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Abstract 

The target of rapamycin (TOR) signaling pathway regulates fundamental intracellular 

functions critical for cell viability and proliferation. Manipulation of TOR in high lipid-

producing microalgae may help overcome the trade-off between biomass production 

and lipid yield that still impairs the viable production of biofuel from microalgae. In this 

study, we inhibited the TOR kinase in the model diatom Phaeodactylum 

tricornutum using the selective TOR inhibitor AZD-8055, and analyzed cell 

proliferation, chlorophyll content, lipid synthesisand carbon metabolism. AZD-8055 

inhibits cell proliferation in a dose-dependent manner compared to N deprivation which 

stops growth. Microscopy, flow cytometry, and quantitative analyses of lipids also 

demonstrated that AZD-8055 treatment strongly promotes triacylglycerol (TAG) 

accumulation while decreasing the quantity of sterols. The TAG productivity of AZD-

8055 treated cultures was significantly higher than for N deprived cultures. 

Measurement of the activities of the key metabolic enzymes glyceraldehyde phosphate 

dehydrogenase (GAPDH), glucose-6-phosphate dehydrogenase (G6PDH) 

and malate dehydrogenase (MDH) revealed opposite effects for AZD-8055 treatment 

and N-starvation on the activity of the glycolytic enzyme GAPDH. This suggests that 

TOR inhibition and N starvation may have distinct impacts on general metabolism 

and lipid accumulation. Our main finding is that treating cultures with AZD-8055 results 

in higher TAG productivity than N starvation in P. tricornutum. The chemical or genetic 

manipulation of the TOR signaling pathway in P. tricornutum and other diatoms may 

lead to the development of strains or approaches suitable for the enhanced production 

of TAGs for biofuel. 
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1. Introduction 

Since the second half of the XIX century the use of natural resources, like fossil fuels, 

gas and coal for sustaining human activities has been experiencing exponential 

growth. Although this historical phenomenon, known as the Industrial Revolution, had 

beneficial effects on human society, it has also led to long-term catastrophic effects on 

the environment with consequences for human health. Combustion of fossil fuels is 

indeed one of the main factors responsible for greenhouse gases emissions (CO2) and 

atmospheric release of toxic compounds, which in turn are involved in global warming, 

ocean acidification and various types of diseases [1,2]. The search for sustainable and 

less polluting energy alternatives has now become a mission of paramount importance. 

Third-generation biofuels from microalgaereconcile the high demand for liquid fuels 

with many of the technical problems encountered in other oil-producing organisms like 

crops [3]. While unicellular photosynthetic organisms represent only about 0.2% of the 

global biomass, they account for almost 50% of the global net primary 

production [4] and the energy that they can store in the form of lipids represents > 20% 
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of dry weight under nutrient-sufficient growth conditions [5]. This percentage can rise 

to 70–80% in some species of eukaryotic microalgae under nutrient limitation [3]. 

Diatoms (Bacillariophyceae) are the predominant class of eukaryotic microalgae in the 

oceans, where they account for about 40% of net primary production (the remainder 

accounted by other eukaryotic organisms and cyanobacteria; [6]), and possess 

qualities (high photosynthetic efficiency, fast growth and the capacity to store energy 

and carbon in the form of neutral lipids) that make them one of the most suitable groups 

for biofuel production [7,8]. The advanced genetic engineering tools developed in the 

diatom Phaeodactylum tricornutum, whose genome is known [9–13], make it one of 

the preferred model microalgae for biotechnology studies. In spite of this, biofuel 

production from microalgae is still a challenging process as the highest lipid 

accumulation per cell is achieved when the algae are subject to stress conditions 

like nitrogen starvation [14], which ultimately limits the overall biomass and thus lipid 

yield. The study and manipulation of signaling pathways regulating cell growth and 

metabolism, for instance, the target of rapamycin (TOR) pathway, may help to combine 

high lipid yields with the maintenance of cell proliferation. TOR manipulation for biofuel 

production was first proposed in a study showing that TOR repression 

in Arabidopsis thaliana artificial microRNA (amiR) lines affects carbon metabolism and 

results in starch and TAG accumulation associated with growth repression [15]. 

Further studies showed that TOR inhibitors could induce TAG accumulation in the red 

alga Cyanidioschyzon merolae and the green alga Chlamydomonas reinhardtii[16,17]. 

However, TAGs were measured only at TOR inhibitor concentrations that stop 

proliferation and TAG productivity was not studied. A recent study on Euglena gracilis, 

a distant alga belonging to the Excavata, reported that the TOR inhibitor rapamycin 

has little effect on proliferation, yet could induce a 1.4-fold increase in neutral lipids per 

cell [18]. This suggests that TOR inhibition could be a route to increasing TAG 

productivity in some algae. The TOR signaling network plays a key role in the 

regulation of cell growth integrating the responses to a variety of signals, like nutrient 

levels and stress, and transmitting them to the metabolic machinery (reviewed 

in [19,20]). TOR is a large protein kinase belonging to the phosphatidylinositol kinase-

related kinase (PIKK) family that includes the checkpoint kinases ataxia telangiectasia 

mutated (ATM) and ATM- and RAD3-related protein (ATR), which are master 

controllers of cell cycle signaling pathways [21]. TOR can be found in two multiprotein 

complexes, TORC1 and TORC2 [19]. While TORC2, involved 

in cytoskeletonorganization in animals and yeast, is not conserved in Viridiplantae and 

diatoms, TORC1 is found in all eukaryotes, with the exception of intracellular parasites, 

thus indicating a fundamental role for TORC1 in eukaryotes [22]. TORC1 is stimulated 

by nutrients and inhibited by stress-related signals [23]. The conserved function of 
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active TORC1 is to activate protein synthesis, cell-cycle progression, and energy 

metabolism, while inhibiting stress responsive genes and autophagy. In yeast and 

animal cell lines, TOR inhibition blocks cell division, increases autophagy resulting in 

altered cell physiology, fate and morphology in manner reminiscent of a nutrient-

starvation response [24]. In addition to a potential application in biofuel production, the 

study of TOR signaling in diatoms is of fundamental importance as the evolution of the 

TOR pathway in algae with secondary plastids might have been influenced by the 

multiple endosymbiosis events that characterized their evolution [9]. 

In this study, we used a synthetic and highly specific ATP-competitive inhibitor of the 

TOR kinase known as AZD-8055 [28] to test how modulating TOR activity affects cell 

proliferation, TAG accumulation and productivity, and primary metabolism in P. 

tricornutum. Two other TOR inhibitors, rapamycin and WYE-132, were also used to 

evaluate the specificity of this response towards TOR inhibition. 

2. Materials and methods 

2.1. Algal strain and AZD-8055 treatment 

P. tricornutum Pt1_8.6 (RCC 2967) was grown for eight days at 18 °C in F/2 

medium [29]supplemented with silica (F/2 + Si medium) in an incubator equipped with 

a shaking plate (Innova 4230, New Brunswick Scientific, Edison NJ, USA). Irradiance 

was kept at 80 mol photons m− 2 s− 1 for 14 h day− 1. For the AZD-8055 treatments, a 

culture of P. tricornutumfrom an early exponential phase was diluted to OD750 ≈ 0.003 

in a 5-l Erlenmeyer flask containing 2.5 l of fresh F/2 + Si medium. The OD750 was 

measured daily until it reached ≈ 0.03 (after 72 h), a value corresponding to the 

beginning of the exponential phase for this strain; the culture was then split into nine 

1-l Erlenmeyer flasks containing 250 ml of medium each. The TOR inhibitor AZD-8055 

(Chemdea, Ridgewood, NJ, USA; [28]) was then added to a final concentration of 

0.001, 0.01, 0.1, 1, 2, 4 and 10 mol l− 1. The inhibitor was dissolved in dimethyl 

sulfoxide (DMSO), whose final concentration was adjusted to 0.1% for each of the 

different cultures and the control. The ninth part of the initial culture was subjected 

to nitrogen starvation. For N starvation, cells were centrifuged at 3500g for 15 min, the 

supernatant discarded and the pellet washed three times in N-free F/2 + Si medium; 

the pellet was then resuspended in 250 ml of fresh N-free F/2 + Si medium. Three 

independent experiments were conducted for each culture condition. Another set of 

experiments was performed to compare the effect of high concentrations of AZD-8055 

and other TOR inhibitors on cell proliferation and neutral lipid content in P. tricornutum. 

Cultures were grown as described above. The TOR inhibitors AZD-8055 (10 and 

40 mol l− 1), rapamycin (10 mol l− 1; LC Laboratories, Woburn, MA, USA) and WYE-132 
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(5 mol l− 1; Chemdea, Ridgewood, NJ, USA) were added to early exponential phase 

cells as described above. 

2.2. Cell fixation and Nile red staining 

Each day a volume of P. tricornutum culture, varying from 5 to 200 ml depending on 

biomass production, was harvested by centrifugation at 3500 g for 15 min. The pellet 

was resuspended in 0.5 ml of a fixing solution containing HEPES (0.1 mol l− 1, pH 7), 

CaCl2(0.01 mmol l− 1), MgCl2 (0.01 mmol l− 1) and glutaraldehyde 2% (v/v). After one 

hour incubation at 4 °C in the dark, the fixing solution was removed and the cells 

resuspended in 1 ml of HEPES (0.1 mol l− 1, pH 7). The samples were stored at 4 °C 

in the dark. 

For visualization of neutral lipids, the fixed cells were incubated with a Nile red solution 

(FluoProbes, Interchim; 488–530/575–580 nm excitation/emission; [30]) and analyzed 

by fluorescence microscopy and analytical flow cytometry. A 0.25 mg ml− 1 Nile red 

solution in DMSO was added to the fixed cell suspensions to a final concentration of 

1 g ml− 1[31]. The mixtures were incubated at 4 °C for 5 min prior to analysis. 

2.3. Flow cytometry 

A benchtop flow cytometer (BD Accuri C6, BD Biosciences, Ann Arbor, MI, USA) was 

used to assess P. tricornutum cell abundance during the whole course of the 

experiments. The instrument is equipped with two excitation laser beams emitting at 

488 and 640 nm. The flow cytometer measures chlorophyll red fluorescence (CHL, 

> 675 nm; channel FL3), orange fluorescence (PE, 585 ± 20 nm; channel FL2), green 

fluorescence (530 ± 15 nm; channel FL1), side scatter (SSC, light scattered by 

particles at 90° to the direction of the laser beam) and forward light scatter (FSC, light 

scattered by particles at narrow angles in the same direction as the laser beam). Their 

combination allows detecting different wavelength emission 

ranges [32]. Diatom density was estimated by the cytogram forward scatter (FSC) 

versus channel FL3, whereas side scatter (SSC) combined with the FL3 channel was 

used to estimate chlorophyll auto-fluorescence. The specific growth rate for each 

culture condition was calculated on the exponential portion of the growth curve, 

according to the equation of Monod [33]. It has been demonstrated that lipid 

fluorescence in microalgae estimated through the combination of Nile red staining and 

flow cytometry shows a positive correlation with the content of lipids quantified by thin 

layer chromatography [34]. We then performed flow cytometry analyses on the fixed 

cell after Nile red staining in order to assess neutral lipid content in P. tricornutum. In 

this case, the trigger signal was set up on FL2 fluorescence and combined with the 

SSC signal. For all measurements of cell density, chlorophyll and lipid fluorescence 

the cytometer flow rate was kept constant at 35 l min− 1. All data were normalized using 
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BD TruCount beads; a 50 ml aliquot containing a known number of beads diluted in 

ultrapure water (Carlo Erba Reagents, Milan, Italy) was added to each sample and the 

bead abundance and fluorescence measured simultaneously with those of the 

microalgae. Control of the cytometer, measurements of light scatter and fluorescence 

intensities, data storage in list mode format and subsequent data analysis were 

performed using the CFlow Plus software (BD Biosciences) with log amplification on a 

seven-decade scale. 

2.4. Epifluorescence microscopy 

In order to confirm the presence of oil bodies in AZD-8055 treated cells, fixed and Nile 

red-stained cells of P. tricornutum from each culture condition were observed under an 

epifluorescence microscope (Axiovert 200M, Carl Zeiss Microscopy GmbH, Jena, 

Germany) at an excitation wavelength of ≈ 480 nm. At least three random pictures per 

sample were acquired. Nile red and chlorophyll fluorescence were adjusted to the 

background a posteriori using the AxioVision image-processing software version 4.8.2-

SP2. 

2.5. Lipid extraction, quantification and productivity 

At day 5 of growth and for each culture condition, approx. 150 ml of cell culture was 

harvested by centrifugation at 3500g for 15 min at 4 °C in order to carry out lipid 

quantification. The pellets were directly resuspended in 3 ml of a chloroform/methanol 

mixture (2:1, v/v) and 0.2 ml of 1 mol l− 1 HCl and frozen at − 20 °C. This procedure 

prevents artefactual lipolysis that often occurs upon cell disruption. A freezing/thawing 

step followed by vigorous vortex stirring and sonication with 10 pulses for 10 times 

using an ultrasonicator (Sonic 671 Ruptor 250, OMNI International, Kennesaw, GA, 

USA) further allowed breaking the diatom cells. The samples were then mixed with 

0.5 ml of ultrapure water and stirred vigorously to complete lipid extraction. The 

mixtures were centrifuged at 1000g for 10 min at 4 °C to allow complete phase 

separation; the lower organic phase containing lipids was collected and dried over 

anhydrous MgSO4 to trap residual water. The clear organic phase was collected, 

transferred to a 5-ml glass vial and evaporated under a nitrogen stream. The dried lipid 

extracts were kept at − 20 °C before analysis. Neutral lipids were separated by thin 

layer chromatography on silica-coated quartz rods (SIII Chromarods) and detected by 

flame ionization using a MK-6 Iatroscan TLC-FID apparatus (Iatron Laboratories, 

Tokyo, Japan) as described previously [35]. Data acquisition and processing were 

performed using the i-Chromstar 6.3 integration software (SCPA GmbH, Bremen, 

Germany). The amounts of TAGs, free fatty acids 

(FFAs), monoacylglycerols (MAGs), diacylglycerols (DAGs) and free sterols were 

estimated from calibration curves established, respectively, with pure triolein, oleic 
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acid, 1-monoolein, 1,2(2,3)-diolein, [35] and cholesterol [36] as reference standards. 

Sterols were also separated by classical TLC and analyzed by gas chromatography 

coupled to mass spectrometry (GC–MS) for identification. Total lipid extracts were first 

loaded and separated on a thin-layer Silica Gel 60 plate (10 × 20 cm from Merck) using 

a hexane/diethyl ether/acetic acid (60:40:1; v/v/v) solvent mixture. The silica band 

corresponding to sterols on the TLC plate was scrapped and washed with 

chloroform/methanol (2:1 v/v) to recover the sterols. After solvent evaporation under 

nitrogen, sterols were derivatized using 100 μl Bis(trimethylsilyl)trifluoroacetamide 

(BSTFA) at 80 °C for 30 min. Samples were then analyzed by GC–MS using an Agilent 

Technologies HP 6980 gas chromatograph equipped with a (50%-phenyl)-

methylpolysiloxane (60 m × 0.25 mm ID × 0.25 μm film) DB-17MS column and a 

HP5973 mass spectrometer. Separation was achieved by injecting 1 μl of each 

derivatized sample. The carrier gas was helium at an input pressure of 119 kPa. The 

temperature of the split/splitless injector and interface was set at 280 °C. The oven 

temperature was kept at 57 °C for 2 min before ranging to 180 °C at a rate of 

20 °C/min, and then to 300 °C at a rate of 4 °C/min. Temperature was then held for 

30 min before returning to initial conditions. Mass analysis was performed with 

an electron impact (EI) source set at 70 eV and 280 °C, under SCAN mode from 70 to 

800 m/z, and with a quadrupole detector at 150 °C. Brassicasterol (Sigma-Aldrich 

B4936) was used as an external standard for quantification. Data were normalized to 

the cell dry weight measured from 50 ml of P. tricornutum sampled at the same time 

the cells were harvested for lipid analysis; the pellets were washed twice 

with ammonium bicarbonate 0.4 mol l− 1 to eliminate residual salts, dried overnight at 

80 °C (Thermo Fisher Scientific, Waltham, MA USA) and finally weighed with a 

precision scale. 

TAG productivity was calculated as described in Hempel et al. [37] using the following 

equation: 

PTAGmgl−1day−1=PBCf 

where PTAG is TAG productivity, PB is biomass productivity, calculated as biomass 

increase over time (g l− 1 day− 1), and Cf is TAG final concentration (% of dry 

weight) [37]. 

2.6. Protein extraction and enzyme assays 

About 250 ml of cells, at growth day 5 after AZD-8055 addition or N deprivation, were 

collected by centrifugation at 3500g for 15 min at 4 °C. The pellets were washed twice 

with Tris/EDTA buffer (30 and 4 mmol l− 1 respectively) at pH 7.9, then resuspended in 

Tris/EDTA buffer plus cysteine (5 mmol l− 1), NAD+ (0.1 mmol l− 1) and protease 

inhibitor cocktail (0.5 mg ml− 1; P2714, Sigma-Aldrich, Saint Louis, MO, USA). The cell 
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suspensions were sonicated for 4 cycles, 10/30 s on/off (Sonic 671 Ruptor 250, OMNI 

International, Kennesaw, GA, USA), and, after the addition of 10% glycerol, 

centrifuged at 12000g for 20 min at 4 °C. The crude extracts were used for both 

total protein quantification with the Bradford assay[38] and enzyme 

activity measurements. 

All enzyme assays were conducted at pH 7.7 in 50 mmol l− 1 glycylglycine, 

0.5 mmol l− 1EDTA, 50 mmol l− 1 KCl and 15 mmol l− 1 MgCl2. The activities 

of glyceraldehyde phosphate dehydrogenase (GAPDH), glucose-6-phosphate 

dehydrogenase (G6PDH) and malate dehydrogenase (MDH) were measured 

spectrophotometrically at 340 nm as described in Mekhalfi et al. [8]. 

2.7. Data analysis and statistics 

All graphs and statistical tests were performed with SigmaPlot version 11.0 (Systat 

Software, Chicago, IL, USA). Error bars correspond to standard deviations calculated 

on three biological and three technical replicates. Statistical significance was 

calculated using the analysis of variance (one-way ANOVA) followed by the Holm-

Šídák multiple comparisons test. 

3. Results 

3.1. AZD-8055 inhibits P. tricornutum growth in a dose-dependent manner 

The P. tricornutum genome contains a single TOR gene (Fig. S1). The motifs and 

amino acids of the ATP-binding pocket of the TOR kinase domain are highly conserved 

in P. tricornutum compared to mammals (Fig. S2), indicating that specific ATP-

competitive TOR inhibitors developed for mammalian cells should be potent in P. 

tricornutum. We tested AZD-8055 because this inhibitor is highly selective for TOR and 

is potent in a wide range of species, including plants and green algae [16,25]. Flow 

cytometry was used to directly measure the effect of AZD-8055 on cell proliferation. 

Treatment with AZD-8055 caused a clear inhibition of P. tricornutum cell proliferation 

in a dose responsive manner, with 30% inhibition at 2 and 4 μM and 80% inhibition at 

10 μM (Fig. 1A). The time course of the effects of AZD-8055 on P. tricornutum growth 

curves and doubling times are reported in comparison with N starvation (Fig. 1B 

and Table 1). The typical growth curve of P. tricornutum in the control showed a 3-day 

lag phase followed by four days of exponential growth. The average doubling time was 

17 ± 1 h−1 during the exponential phase. AZD-8055 did not appear to affect either the 

growth curve shape or the growth rate at concentrations up to 1 mol l− 1. AZD-8055 

concentrations of 2 and 4 mol l− 1 resulted in a modest, but reproducible, inhibition of 

growth and, unlike the control, these cultures had not yet reached the stationary phase 

after 5 days of cultivation (Fig. 1B and S3, Table 1). P. tricornutum growth was strongly 

and reproducibly affected by 10 mol l− 1 AZD-8055 with a doubling time of almost half 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glycerol
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/quantitative-proteomics
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bradford-protein-assay
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/bradford-protein-assay
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enzyme-assay
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/enzyme-assay
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glycylglycine
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glyceraldehyde-3-phosphate-dehydrogenase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glucose-6-phosphate-dehydrogenase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glucose-6-phosphate-dehydrogenase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/malate-dehydrogenase
https://www.sciencedirect.com/science/article/pii/S2211926416308037?via%3Dihub#bb0040
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/statistical-test
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mechanistic-target-of-rapamycin
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/kinase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/mammalian-cell
https://www.sciencedirect.com/science/article/pii/S2211926416308037?via%3Dihub#bb0080
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/flow-cytometry
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/flow-cytometry
https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/cell-growth
https://www.sciencedirect.com/science/article/pii/S2211926416308037?via%3Dihub#f0005
https://www.sciencedirect.com/science/article/pii/S2211926416308037?via%3Dihub#f0005
https://www.sciencedirect.com/science/article/pii/S2211926416308037?via%3Dihub#t0005
https://www.sciencedirect.com/science/article/pii/S2211926416308037?via%3Dihub#f0005
https://www.sciencedirect.com/science/article/pii/S2211926416308037?via%3Dihub#t0005


that of the control (Table 1) and a final density of 20% of the control, corresponding to 

80% inhibition of cell proliferation. N starvation had an even more drastic effect than 

10 mol l− 1 AZD-8055 with a doubling time 3 times longer than the control and a final 

density of only 5% of the control, corresponding to 95% inhibition of cell proliferation 

(Fig. 1B and Table 1). These results show that P. tricornutum cell proliferation can be 

robustly modulated using different concentrations of the TOR inhibitor AZD-8055. 

 

 
Fig. 1. AZD-8055 inhibits P. tricornutum cell proliferation in a dose-dependent manner. 

A) Dose-response curve for AZD-8055 (AZ). Means of three biological and three 

technical replicates are shown ± standard deviation. Asterisks indicate statistical 

significance with respect to the control (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). B) 

Growth curves with the corresponding cell densities. The arrow indicates the day at 

which the treatment as either DMSO or TOR inhibitor (AZ) addition or N starvation had 

started. 

Table 1. Growth rates and doubling times of P. tricornutum under AZD-8055 (AZ) 

treatment or N starvation. Means of three biological and three technical replicates are 
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shown ± standard deviation. Asterisks indicate statistical significance with respect to 

the control (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). 

 
Growth rate (days− 1) Doubling time (hours) 

DMSO 0.995 ± 0.073 16.79 ± 1.193 

AZ = 0.001 μM 1.005 ± 0.110 16.68 ± 1.761 

AZ = 0.01 μM 1.107 ± 0.076 15.07 ± 1.069 

AZ = 0.1 μM 1.077 ± 0.132 15.61 ± 2.037 

AZ = 1 μM 0.984 ± 0.101 17.02 ± 1.647 

AZ = 2 μM 0.759 ± 0.042⁎ 21.96 ± 1.213 

AZ = 4 μM 0.752 ± 0.100⁎ 22.40 ± 3.171 

AZ = 10 μM 0.559 ± 0.119⁎⁎⁎ 30.65 ± 6.333⁎ 

N starvation 0.329 ± 0.089⁎⁎⁎ 53.15 ± 14.58⁎⁎⁎ 

 

3.2. AZD-8055 promotes the accumulation of neutral lipids in lipid droplets 

Nile red staining was used to investigate variations in neutral lipid content by flow 

cytometry and fluorescence microscopy. The quantification of neutral lipids by Nile red 

fluorescence showed a strong correlation with the quantification of TAGs by TLC-FID 

(Peterson r = 0.97; Fig. S4), confirming the reliability of Nile red fluorescence as a fast 

and simple method to estimate neutral lipid abundance in microalgae, especially when 

handling large datasets [31,34]. Fluorescence analysis revealed that neutral lipid 

content did not vary in cells treated with AZD-8055 up to a concentration of 

1 mol l− 1 with respect to the control (Fig. 2A). In contrast, at higher concentrations of 

AZD-8055 (2, 4 or 10 mol l− 1), neutral lipid accumulation was rapidly triggered and the 

fluorescence signal reached almost 4-fold the level of the control after one day. Neutral 

lipid content continued increasing at these higher AZD-8055 concentrations and 

reached very similar values of about 20-fold higher at day 5. This increase in neutral 

lipids was less rapid for 2 mol l− 1 AZD-8055 than for 4 and 10 mol l− 1 showing a dose 

dependent effect on the timing of neutral lipid accumulation. N starved cells showed 

an earlier and higher accumulation of neutral lipids with a 10-fold higher signal than 

the control at day 1 and 100-fold higher at day 5. 
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Fig. 2. Effect of AZD-8055 and N starvation on neutral lipid fluorescence and lipid 

droplet accumulation. A) Lipid estimation after Nile red staining measured with the flow 

cytometer. The x axis depicts the days after treatment with either DMSO or AZD-8055 

(AZ) addition or after transfer into N-free medium. Means of three biological and three 

technical replicates are shown ± standard deviation. Asterisks indicate statistical 

significance with respect to the control (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). 

B) Fluorescence microscopy of P. tricornutum after Nile red staining at day 5. Lipid 

droplets are indicated by the yellow fluorescence, while the red fluorescence 

corresponds to chlorophyll auto-fluorescence. The scale bars correspond to 10 μm 

length in all pictures. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

These data were confirmed by fluorescence microscopy, which showed visible 

differences in the number and size of Nile red stained lipid droplets within cells (Fig. 

2B and S5). No lipid droplets could be observed in either the control or cells treated 

with up to 1 mol l− 1 of AZD-8055 (Fig. 2B and S5). On the contrary, in cells treated with 

AZD-8055 2, 4 and 10 mol l− 1, numerous small lipid droplets appeared from the first 

day of treatment (Fig. S5). By the end of the experiment (Fig. 2B), lipid droplets almost 

filled the interior of cells that had been treated with the highest concentration of AZD-
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8055. In cells subjected to N starvation, large lipid droplets developed after one day of 

treatment and became the most prevalent part of the cell by day 5. In summary, cells 

treated with 2 to 10 μM AZD-8055 progressively accumulated high levels of neutral 

lipids in droplets, and these changes did not occur as early or as strongly as in N 

starved cells. 

3.3. AZD-8055 enhances TAG productivity compared to N starvation 

Neutral lipids were extracted from early stationary phase cells collected at day 5 after 

addition of AZD-8055 or N starvation, separated, and quantified by TLC-FID. In 

agreement with flow cytometry and fluorescence microscopy data, TAG content (Fig. 

3A) did not change significantly in cells treated with AZD-8055 up to 

1 mol l− 1 compared to the control, where TAG represented 0.1% of total dry biomass. 

However, in cells treated with 2, 4 and 10 mol l− 1 of AZD-8055, TAG content reached 

3–7% of total dry biomass. It is also noteworthy that the TAG contents in cells treated 

with the three highest concentrations of AZD-8055 were not statistically different from 

each other. In accordance with the flow cytometry data, TAG content was considerably 

higher in N-starved cells (24% of total dry biomass). However, for biofuel applications 

the quantity of TAG expressed on a per cell basis or as a percentage of dry weight is 

not as important as the TAG productivity of the total culture. We found that TAG 

productivity started to increase around 1 mol l− 1 AZD-8055 and strongly increased to 

values almost 100 times higher than control cells in cells treated with 2 to 10 μM AZD-

8055. Strikingly, TAG productivity was much higher than for N-starved cells (about 3–

4 times higher; Fig. 3B). This higher TAG productivity can be explained by the fact that 

the TOR inhibitor did not affect cell proliferation as much as N starvation and allowed 

the accumulation of a greater total biomass. Indeed, TAG productivity is maximal at 

AZD-8055 concentrations that reduce cell proliferation to 40–50% of the control, while 

N starvation reduces cell proliferation to 5% of the control. 
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Fig. 3. Quantification of neutral lipid, sterols, and chlorophyll in batch cultures 5 days 

after addition of AZD-8055 (AZ) or N starvation. Neutral lipid and sterol content was 

estimated by TLC-FID analysis. A) Quantification of TAGs per culture batch relative to 

biomass. B) TAG productivity. C) Quantification of total sterols per culture batch 

relative to biomass. D) Chlorophyll auto-fluorescence. The means of three biological 

and three technical replicates are shown ± standard deviation. Asterisks indicate 

statistical significance with respect to the control (* = p < 0.05; ** = p < 0.01; 

*** = p < 0.001). 

3.4. AZD-8055 decreases sterol content 

TLC-FID analysis of other neutral lipids showed low levels of free fatty acids 

(FFAs), monoacylglycerols (MAGs) and diacylglycerols (DAGs) (below the limit of 

quantification, data not shown). Only total sterols of P. tricornutum could be quantified 

based on a calibration curve established with cholesterol (Fig. 3C). GC–MS analysis 

confirmed that P. tricornutum sterols were almost exclusively constituted 

of brassicasterol, whatever the conditions. Compared to the control, sterol content was 

almost unaffected in cells treated with concentrations of AZD-8055 at or below 

0.1 mol l− 1, but decreased significantly at AZD-8055 concentrations of 1, 2 and 

4 mol l− 1. Compared to the dose response curve of TAG content, the sterol dose 

response was shifted to lower AZD-8055 concentrations, suggesting that inhibition of 
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sterol accumulation precedes TAG accumulation. At an AZD-8055 concentration of 

10 mol l− 1, the level of sterols became too low to be quantified, as was also observed 

for cells under N starvation. High concentrations of AZD-8055 and N starvation, 

therefore, provoked a large decrease in total sterol/brassicasterol content while TAG 

accumulated. This reveals a correlation between the decrease in sterols and growth 

inhibition and an inverse correlation between the accumulation of TAGs and sterols. 

3.5. AZD-8055 reduces chlorophyll fluorescence more strongly than N starvation 

During the microscopic observation of Nile red stained cells, we observed 

less chlorophyll fluorescence from the chloroplasts of cells treated with high 

concentrations of AZD-8055 (Fig. 2B). This led us to analyze variations in P. 

tricornutum chlorophyll fluorescence in response to the treatment with AZD-8055 and 

N starvation (Fig. 3D). Chlorophyll fluorescence did not vary significantly in cells treated 

with AZD-8055 at concentrations up to 4 mol l− 1. However, at 10 mol l− 1 AZD-8055 the 

average chlorophyll fluorescence was significantly lower from the first day after 

treatment and progressively decreased to less than half the level of the control at day 

5. In cells subjected to N starvation, chlorophyll fluorescence decreased slightly but 

significantly 1 day after treatment and remained constant for the following days. 

Therefore, despite the more drastic growth inhibition, N starved cells maintained two-

fold higher chlorophyll fluorescence than cells treated with 10 μM AZD-8055. This 

higher chlorophyll fluorescence may at least partially explain why, although present, 

clear lipid droplets (bright yellow) were not visible in all N starved cells (Fig. 2B and 

S4). Interestingly, these data also show that high TAG productivity is not associated 

with higher chlorophyll content. 

 

3.6. Effect of AZD-8055 and N starvation on P. tricornutum metabolism 

 

The activity of several metabolic enzymes was analyzed after 5 days of AZD-8055 

treatment or N starvation. The activity of the NAD+-dependent glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) from glycolysis decreased significantly (> 2-fold) 

following AZD-8055 treatment (Fig. 4A) and showed a dose response effect from 

0.1 mol l− 1. On the contrary, GAPDH activity increased significantly under N 

starvation, suggesting that the two treatments may have different effects on glucose 

metabolism. The activity of malate dehydrogenase (MDH) from the Krebs cycle (Fig. 

4B) was not affected in cells treated up to 2 mol l− 1 AZD-8055 and increased 

significantly (2–3 fold higher than the control) in cells treated with the highest AZD-

8055 concentrations (4 and 10 mol l− 1) as well as in cells subjected to N starvation. 

The activity of glucose-6-phosphate dehydrogenase (G6PDH) from the pentose 

phosphate pathway (Fig. 4C) was not affected in cells treated with up to 4 mol l− 1 of 
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AZD-8055, but at 10 mol l− 1 of AZD-8055, we observed a significant increase of > 10-

fold with respect to the control. The increase in G6PDH activity under N starvation was 

similar to that obtained with the highest AZD-8055 concentration and was around 20-

fold higher than in the control. The different activities of GAPDH in cells treated with 

AZD-8055 or N-starvation are intriguing and suggest that, despite other similarities, 

these treatments may have distinct effects on the primary metabolism of P. 

tricornutum, although this needs further investigation. 
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Fig. 4. Activity of metabolic enzymes in crude extracts from P. tricornutum cells 5 days 

after AZD-8055 (AZ) treatment or N starvation. A) NAD+-dependent glyceraldehyde-3-

phosphate dehydrogenase(GAPDH), B) malate dehydrogenase (MDH) and 

C) glucose-6-phosphate dehydrogenase (G6PDH). The means of three biological and 

three technical replicates are shown ± standard deviation. Asterisks indicate statistical 

significance with respect to the control (* = p < 0.05; ** = p < 0.01; *** = p < 0.001). 

 

3.7. WYE-132, another specific ATP-competitive TOR inhibitor inhibits cell proliferation 

and promotes TAG accumulation in P. tricornutum 

 

We tested other TOR inhibitors to confirm that the effects of AZ-8055 on cell 

proliferation (Fig. 5A) and neutral lipid accumulation (Fig. 5B) are specific to the 

inhibition of TOR. We found that rapamycin (10 μM) did not have a significant effect on 

cell proliferation with respect to the control and did not induce lipid accumulation. 

Problems with the potency of rapamycin have been reported in 

other photosynthetic organisms and we did not test higher concentrations of rapamycin 

as it leads to precipitates that could preclude clear conclusions [25–27]. The selective 

ATP-competitive TOR inhibitor WYE-132, which has been shown to be highly potent 

in plants [25], drastically inhibited cell proliferation and induced neutral lipid 

accumulation. These results were similar to those obtained when cells are deprived of 

N or exposed to high concentrations of AZD-8055 (40 μM). This indicates that WYE-

132 is 10 times more potent than AZD-8055, as in plants [25], and that WYE-132 

causes similar effects on cell proliferation and neutral lipid accumulation. These results 

strongly suggest that these effects are a specific response to the direct inhibition of 

TOR. Our observation that high concentrations of TOR inhibitors strongly inhibit cell 

proliferation suggests that under these conditions P. tricornutum TOR is fully inhibited. 

However, neutral lipid accumulation reached similar values at 10 μM and 40 μM AZD-

8055 (Fig. 5B), suggesting that a concentration ≤ 10 μM is sufficient to induce a 

maximum effect on lipid synthesis without completely impairing cell proliferation. 
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Fig. 5. Effect of different inhibitors of TOR and N starvation on P. tricornutum cell 

proliferation and neutral lipid fluorescence. A) Growth curves with the corresponding 

cell densities. The arrow indicates the day at which the treatment started. B) Lipid 

estimation after Nile red staining measured with the flow cytometerat 5 days after 

treatment. Means of at least three biological replicates are shown ± standard deviation. 

Asterisks indicate statistical significance with respect to the control (* = p < 0.05; 

** = p < 0.01; *** = p < 0.001). (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

4. Discussion 

It is widely recognized that microalgae can produce large amounts of lipids under 

certain stress conditions, most notably nutrient limitation, and that they are attractive 

for biofuel production [3]. Nevertheless, while redirecting energy towards lipid 

synthesis, the stressed microalgae also interrupt cell division [14]. As a consequence, 
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the final lipid yield per culture is limited to the number of cells present when the lipid-

induction process is initiated, even though cells accumulate neutral lipids as a large 

part of their biomass. This is one of the reasons why the production of third generation 

biofuels on a large scale is still not economically viable. In this work, we investigated 

whether the inhibition of TOR, a key player in the control of metabolic homeostasis 

and lipid biosynthesis [15,39,40], could promote “get-fat growth” in P. tricornutum, a 

regime under which lipid accumulation is promoted while maintaining cell proliferation. 

Our work was the first attempt to inhibit the TOR kinase in a diatom. Rapamycin did 

not robustly inhibit P. tricornutum cell proliferation confirming that 

this allosteric inhibitor is generally less efficient in photosynthetic organisms than it is 

in yeast and mammalian cells[25]. The two specific ATP-competitive inhibitors of TOR, 

AZD-8055 and WYE-132, which have unrelated molecular structures and are potent in 

plants [25], inhibited P. tricornutumcell proliferation in accordance with the essential 

function of TOR in the regulation of cell growth and division, conserved in all 

organisms. Both TOR inhibitors also induced neutral lipid accumulation supporting the 

specificity of this response towards TOR inhibition. We focused our detailed analysis 

on AZD-8055 treatments because it has been shown to be effective in a large range 

of species of Viridiplantae including Arabidopsis thaliana, Nicotiana 

benthamiana, Lotus japonicus, Panicum miliaceum and Oryza sativa, [25] as well as 

in the microalga C. reinhardtii[16]. AZD-8055 is a potent ATP-competitive inhibitor of 

the mammalian TOR kinase that shows a high selectivity for mTOR and has almost no 

effect on other kinases including the closely related PIKK family members ATM, ATR 

and DNAPK[28]. Our demonstration here that AZD-8055 is potent in a diatom strongly 

suggests that AZD-8055 can be used to study the TOR pathway in evolutionary 

distantly-related organisms as inhibition proceeds through the active site of the kinase, 

which is usually conserved among species. Indeed, we report here that the kinase 

domain of P. tricornutumTOR is closer to the corresponding domain in mammals than 

even flowering plants (Fig. S1). Our phylogenetic data thus suggests that it was the 

TOR kinase of the bikont host that was retained after the secondary endosymbiosis of 

red algae. Treatment of P. tricornutum cells with AZD-8055 resulted in a reproducible 

dose dependent inhibition of cell proliferation (Fig. 1A). Inhibition of proliferation was 

accompanied by an increase in TAG (Fig. 3A) and a decrease in sterols (Fig. 3C) 

and chlorophyll fluorescence (Fig. 3D). A similar inverse relationship between TAG 

and sterol production has been reported in photosynthetic [41,42]and non-

photosynthetic organisms [43]. Sterols are usually more abundant during the 

exponential phase of cell growth when there is a high demand for lipids for membrane 

synthesis [44]. AZD-8055 caused a decrease in sterol levels even at concentrations 

that did not alter cell proliferation, suggesting that P. tricornutum sterol metabolism 
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may be highly sensitive to TOR activity (Fig. 3C). The most abundant and almost only 

sterol found in P. tricornutum is epibrassicasterol (24α-methylcholesta-5,22E-dien-3β-

ol or diatomsterol; [45]). Our data are in agreement with these findings and, while we 

found strong inhibition of free sterol accumulation in response to AZD-8055 and N-

starvation, we did not observe any changes in sterol composition. Interestingly, cells 

treated with 10 μM AZD-8055 had lower chlorophyll fluorescence than N-starved cells 

(Fig. 3D), despite a higher rate of proliferation. A study of A. thaliana plants treated 

with AZD-8055 reported the bleaching of leaves accompanied by the downregulation 

of genes involved in chlorophyll biosynthesis and an upregulation of genes involved in 

chlorophyll breakdown [46]. This suggests that the P. tricornutum TOR kinase has 

acquired similar functions to the plant TOR kinase in the control of chlorophyll 

metabolism, despite their different evolutionary histories. The AZD-8055 dose 

response curve also allowed us to reveal that AZD-8055 can promote a much higher 

TAG productivity than N starvation (Fig. 3B). This is because TAG could be induced at 

levels of AZD-8055 that reduced but did not stop proliferation as occurs in N starved 

cells. Recent studies show that the induction of TAG accumulation upon TOR 

inactivation appears to be a common trait in different types of organisms, both 

photosynthetic [15–18] and heterotrophic [47]. However, inhibition of TOR for the 

modulation of TAG productivity has not been clearly investigated. Indeed, the 

rapamycin concentration used to promote TAG accumulation in red and green algae 

almost completely inhibits cell proliferation [17,26,48]. Interestingly, rapamycin did 

slightly increase neutral lipids per cell in Euglena gracilis at a concentration that also 

had little effect on proliferation [18]. Taken together with our demonstration here that 

TAG productivity is promoted by treatment with AZD-8055 in P. tricornutum, this 

strongly suggests that increased TAG productivity may be a common response of 

algae to partial TOR inhibition. We looked for the effect of AZD-8055 on the activities 

of metabolic enzymes representative of central pathways for cell physiology. We 

measured the activity of GAPDHfrom glycolysis, of G6PDH from the oxidative pentose 

phosphate pathway and MDH from the Krebs cycle. Previous studies showed that 

these enzymes have a connection with lipid metabolism in nutrient limited 

microalgae [8,49,50]. Enzyme activities were measured in AZD-8055 treated cells and 

cells under N starvation to determine whether similar metabolic responses underlie 

TAG accumulation under these two conditions. The activity of GAPDH clearly 

decreased in AZD-8055 treated cells while it increased in response to N starvation. 

The increase in GAPDH activity under N-starvation is consistent with previous studies 

showing that the transcript levels of GAPDH_3, which encodes the cytosolic GAPDH, 

increase in response to N-starvation [51,52]. Increased GAPDH is also consistent with 

increased TAG accumulation because the final products of glycolysis 
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are ATP and pyruvate, the primary sources of energy and carbon for lipid 

synthesis [53]. It is therefore all the more surprising that AZD-8055 treatment 

simultaneously inhibited glycolysis and promoted TAG accumulation. The impaired 

glycolytic reactions under TOR inactivation, even at low concentrations of AZD-8055, 

suggest that the TOR signaling cascade may have a direct effect on sugar metabolism. 

A direct correlation between mTOR and glycolytic activity has been observed in 

different animal cell lines [54–57]. The activities of G6PDH and MDH, as for cell 

proliferation, were affected only at the highest concentrations of AZD-8055 and 

increased to values comparable with those of cells under N starvation. This is 

consistent with previous transcriptomics analyses showing increased accumulation of 

transcripts coding for enzymes of the Krebs cycle and the pentose phosphate pathway 

upon N starvation in P. tricornutum[51]. Furthermore, a correlation between the activity 

of G6PDH and MDH and TAG synthesis has previously been demonstrated [8,50]. The 

higher activity of G6PDH probably provides a stock of NADPH that could be used for 

lipid synthesis. On the other hand, a higher MDH activity may reflect a higher activity 

of the whole Krebs cycle, supplying the lipid biosynthesis pathway with carbon 

skeletons (e.g. citrate for the synthesis of cytosolic acetyl-CoA; [53]). In summary, the 

enzyme activity assays and measures of chlorophyll fluorescence show that AZD-8055 

treatment and N-starvation provoke both common and divergent metabolic responses. 

Notably, in animals and yeast TOR activity is inhibited by low nitrogen availability [57]. 

If this is also the case in P. tricornutum then it suggests that N starvation, in addition to 

also potentially inhibiting TOR, may also activate other signaling pathways to promote 

TAG accumulation. Further studies are, therefore, clearly required to better understand 

the different mechanisms that appear to orchestrate TAG production under TOR 

inhibition and N-starvation. 

As we have shown, AZD-8055 treatment has multiple effects on cell physiology and 

metabolism in P. tricornutum. In particular, we found that the specific TOR kinase 

inhibitor AZD-8055 had dose dependent effects on cell proliferation, lipid homeostasis, 

chlorophyll accumulation and carbon metabolism. The TOR pathway is still under study 

in plants and has so far received little attention in diatoms [58]. The direct targets of 

TOR involved in downstream signaling cascades, gene transcription, and protein 

synthesis remain to be discovered. Our finding that, in contrast to other TOR inhibitors, 

the inhibition of the TOR kinase at intermediate concentrations of AZD-8055 promotes 

high TAG productivity while reducing but not halting cell proliferation, paves the way 

for new studies on TOR signaling in diatoms as well as for the chemical and metabolic 

engineering of algae for high lipid production. 
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