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ABSTRACT: We present thermal noise measurements of a vibrating sphere close to microsized air bubbles in water with an 
atomic force microscope. The sphere was glued at the end of a cantilever with a resonance frequency of few kHz. The 
subangstrom thermal motion of the microsphere reveals an elastohydrodynamic coupling between the sphere and the air bubble.
The results are in perfect agreement with a model incorporating macroscopic capillarity and fluid flow on the bubble surface with 
full slip boundary conditions.

INTRODUCTION

Recently, much progress has been achieved for fluid flow in the
vicinity of solid−liquid interfaces.1−3 Colloidal probe atomic
force microscopy (AFM) is one of the techniques used to
characterize fluid flows on the nanoscale.3

Liquid−gas interfaces introduced by microsized air bubbles
in water are gaining increasing attention in the study of flow
dynamics, especially on the micro/nanoscale. Assuming the
shear stress continues at liquid−gas interfaces, the much lower
viscosity of the gas theoretically makes them behave as shear
free interfaces. As a result, liquid gas interfaces are thought to
be good candidates for perfect slipping interfaces.4−7 However,
Manor et al. have shown experimentally that the slip length at
liquid−gas interfaces is moderate (a few of tens of nanometers)
but not infinite, as expected.8−10 They measured the hydro
dynamic force between two bubbles approaching each other at
a constant velocity. In their analysis, they invoke the presence
of impurity that contributes to the dynamic of fluid transport at
the interfaces.
Maali et al. used a dynamic AFM to measure the

hydrodynamic forces near air−water interfaces.11 In their
experiment they measured the amplitude and phase of a
vibrating cantilever approaching the liquid gas interface, from
which the viscous and elastic hydrodynamic forces were
derived. They showed that in a frequency range of a few tens

of Hertz, the elastic force is due to the restoring effect of the
Marangoni flow induced by transported surface impurities. As a
consequence, the viscous hydrodynamic force shows a
crossover from nonslip boundary conditions at low frequency
to full slip boundary conditions at high frequency. Thanks to
these low frequency dynamic measurements, they succeeded in
evaluating the concentrations of surfaces impurities.
Although the increasing interest has been put on liquid−gas

interfaces to study boundary slip7−14 or contact line
dynamics,15 less is known about the dynamic response of
bubbles under external excitation. We report flow measure
ments at liquid gas interfaces using thermal noise AFM. The
resonance frequency of the cantilever, in the range of a few
kilohertz, exceeds by one order of magnitude the frequency
range for which the liquid−gas surface elasticity is driven by the
surfactant effect of surface impurities. In our experiments the
flow near the interface is described by the full slip boundary
conditions coupled to the elastic contribution of the capillary
response of the bubble.
A Maxwell viscoelastic model with a spring and dashpot in

series was used for modeling the hydrodynamic interaction
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between the sphere and the microsized bubbles. The
experimental results fit well with the proposed model.

MODELING OF THE HYDRODYNAMIC INTERACTION
Hydrodynamic Damping. The fluid flow is normally

described by continuity and Navies−Stokes equations. For low
Reynolds number fluid flow under lubrication approximation, it
can be written as
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where p is the liquid pressure and vz and vr are vertical and
radial velocities of fluid flow at radial and vertical location of r
and z in a cylindrical coordinate system. A schematic diagram of
hydrodynamic interaction measurement between a sphere and a
microsized bubble is shown in Figure 1. On the sphere surface

the radial velocity of the fluid must satisfy the nonslip boundary
conditions: vr(z = h) = 0 and vertical velocity is equal to the

velocity of the vibrating sphere: ω= = =v z h i Z( )z
Z
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Z is the instantaneous vertical position of the sphere. In Figure
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is called confinement thickness, where Reff

is the effective radius and is related to the radius of the sphere
Rs and the bubble Rb as Reff = RsRb/(Rs + Rb).

16 On the full slip
surface, we have the boundary conditions for the vertical and

radial velocities: η ==
∂ 0v z

z
( 0)r and vz(z = 0)=0.

The liquid−gas interface was prepared by depositing a
spherical bubble on polystyrene surface. A glass sphere glued at
the end of the AFM cantilever is positioned at distance d from
the bubble.
By integrating eq 1 with respect to z and using the boundary

condition, we get
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By integrating eq 2 with respect to z, we get the lubrication
equation
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By multiplying both sides of eq 4 by r and integrating twice
with respect to r, we get the expression of the hydrodynamic
pressure
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The hydrodynamic interaction force is given by the integral
of the hydrodynamic pressure over the substrate surface
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By comparing eq 6 to the hydrodynamic force defined by

γ γ ω= − = −F i ZZ
th H

d
d H , we obtain the expression of the

hydrodynamic damping for a full slip surface
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In a similar way, we can calculate the hydrodynamic force in the
case of the nonslip boundary conditions, vr(z = 0) = 0:

= − π ω ηF i Z R
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2

. The damping under the nonslip boundary

condition is four times that for the full slip one.16

Bubble Stiffness. The capillary deformation ξ of a bubble
is related to hydrodynamic pressure p(r) by the Laplace−
Young equation
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where the hydrodynamic pressure p(r) is given by eq 5 and σ is
the water surface tension. By substituting eq 5 into eq 8 and
integrating eq 8, we obtain
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Integrating again between r = 0 and r = Rb, where Rb is the
bubble radius, and assuming ξ(r = Rb) = 0, we get
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The bubble stiffness kb is defined as Fh = kbξ0, and from eqs 6
and 10, we get
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Note here that in the derivation of the bubble stiffness we have
assumed a flat bubble. This assumption is thought to be valid
because in our case the radius of the bubble is much larger than
the radius of the colloidal sphere.

Viscocapillary Interaction. The viscoelastic response of
bubbles can be modeled using the Maxwell model: spring and

Figure 1. Schematic diagram of the hydrodynamic interaction
measurement between a sphere and microsized bubble. The liquid−
gas interface was prepared by deposing a spherical bubble on
polystyrene surface. A glass sphere glued at the end of the AFM
cantilever is positioned at distance d from the bubble.
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dashpot (damping) in series (see Figure 2). In this simple 
model, the viscoelastic modulus is given by
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where γH is the damping coefficient of hydrodynamic
interaction calculated for a perfect slip solid surface and kb is
bubble stiffness.
By substituting eqs 7 and 11 into eq 12, the modulus of the

elastic component G′ and the dissipative component G″ of the
interaction can be given as
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From eqs 13a and 13b, one can expect that there should be two 
asymptotic behaviors
(1) Far from the bubble surface: ≫ ηω

σ
d R3

8
eff
2

, G′ ≫ G′′
(viscous regime) with

πηω
″ ≈G

R
d

3
2

eff
2

and

π ηω
σ

′ ≈
⎛
⎝⎜

⎞
⎠⎟G

R
d

R
R d

9 ( )
16

ln
2

eff
2 2

2
b
2

eff

(2) Close to the bubble surface: ≪ ηω
σ

d R3
8

eff
2

, G′ ≪ G′′
(elastic regime) with

πσ

ηω
′′ ≈ ⎡

⎣⎢
⎤
⎦⎥( )

G
d

R

32

3 ln R
R d

2

eff
2

2

2
b
2

eff

and

πσ′ ≈
( )

G
4

ln R
R d2

b
2

eff

Quality Factor and Resonance Frequency of the
Cantilever. For a vibrating colloidal cantilever close to
liquid−gas interfaces of bubbles, the motion equation z(t) of
the tip can be described using the oscillator model

γ* ̈ + ̇ + = +m z z k z F Fbulk c Noise h (14)

where m* is the effective mass of the cantilever, kc is the
cantilever force constant, γbulk is the bulk damping coefficient
far from the surface, FNoise is the random thermal noise force,
and Fh is the hydrodynamic interaction force between the
sphere and the bubble
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Thus the spectral density of the thermal noise can be given by17
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where c1 and c2 are two fitting constants and ωr(d) and Q(d)
are the resonance frequency and the quality factor at a distance
d from the bubble, respectively. They are related to the bulk
values by
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where the bulk values are given by ω = *r
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At enough large distance between the sphere and the bubble

( ≫ ηω
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) for which the capillary response can be neglected,

the resonance frequency and the quality factor reduce to
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EXPERIMENTAL METHODS AND RESULTS
In this study, the liquid−gas interface was prepared by placing a
spherical air bubble with a radius Rb = 220.0 ± 4.0 μm on PS surface
(substrate) using a microsyringe. The bubble radius was measured
with an optical microscope. The experiment was performed using an
AFM (Resolve, Bruker, USA). A spherical borosilicate particle (MO
Sci Corporation) with a radius Rs = 44.0 ± 0.8 μm was used. The
sphere was glued to the end of a silicon cantilever (NP, Bruker) using
epoxy (Araldite, Bostik, Coubert). The effective radius for hydro

Figure 2. Equivalent model of the viscoelastic response of the
microsized bubble: spring and dashpot in series.
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dynamic interaction on the bubble equals Reff = RsRb/(Rs + Rb) = 36.7
± 0.7 μm. After the sphere was glued to the end of the cantilever, the
cantilever stiffness was calibrated using the thermal noise method. The
obtained stiffness was kc = 0.35 ± 0.02 N/m. The bulk resonance
frequency, quality factor, and damping coefficient are found to be
ωr

bulk/2π = 3.48 ± 0.05 kHz, Qbulk = 4.7 ± 0.1, and γbulk = kc/
(ωr

bulkQbulk) = (3.4 ± 0.3) × 10−6 N m−1 s.
The AFM cantilever remained stationary during measurement in

this study. It was only driven by thermal noise. The maximum thermal
oscillation amplitude was <1.0 nm. Therefore, the influence of
cantilever oscillation on the separation distance can be neglected.
The distance between the sphere and the bubble was controlled by

the integrated stage step motor. Each separation distance was adjusted
by displacing the cantilever vertically using the step motor with
reproducibility <0.1 μm. The position at which the cantilever
deflection signal changed was taken as contact point, namely, the
zero separation distance.

The thermal noise signal of the cantilever deflection was acquired 
using an analog to digital (A/D) acquisition board (PCI 4462, 
National Instrument, USA) with a sampling rate of 80 kHz. With the 
data, the spectral density of the thermal noise was calculated. An 
example of the obtained thermal noise signal was shown in Figure 3.

At each distance between the bubble and the sphere, the spectral
density of the thermal noise was fitted using eq 18, through which the
quality factor and the resonance frequency can be obtained.

Besides liquid−air interfaces, here a mica surface was used to
provide hydrophilic solid−liquid interface for comparison.18−20 The
normalized quality factor (with respect to bulk values) versus the
distance for the colloidal probe on mica is shown in Figure 4A. The
damping on mica surface is given by 6πη Rs

2/d using a nonslip
boundary condition.18−20 The quality factor on mica can then be fitted

using the expression: = + πη
γ( )Q d Q( ) / 1 R

d
NS

bulk
6 s

2

bulk
(see Figure 4A).

The quality factor measured on the bubble is presented in Figure 4B,
which is different from the results on the mica surface. The quality
factor starts from a bulk value of 4.7 and decreases with the decreasing
separation distance between the bubble and the sphere. After the
quality factor reaches a minimum value, it begins to increase with
decreasing separation distance. At large separation the data coincide
with the theoretical curve calculated assuming full slip boundary
conditions on the bubble surface. This result is in agreement with the
study of Maali et al.11 Indeed the cantilever resonance frequency is
very large compared with the frequency that characterizes the
contribution of impurities to the flow νc = Π0/16πηReff, where Π0 is
the impurity surface pressure. (For a similar preparation protocol,
bubble deposited on polystyrene surface in pure water, the impurity
surface pressure value was estimated by Maali et al.11 to be Π0 ≈ 0.25
mN/m, and thus vc ≈ 135 Hz ≪ ωr

bulk/2π).
At small separation distance, the bubble elastic deformation

accommodates the motion of the sphere.21−24 This cancels the
viscous flow of the liquid, leading to the increased quality factor.

Moreover the viscocapillary hydrodynamic coupling induces a shift
of the resonance frequency of the cantilever, as expected by eq 20. The
change of resonance frequency of the colloidal probe with changing
separation distance is shown in Figure 5. The resonance frequency
increases sharply as the sphere is very close to the bubble surface.

CONCLUSIONS

The viscocapillary response of microsized air bubbles to
thermally driven vibrating spheres was investigated in this
study. By measuring thermal noise signal of the colloidal probe
attached to the AFM cantilever, the resonance frequency and
quality factor of the vibrating cantilever were obtained at
different separation distance between the sphere and the
bubble. The subangstrom thermal motion of the microsphere

Figure 3. Example of the thermal noise density spectra obtained for
the sphere at distance 14 μm from the bubble surface. The solid line is
the fitting curve by eq 18.

Figure 4. Normalized quality factor versus the distance fitted for different density spectra. (A) Result on mica surface. The data were fitted with
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dbulk

6
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2
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of the nonslip boundary condition (solid curve). (B) Results on the bubble surface. The dark solid lines are the

fitting curves using eq 19, and the green dotted line and the red dashed dotted line are the theoretical simulating curves for quality factor of the full
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reveals an elastohydrodynamic coupling between the sphere
and the air bubble. A mathematical model with a spring and
dashpot in series was developed. This model combines the
macroscopic capillarity and fluid flow on the bubble surface
with full slip boundary conditions. The experimental results fit
well with the theoretical predictions of the developed model.
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