdot \nabla_{v} G^{-1 / 2(1+\delta)}\right. \\
& \left.+v \cdot \nabla_{x} G^{-1 / 2(1+\delta)}-\nabla V(x) \cdot \nabla_{v} G^{-1 / 2(1+\delta)}-K \chi_{R} G^{-1 / 2(1+\delta)}\right) \\
\leq & \int|f|\left(\frac{1+\delta}{2} d-\frac{(1+\delta)(1-\delta)}{4} v^{2}\right) G^{-1 / 2(1+\delta)} \leq \int|f| d G^{-1 / 2(1+\delta)} .
\end{aligned}
$$

so (4.8) is proved. As $\mathcal{T} G^{-1 / 2(1+\delta)}=0$, the result is still true when $F=$ \mathcal{F}^{*}.

Now we come to the proof of Theorem 4.1.
Proof of Theorem 4.1. We define

$$
\mathcal{G}\left(t, f_{t}\right)=B\left\|f_{t}\right\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+t^{Z} \mathcal{F}\left(t, f_{t}\right),
$$

with $B, Z>0$ to be fixed and \mathcal{F} defined in Lemma 4.3. We choose $t \in[0, \eta]$, η small such that $(a+b+c) Z \eta^{Z+1} \leq \frac{1}{2} L \eta^{Z} \quad(a, b, c, L$ are also defined Lemma 4.3), by (4.8) and Lemma 4.3 we have

$$
\begin{aligned}
\frac{d}{d t} \mathcal{G}\left(t, f_{t}\right) \leq & d B\left\|f_{t}\right\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+Z t^{Z-1} \mathcal{F}\left(t, f_{t}\right) \\
& -L t^{Z}\left(\left\|\nabla_{v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+t^{4}\left\|\nabla_{x} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}\right) \\
& +C t^{Z}\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2} \\
\leq & d B\left\|f_{t}\right\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+C t^{Z-1}\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2} \\
& -\frac{L}{2} t^{Z}\left(\left\|\nabla_{v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+t^{4}\left\|\nabla_{x} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}\right) .
\end{aligned}
$$

Nash's inequality and Lemma 4.3 implies

$$
\begin{aligned}
\int f_{t}^{2} G^{-(1+\delta)} & \leq\left(\int\left|f_{t}\right| G^{-1 / 2(1+\delta)}\right)^{\frac{4}{d+2}}\left(\int\left|\nabla_{x, v}\left(f_{t} G^{-1 / 2(1+\delta)}\right)\right|^{2}\right)^{\frac{d}{d+2}} \\
& \leq\left(\int\left|f_{t}\right| G^{-1 / 2(1+\delta)}\right)^{\frac{4}{d+2}}\left(\int\left|\nabla_{x, v} f_{t}\right|^{2} G^{-(1+\delta)}+C \int f_{t}^{2} G^{-(1+\delta)}\right)^{\frac{d}{d+2}}
\end{aligned}
$$

Using Young's inequality, we have

$$
\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2} \leq C_{\epsilon} t^{-5 d}\|f\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+\epsilon t^{5}\left(\left\|\nabla_{x, v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+C\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}\right) .
$$

Taking ϵ small such that $C \epsilon \eta^{5} \leq \frac{1}{2}$, we deduce

$$
\left\|f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2} \leq 2 C_{\epsilon} t^{-5 d}\|f\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+2 \epsilon t^{5}\left\|\nabla_{x, v} f_{t}\right\|_{L^{2}\left(G^{-1 / 2(1+\delta)}\right)}^{2}
$$

Taking ϵ small we have

$$
\frac{d}{d t} \mathcal{G}\left(t, f_{t}\right) \leq d B\left\|f_{t}\right\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2}+C_{1} t^{Z-1-5 d}\left\|f_{t}\right\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2}
$$

for some $C_{1}>0$. Choosing $Z=1+5 d$, and using (4.9), we deduce
$\forall t \in[0, \eta], \quad \mathcal{G}\left(t, f_{t}\right) \leq \mathcal{G}\left(0, f_{0}\right)+C_{2}\left\|f_{0}\right\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2} \leq C_{3}\left\|f_{0}\right\|_{L^{1}\left(G^{-1 / 2(1+\delta)}\right)}^{2}$, which ends the proof.

5. $S_{\mathcal{B}}$ DECAY in Larger spaces

The aim of this section is to prove the following decay estimate for the semigroup $S_{\mathcal{B}}$ which will be useful in the last section where we will prove Theorem 1.1 in full generally.

Theorem 5.1. Let $H=1+x^{2}+2 v \cdot x+3 v^{2}$, for any $\theta \in(0,1)$ and for any $l>0$, we have

$$
\left\|\mathcal{S}_{\mathcal{B}}(t)\right\|_{L^{1}\left(H^{l}\right) \rightarrow L^{1}\left(H^{l \theta}\right)} \lesssim(1+t)^{-a}
$$

where

$$
a=\frac{l(1-\theta)}{1-\frac{\gamma}{2}} .
$$

We start with an elementary identity.
Lemma 5.2. For the kinetic Fokker Planck operator \mathcal{L}, let m be a weight function, for any $p \in[1, \infty]$ we have

$$
\int(\mathcal{L} f) f^{p-1} m^{p}=-(p-1) \int\left|\nabla_{v}(m f)\right|^{2}(m f)^{p-2}+\int f^{p} m^{p} \phi
$$

with

$$
\phi=\frac{2}{p^{\prime}} \frac{\left|\nabla_{v} m\right|^{2}}{m^{2}}+\left(\frac{2}{p}-1\right) \frac{\Delta_{v} m}{m}+\frac{d}{p^{\prime}}-v \cdot \frac{\nabla_{v} m}{m}-\frac{\mathcal{T} m}{m} .
$$

In particular when $p=1$, we have

$$
\phi=\frac{\Delta_{v} m}{m}-v \cdot \frac{\nabla_{v} m}{m}-\frac{\mathcal{T} m}{m} .
$$

Proof of Lemma 5.2. We split the integral as

$$
\int(\mathcal{L} f) f^{p-1} m^{p}=\int f^{p-1} \mathcal{S} f m^{p}+\int f^{p-1} \mathcal{T} f m^{p}
$$

First compute the contribution of the term with operator \mathcal{T}

$$
\int f^{p-1} \mathcal{T} f m^{p}=\frac{1}{p} \int \mathcal{T}\left(f^{p}\right) m^{p}=-\int f^{p} m^{p} \frac{\mathcal{T} m}{m} .
$$

Concerning the term with operator \mathcal{S}, we split it also into two parts

$$
\int(\mathcal{S} f) f^{p-1} m^{p}=\int f^{p-1} m^{p}\left(\Delta_{v} f+\operatorname{div}_{v}(v f)\right):=C_{1}+C_{2} .
$$

We first compute the C_{2} term, we have

$$
\begin{aligned}
C_{2} & =\int f^{p-1} m^{p}\left(d f+v \cdot \nabla_{v} f\right) \\
& =\int d f^{p} m^{p}-\frac{1}{p} \int f^{p} \operatorname{div}_{v}\left(v m^{p}\right) \\
& =\int f^{p}\left[\left(1-\frac{1}{p}\right) d-v \cdot \frac{\nabla_{v} m}{m}\right] m^{p} .
\end{aligned}
$$

We turn to the C_{1} term, we have

$$
\begin{aligned}
C_{1} & =\int f^{p-1} m^{p} \Delta_{v} f=-\int \nabla_{v}\left(f^{p-1} m^{p}\right) \cdot \nabla_{v} f \\
& =\int-(p-1)\left|\nabla_{v} f\right|^{2} f^{p-2} m^{p}-\frac{1}{p} \int \nabla_{v} f^{p} \cdot \nabla_{v} m^{p} .
\end{aligned}
$$

Using $\nabla_{v}(m f)=m \nabla_{v} f+f \nabla_{v} m$, we deduce

$$
\begin{aligned}
C_{1}= & -(p-1) \int\left|\nabla_{v}(m f)\right|^{2} f^{p} m^{p-2}+(p-1) \int\left|\nabla_{v} m\right|^{2} f^{p} m^{p-2} \\
& +\frac{2(p-1)}{p^{2}} \int \nabla_{v}\left(f^{p}\right) \cdot \nabla_{v}\left(m^{p}\right)-\frac{1}{p} \int \nabla_{v}\left(f^{p}\right) \cdot \nabla_{v}\left(m^{p}\right) \\
= & -(p-1) \int\left|\nabla_{v}(m f)\right|^{2} f^{p-2} m^{p}+(p-1) \int\left|\nabla_{v} m\right|^{2} f^{p} m^{p-2} \\
& +\frac{p-2}{p^{2}} \int f^{p} \Delta_{v} m^{p} .
\end{aligned}
$$

Using that $\Delta_{v} m^{p}=p \Delta_{v} m m^{p-1}+p(p-1)\left|\nabla_{v} m\right|^{2} m^{p-2}$, we obtain

$$
C_{1}=-(p-1) \int\left|\nabla_{v}(m f)\right|^{2} f^{p-2} m^{p-2}+\int f^{p} m^{p}\left[\left(\frac{2}{p}-1\right) \frac{\Delta_{v} m}{m}+2\left(1-\frac{1}{p}\right) \frac{\left|\nabla_{v} m\right|^{2}}{m^{2}}\right] .
$$

We conclude by combining the above equalities.
Proof of Theorem 5.1. From Lemma 5.2, we have

$$
\begin{align*}
\int(\mathcal{B} f) f^{p-1} m^{p} & =\int\left(\mathcal{L}-M \chi_{R}\right) f^{p-1} m^{p} \tag{5.1}\\
& =-(p-1) \int\left|\nabla_{v}(m f)\right|^{2}(m f)^{p-2}+\int f^{p} m^{p} \phi,
\end{align*}
$$

with

$$
\phi=\left[\frac{2}{p^{\prime}} \frac{\left|\nabla_{v} m\right|^{2}}{m^{2}}+\left(\frac{2}{p}-1\right) \frac{\Delta_{v} m}{m}+\frac{d}{p^{\prime}}-v \cdot \frac{\nabla_{v} m}{m}-\frac{\mathcal{T} m}{m}-M_{\chi_{R}}\right] .
$$

When $p=1$, we have

$$
\phi=\frac{\Delta_{v} m}{m}-v \cdot \frac{\nabla_{v} m}{m}-\frac{\mathcal{T} m}{m}-M \chi_{R} .
$$

Let $m=H^{k}$. We have

$$
\frac{\nabla_{v} m}{m}=k \frac{\nabla_{v} H}{H}, \quad \frac{\nabla_{x} m}{m}=k \frac{\nabla_{x} H}{H},
$$

and

$$
\frac{\Delta_{v} m}{m}=\frac{k \Delta_{v} H}{H}+\frac{k(k-1)\left|\nabla_{v} H\right|^{2}}{H^{2}} .
$$

Summing up, we have for ϕ
$\frac{\phi H}{k}=\Delta_{v} H+(k-1) \frac{\left|\nabla_{v} H\right|^{2}}{H}-v \cdot \nabla_{v} H+v \cdot \nabla_{x} H-\nabla_{x} V(x) \cdot \nabla_{v} H-M \chi_{R}$,
From the very definition of H, we have

$$
\nabla_{v} H=6 v+2 x, \quad \nabla_{x} H=2 v+2 x, \quad \Delta_{v} H=6 .
$$

We then compute

$$
\begin{aligned}
& \Delta_{v} H+(k-1) \frac{\left|\nabla_{v} H\right|^{2}}{H}+v \cdot \nabla_{x} H-v \cdot \nabla_{v} H-\nabla_{x} V(x) \cdot \nabla_{v} H \\
= & 6+(k-1) \frac{(6 v+2 x)^{2}}{H}+2 v^{2}+2 x \cdot v-6 v^{2} \\
& -2 x \cdot v-6 v \cdot \nabla_{x} V(x)-2 x \cdot \nabla_{x} V(x) \\
\leq & \left(2 v^{2}+C v-6 v^{2}\right)-2 x \cdot \nabla_{x} V(x)+C \\
\leq & -C_{1} v^{2}-C_{2} x \cdot \nabla_{x} V(x)+C_{3} \\
\leq & -C_{4} H^{\frac{\gamma}{2}}+K_{1} \chi_{R_{1}},
\end{aligned}
$$

for some $C_{i}>0$. Taking K and R large enough, we have $\phi \leq-C H^{\frac{\gamma}{2}-1}$, using this inequality in equation (5.1), we deduce

$$
\begin{align*}
\frac{d}{d t} Y_{4}(t):=\frac{d}{d t} \int\left|f_{\mathcal{B}}(t)\right| H^{k} & =\int \operatorname{sign}\left(f_{\mathcal{B}}(t)\right) \mathcal{B} f_{\mathcal{B}}(t) H^{k} \tag{5.2}\\
& \leq-C \int\left|f_{B}(t)\right| H^{k-1+\frac{\gamma}{2}}
\end{align*}
$$

for any $k>1$. In particular for any $l \geq 1$, we can find K and R large enough such that

$$
\frac{d}{d t} \int\left|f_{\mathcal{B}}(t)\right| H^{l} \leq 0
$$

which readily implies

$$
\int\left|f_{\mathcal{B}}(t)\right| H^{l} \leq \int\left|f_{0}\right| H^{l}:=Y_{5}
$$

Denoting

$$
\alpha=\frac{l-k}{l-k+1-\frac{\gamma}{2}} \in(0,1),
$$

the Hölder's inequality

$$
\int\left|f_{B}(t)\right| H^{k} \leq\left(\int\left|f_{B}(t)\right| H^{k-1+\frac{\gamma}{2}}\right)^{\alpha}\left(\int\left|f_{B}(t)\right| H^{l}\right)^{1-\alpha},
$$

implies

$$
\left(\int\left|f_{B}(t)\right| H^{k}\right)^{\frac{1}{\alpha}}\left(\int\left|f_{B}(t)\right| H^{l}\right)^{\frac{\alpha-1}{\alpha}} \leq \int\left|f_{B}(t)\right| H^{k-1+\frac{\gamma}{2}},
$$

From this inequality and (5.2), we get

$$
\frac{d}{d t} Y_{4}(t) \leq-C\left(Y_{4}(t)\right)^{\frac{1}{\alpha}} Y_{5}^{\frac{\alpha-1}{\alpha}}
$$

Using $Y_{4}(0) \leq Y_{5}$, after an integration, we deduce

$$
Y_{4}(t) \leq C_{\alpha} \frac{1}{(1+t)^{\frac{\alpha}{1-\alpha}}} Y_{5}
$$

which is nothing but the polynomial decay on $S_{\mathcal{B}}$

$$
\left\|\mathcal{S}_{B}(t)\right\|_{L^{p}\left(H^{l}\right) \rightarrow L^{p}\left(H^{k}\right)} \lesssim(1+t)^{-a}
$$

with

$$
a=\frac{l-k}{1-\frac{\gamma}{2}}, \quad \forall 0<k<l, \quad 1 \leq l
$$

We conclude Theorem 5.1 by writing $k=l \theta, 0<\theta<1$.

6. L^{p} CONVERGENCE FOR THE KFP MODEL

Before going to the proof of our main theorem, we need two last deduced results.

Lemma 6.1. For any $\epsilon>0$ small enough, we have

$$
\left\|\mathcal{A} S_{\mathcal{B}}(t)\right\|_{L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \rightarrow L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right)} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}, \quad \forall t \geq 0
$$

and

$$
\left\|\mathcal{A} \mathcal{S}_{B}(t)\right\|_{L^{1}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \rightarrow L^{1}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right)} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}, \quad \forall t \geq 0
$$

for some $a>0$. Similarly for any $0<b<\frac{\gamma}{2-\gamma}$ and for any $\epsilon>0$ small enough, we have

$$
\left\|\mathcal{A} S_{\mathcal{B}}(t)\right\|_{L^{1}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \rightarrow L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right)} \lesssim t^{-\alpha} e^{-a t^{b}}, \quad \forall t \geq 0
$$

for $\alpha=\frac{5 d+1}{2}$ and some $a>0$.
Proof of Lemma 6.1. The first two inequalities are obtained obviously by Lemma 3.3 and the property of $\mathcal{A}=M \chi_{R}$. For the third inequality we split it into two parts, $t \in[0, \eta]$ and $t>\eta$, where η is defined in Theorem 4.1. When $t \in[0, \eta]$, we have $e^{-a t^{\frac{\gamma}{2-\gamma}}} \geq e^{-a \eta^{\frac{\gamma}{2-\gamma}}}$, by Theorem 4.1. we have

$$
\left\|\mathcal{A} \mathcal{S}_{B}(t)\right\|_{L^{1}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \rightarrow L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right)} \lesssim t^{-\alpha} \lesssim t^{-\alpha} e^{-a t^{\frac{\gamma}{2-\gamma}}}, \quad \forall t \in[0, \eta]
$$

for some $a>0$. When $t \geq \eta$, by Theorem 4.1, we have

$$
\left\|S_{\mathcal{B}}(\eta)\right\|_{L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \rightarrow L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right)} \lesssim \eta^{\alpha} \lesssim 1
$$

and by Lemma 3.3

$$
\left\|\mathcal{S}_{\mathcal{B}}(t-\eta)\right\|_{L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \rightarrow L^{2}\left(G^{-\frac{1}{2}}\right)} \lesssim e^{-a(t-\eta)^{\frac{\gamma}{2-\gamma}}} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}
$$

gathering the two inequalities, we have

$$
\left\|\mathcal{A} \mathcal{S}_{B}(t)\right\|_{L^{1}\left(G^{-1 / 2(1+2 \epsilon)}\right) \rightarrow L^{2}\left(G^{-1 / 2(1+2 \epsilon)}\right)} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}} \lesssim t^{-\alpha} e^{-a t^{b}}, \quad \forall t>\eta,
$$

for any $0<b<\frac{\gamma}{2-\gamma}$, the proof is ended by combining the two cases above.

Lemma 6.2. Similarly as Lemma 6.1. For any $p \in(2, \infty)$, we have

$$
\left\|S_{\mathcal{B}}(t) \mathcal{A}\right\|_{L^{2}\left(G^{-1 / 2}\right) \rightarrow L^{2}\left(G^{-1 / 2}\right)} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}, \quad \forall t \geq 0 .
$$

and

$$
\left\|\mathcal{S}_{B}(t) \mathcal{A}\right\|_{L^{p}\left(G^{-1 / 2}\right) \rightarrow L^{p}\left(G^{-1 / 2}\right)} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}, \quad \forall t \geq 0 .
$$

for some $a>0$. And for any $0<b<\frac{\gamma}{2-\gamma}$ we have

$$
\left\|S_{\mathcal{B}}(t) \mathcal{A}\right\|_{L^{2}\left(G^{-1 / 2}\right) \rightarrow L^{p}\left(G^{-1 / 2}\right)} \lesssim t^{-\beta} e^{-a t^{b}}, \quad \forall t \geq 0 .
$$

for some $\beta>0$ and some $a>0$.
The proof of Lemma 6.2 is similar to the proof of Lemma 6.1 and thus skipped.

Lemma 6.3. let X, Y be two Banach spaces, $S(t)$ a semigroup such that for all $t \geq 0$ and some $0<a, 0<b<1$ we have

$$
\|S(t)\|_{X \rightarrow X} \leq C_{X} e^{-a t^{b}}, \quad\|S(t)\|_{Y \rightarrow Y} \leq C_{Y} e^{-a t^{b}}
$$

and for some $0<\alpha$, we have

$$
\|S(t)\|_{X \rightarrow Y} \leq C_{X, Y} t^{-\alpha} e^{-a t^{b}} .
$$

Then we can have that for all integer $n>0$

$$
\left\|S^{(* n)}(t)\right\|_{X \rightarrow X} \leq C_{X, n} t^{n-1} e^{-a t^{b}}
$$

similarly

$$
\left\|S^{(* n)}(t)\right\|_{Y \rightarrow Y} \leq C_{Y, n} t^{n-1} e^{-a t^{b}},
$$

and

$$
\left\|S^{(* n)}(t)\right\|_{X \rightarrow Y} \leq C_{X, Y, n} t^{n-\alpha-1} e^{-a t^{b}} .
$$

In particular for $\alpha+1<n$, and for any $b^{*}<b$

$$
\left\|S^{(* n)}(t)\right\|_{X \rightarrow Y} \leq C_{X, Y, n} e^{-a t^{t^{*}}}
$$

Proof of Lemma 6.3. The proof is the same as Lemma 2.5 in [15], plus the fact $t^{b} \leq s^{b}+(t-s)^{b}$ for any $0 \leq s \leq t, 0<b<1$.

Then we come to the final proof.
Proof of Theorem 1.1. We only prove the case when $m=G^{\frac{p-1}{p}(1+\epsilon)}, \quad p \in$ $[1,2]$, for the proof of the other cases, one need only replace the use of Lemma 6.1 in the following proof by Lemma 6.2 and Theorem 4.1. We will prove $p=1$ first, this time we need to prove

$$
\left\|S_{\mathcal{L}}(I-\Pi)(t)\right\|_{L^{1}\left(G^{-\epsilon}\right) \rightarrow L^{1}} \lesssim e^{-a t^{b}}
$$

for any $0<b<\frac{\gamma}{2-\gamma}$, where I is the identity operator and Π is a projection operator defined by

$$
\Pi(f)=\mathcal{M}(f) G
$$

First, Iterating the Duhamel's formula we split it into 3 terms

$$
\begin{aligned}
S_{\mathcal{L}}(I-\Pi)= & (I-\Pi)\left\{S_{\mathcal{B}}+\sum_{l=1}^{n-1}\left(S_{\mathcal{B}} \mathcal{A}\right)^{(* l)} *\left(S_{\mathcal{B}}\right)\right\} \\
& +\left\{(I-\Pi) S_{\mathcal{L}}\right\} *\left(\mathcal{A} S_{\mathcal{B}}(t)\right)^{* n}
\end{aligned}
$$

and we will estimate them separately. By Lemma 3.3, we have

$$
\left\|S_{\mathcal{B}}(t)\right\|_{L^{1}\left(G^{-\epsilon}\right) \rightarrow L^{1}} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}
$$

the first term is thus estimated. For the second term, still using Lemma 3.3 , we get

$$
\left\|S_{\mathcal{B}}(t) \mathcal{A}\right\|_{L^{1}\left(G^{-\epsilon}\right) \rightarrow L^{1}} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}
$$

by Lemma 6.3, we have

$$
\left\|\left(S_{\mathcal{B}}(t) \mathcal{A}\right)^{* l}\right\|_{L^{1}\left(G^{-\epsilon}\right) \rightarrow L^{1}} \lesssim t^{l-1} e^{-a t^{\frac{\gamma}{2-\gamma}}}
$$

thus the second term is estimated. For the last term by Lemma 3.3

$$
\left\|\mathcal{A} S_{\mathcal{B}}(t)\right\|_{L^{1}\left(G^{-\epsilon}\right) \rightarrow L^{1}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right)} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}
$$

By Lemma 6.1 and 6.3, for any $0<b<\frac{\gamma}{2-\gamma}$, we have

$$
\left\|\left(\mathcal{A} S_{\mathcal{B}}\right)^{(* n-1)}(t)\right\|_{L^{1}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \rightarrow L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right)} \lesssim t^{n-\alpha-2} e^{-a t^{b}}
$$

finally by Theorem 3.1, we have

$$
\left\|S_{\mathcal{L}}(t)(I-\Pi)\right\|_{L^{2}\left(G^{-\left(\frac{1}{2}+\epsilon\right)}\right) \rightarrow L^{2}\left(G^{-1 / 2}\right)} \lesssim e^{-a t^{\frac{\gamma}{2-\gamma}}}
$$

Taking $n>\alpha+2$ the third term is estimated thus the proof of case $p=1$ is concluded by gathering the inequalities above. As the case $p=2$ ia already proved in Theorem 3.1, the case $p \in(1,2)$ follows by interpolation.

References

[1] Bakry, D., Cattiaux, P., Guillin, A., Rate of convergence for ergodic continuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 (2008), no. 3, 727759.
[2] Carrapatoso, K., Mischler, S. Landau equation for very soft and Coulomb potentials near Maxwellians. Ann. PDE 3 (2017), no. 1, Art. 1, 65 pp.
[3] Duan, R. Hypocoercivity of linear degenerately dissipative kinetic equations. Nonlinearity 24, 8 (2011), 2165-2189.
[4] Dolbeault, J., Mouhot, C., and Schmeiser, C. Hypocoercivity for kinetic equations conserving mass. Trans. Amer. Math. Soc. 367 (2015), no. 6, 3807-3828
[5] Dolbeault, J., Mouhot, C., and Schmeiser, C. Hypocoercivity for kinetic equations with linear relaxation terms. C. R. Math. Acad. Sci. Paris 347, 9-10 (2009), 511-516.
[6] Douc, R., Fort, G., Guillin, A., Subgeometric rates of convergence of f - ergodic strong Markov processes. Stochastic Process. Appl. 119 (2009), no. 3, 897923.
[7] Eckmann, J.-P., and Hairer, M. Spectral properties of hypoelliptic operators. Comm. Math. Phys. 235, 2 (2003), 233-253
[8] Gualdani, M. P., Mischler, S., and Mouthot, C. Factorization of nonsymmetric operators and exponential H-Theorem. hal-00495786.
[9] Helffer, B., and Nier, F. Hypoelliptic estimates and spectral theory for FokkerPlanck operators and Witten Laplacians, vol. 1862 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005.
[10] Hérau, F. Short and long time behavior of the Fokker-Planck equation in a confining potential and applications. J. Funct. Anal. 244, 1 (2007), 95118.
[11] Hérau, F., and Nier, F. Isotropic hypoellipticity and trend to equilibrium for the Fokker-Planck equation with a high-degree potential. Arch. Ration. Mech. Anal. 171, 2 (2004), 151218.
[12] Kavian, O., Mischler, S. The Fokker-Planck equation with subcritical confinement force (arXiv 2015)
[13] Lieb, E. and Loss, M. Analysis 2nd. American Mathematical Society.
[14] Mischler, S., Mouhot, C. Exponential stability of slowing decaying solutions to the Kinetic-Fokker-Planck equation Arch. Ration. Mech. Anal. 221 (2016), no. 2, 677-723.
[15] Mischler, S., Quiinao, C., Touboul, J. On a kinetic FitzHugh-Nagumo model of neuronal network, Comm. Math. Phys. 342 (2016), no. 3, 1001-1042.
[16] Mischler, S. Semigroups in Banach spaces - factorization approach for spectral analysis and asymptotic estimates, In preparation.
[17] Mouhot, C., and Neumann, L. Quantitative perturbative study of convergence to equilibrium for collisional kinetic models in the torus. Nonlinearity 19, 4 (2006), 969-998.
[18] Моинот, C. Rate of convergence to equilibrium for the spatially homogeneous Boltzmann equation with hard potentials. Comm. Math. Phys. 261, 3 (2006), 629672.
[19] https://www.ceremade.dauphine.fr/~mischler/Enseignements/PDEnotesCIMPA/chap3.pdf
[20] Röckner, M., and Wang, F.-Y Weak Poincaré inequalities and L^{2}-convergence rates of Markov semigroups. J. Funct. Anal. 185, 2 (2001), 564603.
[21] Villani, C. Hypocoercivity. Mem, Amer. Math Soc. 202(2009), no. 950

