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In non-linear autoregressive models, the time dependency of coefficients is often driven by a particular time-series which is not given and thus has to be estimated from the data. To allow model evaluation on a validation set, we describe a parametric approach for such driver estimation. After estimating the driver as a weighted sum of potential drivers, we use it in a non-linear autoregressive model with a polynomial parametrization. Using gradient descent, we optimize the linear filter extracting the driver, outperforming a typical grid-search on predefined filters.

INTRODUCTION

Autoregressive (AR) models are stochastic signal models which have been used for spectral estimation in a wide variety of fields, including geophysics, radio astronomy, speech processing, or neuroscience [START_REF] Kay | Spectrum analysis-a modern perspective[END_REF]. Since AR models are linear and stationary, they assume signal statistics to be constant over time, which is not sufficient in many applications.

To overcome this limitation, a large variety of non-linear AR models have been proposed, especially in audio signal processing and econometrics, to model fluctuations in mean, spectrum, or energy in the signal. The seminal work of Tong and Lim [START_REF] Tong | Threshold autoregression, limit cycles and cyclical data[END_REF] introduced the threshold AR (TAR) model, where a driving time series x acts as a switching mechanism between several AR models applied on the signal y. Several extensions have been developed to get a smoother transition between regimes, like exponential AR (EAR) [START_REF] Haggan | Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model[END_REF] or smooth transition AR (STAR) [START_REF] Sik | On estimating thresholds in autoregressive models[END_REF] models.

Concerning the driver x, some models consider it to be hidden, assuming for instance a Markov chain structure [START_REF] Hamilton | A new approach to the economic analysis of nonstationary time series and the business cycle[END_REF]. Such probabilistic inference is computationally intensive and cannot be evaluated on a validation set. In other models, a parametric approach enables model evaluation on a validation set, which makes model comparison easy. For instance, the driver can be a function of the signal y itself, as in self-exciting TAR (SETAR) [START_REF] Tong | Threshold autoregression, limit cycles and cyclical data[END_REF][START_REF] Dick Van Dijk | Smooth transition autoregressive models-a survey of recent developments[END_REF] model. A typical choice is x(t) = y(t-d) with a delay d > 0. The driver can also be optimized as a weighted average of several potential drivers [START_REF] Chen | On a threshold heteroscedastic model[END_REF][START_REF] Wu | Threshold variable determination and threshold variable driven switching autoregressive models[END_REF], before being used in a deterministic [START_REF] Chen | On a threshold heteroscedastic model[END_REF] or a probabilistic [START_REF] Wu | Threshold variable determination and threshold variable driven switching autoregressive models[END_REF] TAR model. The set of potential drivers can also be used directly to linearly parametrize the AR coefficients [START_REF] Grenier | Time-dependent ARMA modeling of nonstationary signals[END_REF][START_REF] Jachan | Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes[END_REF][START_REF] Spiridonakos | Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA (FS-TARMA) models-a critical survey[END_REF].

Our work builds upon driven AR (DAR) models [START_REF] Grenier | Estimating an AR model with exogenous driver[END_REF], which have been used in particular to estimate cross-frequency coupling (CFC) in neural time-series [START_REF] Dupré | Non-linear auto-regressive models for cross-frequency coupling in neural time series[END_REF]. In a word, CFC is an inter-frequency coupling phenomenon observed in electrophysiology signals, that is believed to play a central role in functional interactions between neural ensembles [START_REF] Jensen | Cross-frequency coupling between neuronal oscillations[END_REF].

DAR models use a polynomial parametrization over a single driver, which gives a continuous transition between regimes while allowing fast model estimation. The single driver is also essential for interpretability. A limitation of DAR models is the assumption that the driver is given. In practice, the driver is obtained by filtering an exogenous time-series, which requires to search for filter parameters over a grid of values [START_REF] Dupré | Non-linear auto-regressive models for cross-frequency coupling in neural time series[END_REF].

To soften this known-driver assumption, one could potentially add more drivers directly into DAR models, but that would lead to a very large number of degrees of freedom. Estimation would have high variance, making the risk of model overfit high. We would also lose the interpretability of the single driver, which is key in neuroscience applications.

Instead, we propose to build a weighted average of potential drivers as in [START_REF] Chen | On a threshold heteroscedastic model[END_REF][START_REF] Wu | Threshold variable determination and threshold variable driven switching autoregressive models[END_REF], and to use it as a single driver in the polynomial parametrization of DAR models [START_REF] Grenier | Estimating an AR model with exogenous driver[END_REF]. The optimization is thus separated into two steps: optimizing the driver, and optimizing the DAR model. For the former, we propose a fast optimization scheme based on quasi-Newton L-BFGS algorithm [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF]. For the latter, we refer the reader to [START_REF] Dupré | Non-linear auto-regressive models for cross-frequency coupling in neural time series[END_REF]. This paper is organized as follows. First we present the necessary background on DAR. Then we describe the driver decomposition and the proposed gradient descent optimization scheme. Finally we present an extensive validation on both simulations and electrophysiology signals.

DRIVEN AUTOREGRESSIVE MODELS

Let y be a univariate locally stationary signal, as defined in [START_REF] Dahlhaus | On the Kullback-Leibler information divergence of locally stationary processes[END_REF]. An autoregressive (AR) model states that y depends linearly on its own p past values, where p is the order of the model:

y(t) + p i=1 a i y(t -i) = ε(t) (1) 
for all t ∈ [p + 1, T ], where T is the length of the signal, and ε is the innovation (or residual) modeled with a Gaussian white noise:

ε(t) ∼ N (0, σ(t) 2 ).
To extend this AR model to a non-linear model, one can assume that the AR coefficients a i are non-linear functions of a given exogenous signal x, here called the driver. As proposed in [START_REF] Grenier | Estimating an AR model with exogenous driver[END_REF], we consider these non-linear functions to be polynomials:

a i (t) = m k=0 a ik x(t) k (2) 
This parametrization allows the instantaneous AR model to smoothly change between different regimes, following the fluctuations of the driver x.

However, since the model is based only on the driver's value, it does not disentangle the ascending phase from the descending phase of the driver. To fix this issue and obtain phase invariance, the parametrization can be improved using a complex-valued driver x = x re + jx im [START_REF] Dupré | Non-linear auto-regressive models for cross-frequency coupling in neural time series[END_REF]. The parametrization is now:

a i (t) = 0≤k+l≤m a ikl x re (t) k x im (t) l = A i X(t) (3) 
where

A i , X(t) ∈ R m and m = (m + 1)(m + 2)/2.
To improve stability of the estimation, we ortho-normalize the basis {x k re x l im } 0≤k+l≤m , which changes (3) into:

a i (t) = A i GX(t) (4) 
with G ∈ R ( m, m) such that (GX(t)) t∈Θ is composed of orthogonal and unit-norm vectors. We use Gram-Schmidt process to build G.

To allow general power fluctuation over the entire spectrum, the innovation variance is also parametrized by the driver:

log(σ(t)) = 0≤k+l≤m b kl x re (t) k x im (t) l k = B GX(t) (5)
This model is called a driven AR (DAR) model [START_REF] Dupré | Non-linear auto-regressive models for cross-frequency coupling in neural time series[END_REF]. A different parametrization can be found in [START_REF] Dupré | Parametric estimation of spectrum driven by an exogenous signal[END_REF], which guarantees stability of the instantaneous AR models. Model parameters (A 0 , ..., A p , B) are estimated by maximizing the model likelihood, and inference is very fast. See [START_REF] Dupré | Non-linear auto-regressive models for cross-frequency coupling in neural time series[END_REF] for more details.

DRIVER ESTIMATION

Driver decomposition

In DAR models, the driver x is assumed to be known, but it might not be the case in practice. To have a weaker assumption, we assume here that the driver can be decomposed into a finite set of signals, as in [START_REF] Chen | On a threshold heteroscedastic model[END_REF][START_REF] Wu | Threshold variable determination and threshold variable driven switching autoregressive models[END_REF]:

x(t) = N n=1 α n x n (t) (6) 
This set of potential drivers can be, for instance, a Fourier basis x n (t) = exp(j2πnt), or a Gabor dictionary [START_REF] Hans | Gabor analysis and algorithms: Theory and applications[END_REF]. Another choice is to use a set of delayed signals

x n (t) = z(t -n) with -M ≤ n ≤ M .
In this case, the coefficients α n define a linear filter applied on z. We used this set in our experiments. Importantly, we do not use this set of drivers x n to linearly parametrized AR coefficients as in [START_REF] Grenier | Time-dependent ARMA modeling of nonstationary signals[END_REF][START_REF] Jachan | Time-frequency ARMA models and parameter estimators for underspread nonstationary random processes[END_REF][START_REF] Spiridonakos | Non-stationary random vibration modelling and analysis via functional series time-dependent ARMA (FS-TARMA) models-a critical survey[END_REF]. Instead, we use the weighted sum x in a DAR model, i.e. in polynomial expressions for AR coefficients and innovation variance.

Model likelihood

We estimate the optimal weights α n by maximizing the likelihood L of the model:

L = T t=p+1 1 2πσ(t) 2 exp - ε(t) 2 2σ(t) 2 (7) 
-2 log(L) = T log(2π) + T t=p+1 ε(t) 2 σ(t) 2 + 2 T t=p+1 log(σ(t))
Using an alternating optimization approach, we optimize DAR model parameters (A 0 , ..., A p , B) while keeping the driver fixed, and optimizing the driver weights α n while keeping the DAR model fixed. As this problem is non-convex, weights initialization is key to find good local minima. Optimizing the driver weights can be done with various optimization algorithms. Here, we choose the quasi-Newton L-BFGS algorithm [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF], which only requires to compute gradients. The filters extracting the drivers were optimized by gradient descent, using either several bandpass filter initializations or some random initializations. All bandpass filter initializations with center frequency ranging from 2 Hz to 8 Hz gave optimal and comparable likelihoods. Filter order (495, 247, 123, 61) respectively correspond to bandwidths (0.8, 1.6, 3.2, 6.4) Hz.

Gradient of the log-likehood

The gradient with respect to the weights reads: 

∂ log L ∂α n = - t∈Θ ε(t) σ(t) 2 ∂ε(t) ∂α n + (1 - ε(t) 2 σ(t) 2 ) ∂ log σ(t
Let's note x when an expression is similar for both x re and x im . From equations ( 1), (3), and (5), we obtain:

∂ε(t) ∂x = p i=1 A i G ∂X(t) ∂x y(t -i) (10) 
∂ log σ(t) ∂x = B G ∂X(t) ∂x (11) 
Finally, we can rewrite:

∂ log L ∂α n = - t∈Θ (x re,n (t)g re (t) + x im,n (t)g im (t)) (12)
with Computing the gradient involves O(T p m) operations to compute g , and O(T N ) operations to compute the gradient in [START_REF] Grenier | Estimating an AR model with exogenous driver[END_REF]. In the special case x ,n (t) = z (t -n), we can rewrite [START_REF] Grenier | Estimating an AR model with exogenous driver[END_REF] into a convolution, which can be performed in O(T log(T )) using the fast Fourier transform.

g (t) = ε(t) σ(t) 2 ∂ε(t) ∂x + (1 - ε(t) 2 σ(t) 2 ) ∂ log σ(t) ∂x ( 

Adding a symmetry constraint

In the special case x n (t) = z(t -n), if we want to make sure the filter is zero-phase, we just need to make the filter symmetric. We rewrite the driver as x = α 0 x 0 + M n=1 α n (x n +x -n ), where N = 2M + 1. The gradient is simply updated into ∂x ∂αn = x n + x -n if n > 0 and ∂x ∂αn = x 0 if n = 0.

RESULTS

Simulations

We created simulated signals with artificial coupling between a driver and a sinusoid. The signals are sampled at f s = 240 Hz, and have a length T = 10 5 . We first created a driver x by filtering a Gaussian white noise with a filter w(t) = b(t) exp(2jπf x t), where b is a Blackman window of order 2 1.65f s /∆f x + 1, chosen to have a bandwidth of ∆f x at -3 dB.

This driver x was then used to modulate the amplitude of a sinusoid y(t) = s(x re (t)) sin(2πf y t) where s is a sigmoid function. The modulated sinusoid and the driver were summed up, along with some noise. The noise was pink with a frequency slope f -2 above 3 Hz and a plateau below 3 Hz, to mimic electrophysiology signals. The amplitude of the three signals were chosen to have a signal-to-noise ratio (SNR) of 5 dB at f x and of 20 dB at f y . Importantly, we do not use a DAR model to simulate such data.

We compared different choices of driver, using DAR models of order (p, m) = (10, 2), and comparing their negative Filter order good init rand init Gradient descent ∆f x = 0.8 Hz ∆f x = 1.6 Hz ∆f x = 3.2 Hz ∆f x = 6.4 Hz Lowpass 20 Hz Linear AR Fig. 4. Same as Fig. 2, but using a bimodal driver at 5 and 14 Hz. The gradient descent strategy gave better results than grid-search, when the initial filter was not too poor.

log-likelihood on a validation set using cross-validation. We split the signal into 10 parts of equal size, fitted a DAR model on 5 random parts, and estimating the negative log-likelihood on the 5 other parts, and repeating this process 10 times. To fit the models, we first separated the low frequencies from the high frequencies using a low-pass filter at 20 Hz, which gave z and y respectively. We extracted the driver x from z using different strategies described below, and fitted DAR models on signal y with driver x.

The first strategy was grid-search, which searched over a set of bandpass filters as described above. The second strategy used the proposed gradient descent to optimize freely the filter extracting the driver. In this strategy, we used different initializations, since the problem is non-convex and thus may lead to different local minima. Initial filters where either bandpass filters as in the first strategy with center frequency ranging from 2 Hz to 8 Hz, or random filters generated with Gaussian white noise. We also compared with the entire low-pass filter z, and with a linear AR which uses no driver.

The first simulation used a single-band (f x , ∆f x ) = (5, 3) ground-truth driver, and results are presented in Fig. 2 and3. Both strategies gave the same best results. We also observed that gradient descent converged to about the same loglikelihood for a large set of reasonable initializations. However, if the initialization does not capture CFC, the optimization leads to poorer results (yet better than the linear AR, even on the validation set). Best in gradient descent Best in grid search Lowpass filter Linear AR Fig. 6. Same as Fig. 3, but using a bimodal driver. With a more complex spectral structure, the gradient descent strategy gives much better results than the grid search one, which is limited to single mode bandpass filters.

The second simulation used a bimodal ground-truth driver, built as the sum of two drivers x = x 1 + 0.4x 2 , filtered respectively with (f x1 , ∆f x1 ) = (5, 3) and (f x2 , ∆f x2 ) = [START_REF] Jensen | Cross-frequency coupling between neuronal oscillations[END_REF][START_REF] Haggan | Modelling nonlinear random vibrations using an amplitude-dependent autoregressive time series model[END_REF]. Results are presented in Fig. 4 and6. In this case, the gridsearch strategy could not correctly capture the two bands, and chose a large filter centered at 10 Hz. It performed only marginally better than the full low-pass signal z. In contrast, the optimization by gradient descent correctly captured the two bands, leading to much better results.

Empirical data

We also validated our approach on empirical electrophysiology data containing CFC. The signal is an electro-corticogram (ECoG) channel, recorded on human auditory cortex [START_REF] Canolty | High gamma power is phase-locked to theta oscillations in human neocortex[END_REF]. It lasts 730 seconds and is sampled at 333.8 Hz. The results presented in Fig. 5 show that the gradient descent strategy leads to a lower negative log-likelihood than the grid-search strategy. In this case, the difference could be related to an asymmetrical shape of the driver spectral peak at 4 Hz.

CONCLUSION

In this work, we describe how to estimate the driving signal in non-linear time-dependent autoregressive models. By decomposing the driver as a weighted average of potential drivers, we are able to optimize the weights by gradient descent. As a special case, we infer the linear filter to apply to an exogenous signal in order to obtain the driver, and demonstrate the good performance of such driver on both simulated and empirical data, using cross-validation.
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Fig. 1 .

 1 Fig. 1. Driven power spectral density of a DAR model fitted on electrophysiology data. The driver's phase is synchronized with a strong amplitude fluctuation around 80 Hz. This phenomenon is known as cross-frequency coupling (CFC).

8 Fig. 2 .

 82 Fig.2. Negative log-likelihood of DAR models fitted with different drivers (lower is better) and evaluated on a validation set. (Left) Grid search: The drivers were bandpass filtered at center frequency f x with a bandwidth ∆f x . (Right) Gradient descent: The filters extracting the drivers were optimized by gradient descent, using either several bandpass filter initializations or some random initializations. All bandpass filter initializations with center frequency ranging from 2 Hz to 8 Hz gave optimal and comparable likelihoods. Filter order (495, 247, 123, 61) respectively correspond to bandwidths (0.8, 1.6, 3.2, 6.4) Hz.

Fig. 3 .

 3 Fig. 3. Comparison of 4 models: 3 DAR fitted with different drivers, and 1 linear AR for reference. Both gradient descent and grid search strategies give comparable results, which are much better than when using the driver on the entire band [0, 20] Hz. (Left) Negative log-likelihood on a validation set (lower is better). (Right) Power spectral density of the best driver for each strategy.

Fig. 5 .

 5 Fig.5. Same as Fig.3, using electrophysiology data. Gradient descent strategy leads to better results than grid-search.