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UNIQUENESS OF AXISYMMETRIC VISCOUS FLOWS ORIGINATING

FROM POSITIVE LINEAR COMBINATIONS OF CIRCULAR VORTEX

FILAMENTS

GUILLAUME LÉVY AND YANLIN LIU

Abstract. Following the recent papers [9] and [10] by T. Gallay and V. S̆verák, in the line

of work initiated by H. Feng and V. S̆verák in their paper [3], we prove the uniqueness of a
solution of the axisymmetric Navier-Stokes equations without swirl when the initial data is
a positive linear combination of Dirac masses.
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1. Introduction

In 3-D ideal fluids, a vortex ring is an axisymmetric flow whose vorticity is entirely con-
centrated in a solid torus, which moves with constant speed along the symmetry axis. See
[1, 4, 5, 6] for the existence of vortex ring solutions to the 3-D Euler equations.

However, for viscous fluids, the vortex ring solutions can not exist, since all localized
structures will be spread out by diffusion. Thus it is natural to consider the Navier-Stokes
equations with a vortex filament, and more generally with positive linear combinations of
circular vortex filaments which have a common axis of symmetry as initial data.

To state this precisely, let us start with the Navier-Stokes equations in R
3

(1.1) ∂tu+ u · ∇u−∆u+∇p = 0, div u = 0, (t, x) ∈ R
+ ×R

3,

where u(t, x) = (u1, u2, u3) stands for the velocity field and p the scalar pressure function of
the fluid, which guarantees that the velocity field remains divergence free.

In the following, we restrict ourselves to the axisymmetric solutions without swirl of (1.1),

for which the velocity field u and the vorticity ω
def
= curlu take the particular form

u(t, x) = ur(t, r, z)er + uz(t, r, z)ez , ω(t, x) = ωθ(t, r, z)eθ ,

where (r, θ, z) denotes the cylindrical coordinates in R
3 so that x = (r cos θ, r sin θ, z), and

er = (cos θ, sin θ, 0), eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1), r =
√

x21 + x22.

In view of [9], we equip the half-plane Ω = {(r, z)|r > 0, z ∈ R} with the measure drdz.
More precisely, for any measurable function f : Ω → R, we denote

‖f‖Lp(Ω)
def
=
(∫

Ω
|f(r, z)|pdrdz

) 1
p
< ∞, 1 ≤ p < ∞,

and ‖f‖L∞(Ω) to be the essential supremum of |f | on Ω. For notational simplicity, we shall
always denote a generic point in Ω by x = (r, z).
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2 G. LÉVY AND Y. LIU

Recalling the axisymmetric Biot-Savart law discussed in Section 2 of [9], we know that for
any given ωθ ∈ L1(Ω) ∩ L∞(Ω) which vanishes on r = 0, the linear elliptic system




∂ru

r +
1

r
ur + ∂zu

z = 0, ∂zu
r − ∂ru

z = ωθ, on Ω,

ur|r=0 = 0, ∂ru
z|r=0 = 0,

has a unique solution (ur, uz) ∈ C(Ω)2 vanishing at infinity. We denote this solution by
u = BS[ωθ]. Hence we only need to study the equation for ωθ:

(1.2) ∂tω
θ + (ur∂r + uz∂z)ω

θ − urωθ

r
= (∂2

r + ∂2
z +

1

r
∂r −

1

r2
)ωθ.

Now let us discuss the initial condition. We first recall from [9] that, the axisymmetric
vorticity equation (1.2) is globally well-posed whenever the initial vorticity is in L1(Ω). As a
natural extension, then they considered the initial vorticity in M(Ω), which denotes the set
of all real-valued finite regular measures on Ω, equipped with the total variation norm

‖µ‖tv def
= sup

{∫

Ω
φdµ

∣∣∣φ ∈ C0(Ω), ‖φ‖L∞(Ω) ≤ 1
}
,

where C0(Ω) denotes the set of all real-valued continuous functions on Ω that vanishes at
infinity and on the boundary ∂Ω. It is also proved in [9] that (1.2) is globally well-posed if
the initial vorticity µ is in M(Ω) whose atomic part is small enough.

As mentioned in the first paragraph of the introduction, we focus here on the particular
case

µ =

n∑

i=1

αiδxi ,

where αi is some positive constant and δxi is the Dirac mass at point xi = (ri, zi) ∈ Ω with
ri > 0. Such a µ is purely atomic and we deduce from [9] that (1.2) is global well-posed
provided that

‖µ‖tv =

n∑

i=1

αi

is small enough. On the other hand, for arbitrary positive values of αi, [3] gives the existence
of a global mild solution, and [10] proves the uniqueness when n = 1. In this paper, we prove
the uniqueness for general n. Our result can be stated as follows:

Theorem 1.1. Fix an integer n. Let

µ =

n∑

i=1

αiδxi ,

where αi is some positive constant and δxi is the Dirac mass at point xi = (ri, zi) ∈ Ω with
ri > 0. Then (1.2) has a unique global solution ωθ in C

(
]0,∞[, L1(Ω) ∩ L∞(Ω)

)
in the mild

sense (see Definition 2.1), satisfying

(1.3) sup
t>0

‖ωθ(t)‖L1(Ω) < ∞, and ωθ(t)drdz ⇀ µ as t → 0.

Moreover, there exists some constant C0 depending only on (αi, xi)
n
i=1, such that whenever√

t ≤ 1
2 min
1≤i<j≤n

{
|xi − xj|, ri

}
, there holds the following short time estimate:

(1.4)
∥∥∥ωθ(t, ·)− 1

4πt

n∑

i=1

αie
− |·−xi|

2

4t

∥∥∥
L1(Ω)

≤ C0

√
t| ln t|.
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Let us end this section with some notations. We use C (resp. C0) to denote some absolute
positive constant (resp. some positive constant depending on (αi, xi)

n
i=1), which may be

different in each occurrence. f . g means that there exists some constant C such that f ≤ Cg.
For a Banach space B, we shall use the shorthand ‖u‖Lp

TB for the norm
∥∥‖u(t, ·)‖B

∥∥
Lp(0,T )

.

2. Decomposition of the solution

In order to use the uniqueness result for the case when the initial measure is one single
Dirac mass which has been proved in [10], a natural thought is to decompose the solution
into n parts:

ωθ =

n∑

i=1

ωθ
i ,

according to the decomposition of the initial measure

µ =

n∑

i=1

αiδxi .

The nonlinearity of the equation (1.2) renders this idea nontrivial to implement. The strategy
is to use the fundamental solution of some advection-diffusion equation. This will be done in
the first subsection.

The purpose of the second subsection will be to show that, at least for short times, ωθ
i is

very close – in the L1(Ω) sense – to the Oseen vortex located at xi with circulation αi. This
goal will be achieved using self-similar variables around the point xi.

2.1. The linear semigroup and the trace of the solution at initial time. Let us denote
by
(
S(t)

)
t≥0

the evolution semigroup defined by the linearized system of (1.2), namely

(2.1)




∂tω

θ −
(
∂2
r + ∂2

z +
1

r
∂r −

1

r2
)
ωθ = 0, (t, r, z) ∈ R

+×Ω,

ωθ|r=0 = 0, ωθ|t=0 = ωθ
0.

One can see Section 3 of [9] for a detailed study of this semigroup.
By using

(
S(t)

)
t≥0

, we can define the mild solutions of (1.2) in the following way:

Definition 2.1. Let T > 0, we say that ωθ ∈ C
(
]0, T [, L1(Ω) ∩L∞(Ω)

)
is a mild solution of

(1.2) on ]0, T [, if for any 0 < t0 < t < T , there holds the following integral equation

(2.2) ωθ(t) = S(t− t0)ω
θ(t0)−

∫ t

t0

S(t− s) div∗
(
u(s)ωθ(s)

)
ds.

Here u = BS[ωθ] and div∗
(
uωθ

) def
= ∂r(u

rωθ) + ∂z(u
zωθ).

Before proceeding further, let us recall some a priori estimates for the mild solution.

Lemma 2.1. Let ωθ be a mild solution of (1.2) on (0, T ) satisfying (1.3), u = BS[ωθ]. It is
shown in Estimates (2.13), (2.14) of [10] that, for any t ∈]0, T [, and any k, ℓ ∈ N, there holds

(2.3) tk+
ℓ
2
+ 1

2‖∂k
t ∇ℓ

xu(t)‖L∞(Ω) + t
3
2 ‖∇ωθ(t)‖L∞(Ω) ≤ C0.

Moreover, we can deduce from Estimate (9) of [9] that

(2.4) lim
t→0

t1−
1
p ‖ωθ(t)‖Lp(Ω) = 0, for any 1 < p ≤ ∞.
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Combining the conclusions of Corollary 2.9, 2.10 and Remark 2.11 in [10], we prove the
following.

Proposition 2.1. For any T > 0, if ωθ ∈ C
(
(0, T ), L1(Ω) ∩ L∞(Ω)

)
is a mild solution of

(1.2) on (0, T ) satisfying (1.3), then for any t ∈ (0, T ) and (r, z) ∈ Ω, we have

(2.5) ωθ(t, r, z) ≥ 0, ‖ωθ(t)‖L1(Ω) ≤ ‖µ‖tv and lim
t→0

‖ωθ(t)‖L1(Ω) = ‖µ‖tv.

Moreover, for any bounded and continuous function φ on Ω, there holds the convergence

(2.6)

∫

Ω
φ(r, z)ωθ(t, r, z) drdz →

∫

Ω
φdµ, as t → 0.

Noting that although the initial measure µ is no longer a single Dirac mass as considered in
[10], it is still supported in

[
min
1≤i≤n

ri, max
1≤i≤n

ri
]
×R. Thus the estimates of Proposition 3.1, 3.3

and then Lemma 3.8 in [10] still hold for the case here. Precisely, we have

(2.7)

∫ T

0
‖ur(t)/r‖L∞(Ω) dt ≤ C0.

Next, let us state a particular case of Aronson’s pioneering work [2] on the fundamental
solution of parabolic equations, which will be a key ingredient in our decomposition.

Proposition 2.2 (Proposition 3.9 of [10]). Assume that U, V : (0, T ) × R
3 → R

3 are
continuous functions such that divU(t, ·) = 0, for all t ∈ (0, T ) and

sup
0<t<T

t
1
2 ‖U(t, ·)‖L∞(R3) = K1 < ∞,

∫ T

0
‖V (t, ·)‖L∞(R3) dt = K2 < ∞.

Then the regular solutions of the following type advection-diffusion equation

(2.8) ∂tf + U · ∇f − V f = ∆f, x ∈ R
3, t ∈ (0, T ),

can be represented in the following way:

f(t, x) =

∫

R
3
ΦU,V (t, x; s, y)f(s, y) dy, x ∈ R

3, 0 < s < t < T,

where ΦU,V is the (uniquely defined) fundamental solution, which is Hölder continuous in

space and time, and satisfies, for all x, y ∈ R
3 and 0 < s < t < T , that

(2.9) 0 < ΦU,V (t, x; s, y) ≤
C

(t− s)
3
2

exp
(
−|x− y|2
4(t− s)

+K1
|x− y|√
t− s

+K2

)
.

It is easy to derive the evolution equation for ω = ωθ(t, r, z)eθ from (1.1) that

(2.10) ∂tω + u · ∇ω − r−1urω = ∆ω, x ∈ R
3, t ∈ (0, T ),

which is exactly of the form (2.8) with U = u, V = r−1ur. In view of (2.3) and (2.7), the
conditions of Proposition 2.2 are satisfied. Thus this ω can be represented as

ω(t, x) =

∫

R
3
Φ(t, x; s, y)ω(s, y) dy, x ∈ R

3, 0 < s < t < T.

From which, we can deduce that ωθ satisfies

(2.11) ωθ(t, r, z) =

∫

Ω
Φ̃(t, r, z; s, r′, z′)ωθ(s, r′, z′) dr′dz′, 0 < s < t < T,
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where

Φ̃(t, r, z; s, r′, z′) =
∫ π

−π
Φ
(
t, (r, 0, z); s, (r′ cos θ, r′ sin θ, z′)

)
· r′ cos θ dθ.

Using the Gaussian upper bound (2.9) of the fundamental solution Φ, we get

Lemma 2.2 (Lemma 3.10 of [10]). For any η ∈]0, 1[ and 0 < s < t < T , there exists some
positive constant Cη,α depending only on the choice of η and (αi)

n
i=1, such that

(2.12) 0 < Φ̃(t, r, z; s, r′, z′) ≤ Cη,α

t− s

∣∣∣r
′

r

∣∣∣
1
2
H̃
( t− s

(1− η)rr′

)
e
− 1−η

4(t−s)

(
(r−r′)2+(z−z′)2

)
,

where H̃ : (0,∞) → R is decreasing with H̃(τ) → 1 as τ → 0 and H̃(τ) ∼ 1/
√
πτ as τ → ∞.

Let us write (2.11) in the following way

ωθ(t, r, z) =

∫

Ω
Φ̃(t, r, z; 0, r′, z′)ωθ(s, r′, z′) dr′dz′

+

∫

Ω

(
Φ̃(t, r, z; s, r′, z′)− Φ̃(t, r, z; 0, r′, z′)

)
ωθ(s, r′, z′) dr′dz′.

In view of the Hölder continuity and Gaussian upper bound (2.9) of the fundamental solution

Φ, we deduce that Φ̃ is continuous whenever 0 < s < t < T . Combining this with the facts

that Φ̃ is bounded as shown in (2.12), and ‖ωθ(t)‖L1(Ω) ≤ ‖µ‖tv as shown in (2.5), we know
the second integral in the right-hand side converges to 0 as s tends to 0. On the other hand,

since Φ̃ is continuous and bounded, we can use (2.6) to derive the limit of the first integral
as s tends to 0, and we finally obtain the following useful representation:

ωθ(t, r, z) =

∫

Ω
Φ̃(t, r, z; 0, r′, z′) dµ.

Recalling µ =
n∑

i=1
αiδxi , we can obtain the decomposition for ωθ as follows:

(2.13) ωθ(t, r, z) =
n∑

i=1

ωθ
i (t, r, z), where ωθ

i (t, r, z) = αiΦ̃(t, r, z; 0, ri, zi),

and the corresponding decomposition for u = BS[ωθ]:

(2.14) u(t, r, z) =

n∑

i=1

ui(t, r, z), where ui = BS[ωθ
i ].

It is easy to see that ωθ
i ∈ C

(
]0, T [, L1(Ω) ∩ L∞(Ω)

)
is a mild solution of

(2.15)




∂tω

θ
i + u · ∇ωθ

i −
(
∂2
r + ∂2

z +
1

r
∂r −

1

r2
)
ωθ
i = 0, (t, r, z) ∈]0, T [×Ω,

ωθ
i ⇀ αiδxi as t → 0.

Moreover, we have the following estimates for ωθ
i .

Proposition 2.3. i) For any η ∈]0, 1[, (r, z) ∈ Ω and 0 < t < T , we have

(2.16) 0 < ωθ
i (t, r, z) ≤

Cη,α

t
e−

1−η
4t

(
(r−ri)

2+(z−zi)
2
)
.

(2.17) ‖ωθ
i (t)‖L1(Ω) ≤ ‖µ‖tv and lim

t→0
‖ωθ

i (t)‖L1(Ω) = αi.
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ii) There exists some positive time t1 < T , such that for any 0 < t < t1, there holds

(2.18) t
3
2 ‖∇ωθ

i (t)‖L∞(Ω) ≤ C0.

Proof. i) Using (2.12), we immediately get

(2.19) 0 < ωθ
i (t, r, z) ≤

Cη,α

t

∣∣∣ri
r

∣∣∣
1
2
H̃
( t

(1− η)rri

)
e−

1−η
4t

(
(r−ri)2+(z−zi)2

)
.

When 2r ≤ ri, using the facts H̃(τ) ≤ 1/
√
πτ and 2|ri − r| ≥ ri in this case gives

∣∣∣ri
r

∣∣∣
1
2
H̃
( t

(1− η)rri

)
≤ ri√

π

(1− η

t

) 1
2 ≤ Cη,α · e

η(1−η)
4t

(r−ri)2 .

Substituting this into (2.19), and noting the fact that, when η runs over ]0, 1[, (1 − η)2 also
runs over ]0, 1[, gives exactly (2.16) in this case.

And when 2r > ri, (2.16) follows by simply bounding H̃ by 1 in (2.19).

To prove (2.17), notice that ωθ
i > 0 and ωθ =

n∑
i=1

ωθ
i , we have

(2.20)
n∑

i=1

‖ωθ
i (t)‖L1(Ω) = ‖ωθ(t)‖L1(Ω) ≤ ‖µ‖tv, ∀t ∈]0, T [,

which in particular implies ‖ωθ
i (t)‖L1(Ω) ≤ ‖µ‖tv. By taking limit t → 0 in (2.20), we obtain

n∑

i=1

lim
t→0

‖ωθ
i (t)‖L1(Ω) = lim

t→0
‖ωθ(t)‖L1(Ω) = ‖µ‖tv =

n∑

i=1

αi.

On the other hand, the initial condition ωθ
i ⇀ αiδxi as t → 0 implies

lim
t→0

‖ωθ
i (t)‖L1(Ω) ≥ αi.

Combining the above two sides, clearly there must hold

lim
t→0

‖ωθ
i (t)‖L1(Ω) = αi.

ii) For any 0 < t < T , we first write (2.15) in the integral form as

(2.21) ωθ
i (t) = S(t/2)ωθ

i (t/2) −
∫ t

t/2
S(t− s) div∗

(
u(s)ωθ

i (s)
)
ds.

Then we need the following lemma, which is a particular case of

Lemma 2.3. For any 1 ≤ p ≤ q ≤ ∞, and f(r, z) ∈ Lp(Ω), there holds

(2.22) ‖∇S(t)f‖Lq(Ω) ≤
C

t
1
2
+ 1

p
− 1

q

‖f‖Lp(Ω),
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Using (2.21) and (2.22), together with the bounds (2.3) and (2.5), as well as the fact that
ωθ
i ≤ ωθ point-wisely, we achieve

‖∇ωθ
i (t)‖L∞(Ω) ≤

C

t3/2
‖ωθ

i (t/2)‖L1(Ω) +

∫ t

t
2

C

(t− s)1/2
(
‖∇u(s)‖L∞(Ω)‖ωθ

i (s)‖L∞(Ω)

+ ‖u(s)‖L∞(Ω)‖∇ωθ
i (s)‖L∞(Ω)

)
ds

≤ C0

t3/2
+

∫ t

t
2

C0

(t− s)1/2

( 1

s2
+

1√
s
· s 1

2 ‖u(s)‖L∞(Ω)‖∇ωθ
i (s)‖L∞(Ω)

)
ds

≤ C0

t3/2
+ C0 sup

t/2<s<t
s

1
2‖u(s)‖L∞(Ω) · sup

t/2<s<t
‖∇ωθ

i (s)‖L∞(Ω).

Multiplying both sides by t3/2, we get

t
3
2 ‖∇ωθ

i (t)‖L∞(Ω) ≤ C0 + C0 sup
t/2<s<t

s
1
2 ‖u(s)‖L∞(Ω) · sup

t/2<s<t
s

3
2 ‖∇ωθ

i (s)‖L∞(Ω).

Then taking supremum over t leads to

(2.23) sup
0<s<t

s
3
2‖∇ωθ

i (s)‖L∞(Ω) ≤ C0

(
1 + sup

0<s<t
s

1
2 ‖u(s)‖L∞(Ω) · sup

0<s<t
s

3
2 ‖∇ωθ

i (s)‖L∞(Ω)

)
.

Noting that u = BS[ωθ], we can use Proposition 2.3 of [9] to obtain

‖u‖L∞(Ω) ≤ C‖ωθ‖
1
2

L1(Ω)
‖ωθ‖

1
2

L∞(Ω),

which together with (2.4) indicates that

(2.24) lim
t→0

t
1
2 ‖u(t)‖L∞(Ω) = 0.

Thus there exists some t1 > 0, such that for any s ∈]0, t1[ and the C0 in (2.23), there holds

C0 · s
1
2 ‖u(s)‖L∞(Ω) <

1

2
,

which guarantees that the term C0 sup
0<s<t

s
1
2 ‖u(s)‖L∞(Ω) · sup

0<s<t
s

3
2 ‖∇ωθ

i (s)‖L∞(Ω) in (2.23) can

be absorbed by the left hand side. This gives exactly the desired estimate (2.18). �

2.2. Self-similar variables. In view of (2.16), we know that ωθ
j concentrates in a self-similar

way around xj for short time. Thus it is very natural to introduce the self-similar variables:

(2.25) Rj =
r − rj√

t
, Zj =

z − zj√
t

, Xj =
x− xj√

t
and ǫj =

√
t

rj
, j = 1, · · · , n.

Correspondingly, for any j ∈ {1, · · · , n}, t ∈ (0, T ) and any (r, z) ∈ Ω, we set

(2.26) ωθ
j (t, r, z) =

αj

t
fj

(
t,
r − rj√

t
,
z − zj√

t

)
, uj(t, r, z) =

αj√
t
Uj

(
t,
r − rj√

t
,
z − zj√

t

)
.

In the new coordinates (Rj , Zj), the domain constraint r > 0 translates into rj +
√
tRj > 0,

which means that the rescaled vorticity fj(t, Rj , Zj) is defined in the time-dependent domain

Ωǫj
def
= {(Rj , Zj) ∈ R

2 | 1 + ǫjRj > 0}.
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Noting that uj = BS[ωθ
j ], thus Uj can also be determined by fj. Recalling the subsection 4.2

of [10], we have the following explicit representation

U r
j (Xj) =

1

2π

∫

Ωǫj

√
(1 + ǫjR′)(1 + ǫjRj)−1F1(ξ

2
j )

Zj − Z ′

|Xj −X ′|2 fj(X
′) dX ′,

U z
j (Xj) = − 1

2π

∫

Ωǫj

√
(1 + ǫjR′)(1 + ǫjRj)−1F1(ξ

2
j )

Rj −R′

|Xj −X ′|2 fj(X
′) dX ′

+
ǫj
4π

∫

Ωǫj

√
(1 + ǫjR′)(1 + ǫjRj)−3

(
F1(ξ

2
j ) + F2(ξ

2
j )
)
fj(X

′) dX ′,

(2.27)

where F1, F2 is some kernel satisfying sσ1F1(s), sσ2F2(s) are bounded on ]0,∞[ whenever
0 ≤ σ1 ≤ 3/2, 0 < σ2 ≤ 3/2, and ξ2j is a shorthand notation for the quantity

ξ2j = ǫ2j |Xj −X ′|2(1 + ǫjRj)
−1(1 + ǫjR

′)−1.

We denote this map from fj to Uj by Uj = BSǫj [fj]. We use the superscript ǫj since in the
new variables, the map depends explicitly on time through the parameter ǫj.

In the rest of this paper, the following notations will also be used:

(2.28) R =
r − ri√

t
, Z =

z − zi√
t

, X =
x− xi√

t
and ǫ =

√
t

ri
,

here although R, Z, X, ǫ indeed depend on i, we omit the index i for notation simplification.
After this blow-up procedure, the gaussian bound on ωi given by (2.16) translates into

(2.29) 0 < fi(t, R,Z) ≤ Cη,αe
− 1−η

4
(R2+Z2),

and (2.17) translates into

(2.30)

∫

Ωǫ

fi(t, R,Z) dRdZ → 1, as t → 0.

We can use the estimate (2.29) to derive the point-wise estimate for U ǫ
i . First, recalling the

proof of Proposition 2.3 in [9], which shows that for any (r, z) ∈ Ω, there holds

|u(r, z)| ≤ C

∫

Ω

1√
(r − r′)2 + (z − z′)2

|ωθ(r′, z′)| dr′dz′.

Then using the self-similar variables (2.25), we obtain

|Ui(t, R,Z)| ≤ C

∫

Ωǫ

1√
(R−R′)2 + (Z − Z ′)2

fi(t, R
′, Z ′) dR′dZ ′

Finally substituting (2.29) with some fixed η into this, leads to

(2.31)
(
1 + |R|+ |Z|

)
|Ui(t, R,Z)| ≤ C0.

Using the notation (2.26), let us also do this self-similar blow-up of the whole velocity u near
the point xi ∈ Ω and near the initial time t = 0, and we get

(2.32) u(t, r, z) =
αi√
t
Ui(t, R,Z) +

∑

j 6=i

αj√
t
Uj

(
t, R+

ri − rj√
t

, Z +
zi − zj√

t

)
.

In view of (2.31), let t → 0 and R, Z fixed, all Uj

(
t, R +

ri−rj√
t
, Z +

zi−zj√
t

)
for j 6= i vanish,

and only Ui(t, R,Z) remains. Thus after this blow-up procedure, the convection term can be
very close to Ui · ∇fi, for a short time. Combining with the fact that the initial measure for
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ωi = ωθ
i eθ is αiδxi , hence if we believe in uniqueness, it is reasonable to expect that, for a

short time, ωi will be very close to an Oseen vortex located at xi with circulation αi.
In order to write this observation precisely, let us denote the following functions on R

2:

w(x, y)
def
= e(|x|

2+|y|2)/4, G(x, y)
def
=

1

4π
e−(|x|2+|y|2)/4, (x, y) ∈ R

2,

and denote by X the weighted space L2(R2, w(x, y)dxdy). We have:

Proposition 2.1. For any i ∈ {1, · · · , n}, we have ‖f i(t, ·) − G(·)‖X → 0 as t goes to 0,
where f i denotes the extension of fi by zero outside Ωǫ.

Proof. First, let us denote by X0 a subspace of X , which is defined by the stronger norm

‖f‖X0

def
= ‖fw1−η‖L∞(R2) + ‖∇f‖L∞(R2),

where η is a real number satisfying 0 < η < 1
2 . We have:

Lemma 2.1 (Lemma 4.4 in [10]). The space X0 is compactly embedded in X , and the unit

ball in X0 is closed for the topology induced by X .

In the self-similar variables, the gradient bound for ωθ
i , namely (2.18), translates into

‖∇f i(t)‖L∞(R2) < ∞, ∀t ∈]0, T [.

Combining this with the gaussian bound for fi, (2.29), we know that, (f i(t))0<t<T is a
bounded subset of X0, hence compact in X . Let h∗ be an accumulation point in X of
(f i(t))0<t<T as t goes to 0, and (tm)m∈N be the corresponding sequence of positive time
satisfying

(2.33) tm → 0, ‖f i(tm)− h∗‖X → 0 as m → ∞.

Now, let us temporarily consider the whole 3-D vorticity field ω and the whole 3-D velocity
field u. For any m ∈ N, y ∈ R

3, and s ∈]0, t−1
m T [, we define the following sequence

{
u(m)(s, y) =

√
tmu(tms, xi +

√
tmy)

ω(m)(s, y) = tmω(tms, xi +
√
tmy),

where xi = (ri, 0, zi) ∈ R
3. In other words, the vector fields ω(m), u(m) are defined by a

self-similar blow-up of the original quantities ω, u near the point xi ∈ R
3 and near the initial

time t = 0. It is easy to verify that ω, u satisfy the 3-D vorticity equation:

∂sω
(m) + u(m) · ∇ω(m) −∆ω(m) = ω(m) · ∇u(m), div u(m) = 0, curlu(m) = ω(m),

for s ∈]0, t−1
m T [, y ∈ R

3. The self-similar rescaling from u to u(m) preserves the bounds given
by (2.3), precisely for all indices k, ℓ ∈ N, we have the following a priori estimates

‖∂k
s∇ℓ

yu
(m)(s)‖L∞(R3) ≤ C0s

−
(

1
2
+k+ ℓ

2

)
, s ∈]0, t−1

m T [,

which holds uniformly in m. Hence, up to an extraction, we can assume that

ω(m) → ω, u(m) → u, as m → ∞,

with uniform convergence of both vector fields along with all their derivatives on any compact
subset of ]0, t−1

m T [×R
3. Thus the limiting fields ω, u are smooth and satisfy

(2.34) ∂sω + u · ∇ω −∆ω = ω · ∇u, div u = 0, curlu = ω.
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The goal now is to relate ω to ωi and f i. The idea is that the other ωj, f j (j 6= i) should be
eliminated by the blow-up procedure. Using the definitions, we get

ω(m)(s, y) = tmω(tms, xi +
√
tmy)

= tmω(tms,
√

(ri +
√
tmy1)2 + tmy22, 0, zi +

√
tmy3)

=
(αi

s
f i(tms,X

(m)
ii (s, y)) +

∑

j 6=i

αj

s
f j(tms,X

(m)
ij (s, y))

)
eθ(xi +

√
tmy),

(2.35)

where

X
(m)
ij (s, y)

def
=

(√
(ri +

√
tmy1)2 + tmy22 − rj√

tms
,
zi − zj +

√
tmy3√

tms

)
.

If i 6= j, for any bounded subset B ⊂ R
3 and any y ∈ B, there exists a large constant NB ,

such that for any m > NB , there holds

|X(m)
ij (s, y)|2 ≥ (ri − rj)

2 + (zi − zj)
2

2tms
.

Then the gaussian bound for fj (2.29) entails

0 ≤ f j(tms,X
(m)
ij (s, y)) ≤ Cη,α exp

{
−(1− η)|xi − xj|2

8tms

}
.

Hence, the only contribution in the limit procedure m → ∞ comes, as expected, from the
i-th circular vortex. Regarding f i, as shown before, f i(·, ·, t) is bounded in X0. Thus for any
fixed s > 0, up to another extraction, there must exist some hs ∈ X such that

(2.36) ‖f i(tms)− hs‖X → 0 as m → ∞.

The boundedness of (f i(tms))m in X0 implies that, this convergence of (f i(tms))m to hs also
holds uniformly on any compact set of R3. Therefore, taking the limit m → ∞ on both sides
of (2.35) and noting that eθ(xi) = e2 = (0, 1, 0), we obtain

ω(s, y) =
αi

s
hs

(
y1√
s
,
y3√
s

)
e2

def
= (0, ω2(s, y1, y3), 0).

Taking the limit m → ∞ in (2.29) and (2.30), we deduce

(2.37) |ω2(s, y1, y3)| . Cη,αs
−1e−

1−η
4s

|y|2 ,
∫

R
2
ω2(s, y1, y3) dy1dy3 = αi.

We now turn to the velocity field. Similarly as (2.35), we can write

(2.38) u(m)(s, y) =
αi√
s
U ǫ
i (tms,X

(m)
ii (s, y)) +

∑

j 6=i

αj√
s
U ǫ
j (tms,X

(m)
ij (s, y)).

In view of (2.31), as tm → 0, all U ǫ
j (tms,X

(m)
ij (s, y)) for j 6= i vanish, and only U ǫ

i (tms,X
(m)
ii (s, y))

remains. Regarding Ui, using (2.31) again and taking the limit m → ∞, we get

(2.39) |u(s, y)| . (
√
s+ |y1|+ |y3|)−1.

Moreover, as shown in (2.34), u satisfies the following elliptic system

div u = 0, curlu = ω.

This div-curl system has at most one solution with the decay property (2.39), hence

u(s, y) = u1(s, y1, y3)e1 + u3(s, y1, y3)e3 = (u1(s, y1, y3), 0, u3(s, y1, y3)),
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where (u1, u3) is the two dimensional velocity field obtained from the scalar vorticity ω2 via
the Biot-Savart law in R

2.
Summarizing, we have shown that the limiting vorticity ω2, together with the associated

velocity (u1, u3) solves the 2-D Navier-Stokes equations, and it follows from (2.37) that ω2(s, ·)
is uniformly bounded in L1(R2) and converges weakly to the Dirac measure αiδ0 as s → 0.

Then we deduce, by using Proposition 1.3 in [11], that ω2(s, y1, y3) = αi
s G

(
y1√
s
, y3√

s

)
, i.e.

hs = G for any s > 0. In particular, choosing s = 1 so that tms = tm, and comparing (2.33)
with (2.36), we conclude that h∗ = G, which is the desired result. �

In view of Proposition 2.1, it is natural to make a further decomposition of ω. Let

d
def
= min

1≤i<j≤n

{
|xi − xj|, ri

}
,

and χ : [0,∞[→ [0, 1] to be a smooth non-increasing cutoff function such that χ = 1 on
[0, 1/8] and χ vanishes outside [0, 1/4]. Let f0 to be a function on ]0, T [×R

2 defined as

f0(t, x, y)
def
= G(x, y)χ

(√
t(x2 + y2)/d

)
, (x, y) ∈ R

2, t ∈]0, T [,

and f̃i to be a function on ]0, T [×Ωi
ǫ defined as

(2.40) f̃i(t, R,Z) = fi(t, R,Z)− f0(t, R,Z), (R,Z) ∈ Ωǫ, t ∈]0, T [.
Then we can decompose ωθ further as follows:

(2.41) ωθ(t, r, z) =

n∑

j=1

(αj

t
f0(t, Rj , Zj) +

αj

t
f̃j(t, Rj , Zj)

)
.

And correspondingly, u = BS[ωθ] can be decomposed further into

u(t, r, z) =

n∑

j=1

(αj√
t
U0,j(t, Rj , Zj) +

αj√
t
Ũj(t, Rj , Zj)

)
, where

U0,j = BSǫj [f0], Ũj = BSǫj [f̃j ].

(2.42)

Remark 2.1. For any j ∈ {1, · · · , n}, due to the cutoff function χ, it is easy to see that
f0(t, Rj , Zj) vanishes when

√
tR < −d/4, and thus vanishes when

√
tR < −rj/4. In partic-

ular, this implies that f0(t, Rj , Zj) satisfies the Dirichlet boundary condition on ∂Ωǫj , and

thus f̃j(t, Rj , Zj) also satisfies the Dirichlet boundary condition on ∂Ωǫj .

It is clear that f0(t) ∈ X for all t ∈]0, T [, and ‖f0(t) − G‖X → 0 as t → 0. Thus

the perturbation f̃j(t) (extended by zero outside Ωǫj) belongs to X for all t ∈]0, T [, and

Proposition 2.1 implies that ‖f̃j(t)‖X → 0 as t → 0. In the next section, we shall give a more
accurate quantitative rate of this convergence.

3. Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In view of the decomposition (2.41),
to prove the uniqueness claim in Theorem 1.1, we only need to show the perturbation part

(f̃j)
n
j=1 is uniquely determined. At the end of last section, we have shown that ‖f̃j(t)‖X → 0 as

t → 0, but this is not enough to prove uniqueness. We shall give a more accurate quantitative
rate of this convergence, which in particular implies the short time estimate (1.4). This will
be done in the first subsection.
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After some modifications to the energy estimates in the proof of the short time estimate,
we can prove the uniqueness claim in Theorem 1.1.This will be done in the second subsection.

3.1. Short time asymptotics. Using (2.15) and (2.26), we can derive the evolution equa-
tion satisfied by the rescaled vorticity fi reads

(3.1) t∂tfi(t,X)+div∗
(
αiUi(t,X)fi(t,X)+Wi(t,X)fi(t,X)

)
= (Lfi)(t,X)+∂R

(ǫfi(t,X)

1 + ǫR

)
,

for X ∈ Ωǫ and t ∈]0, T [, where the operator L is defined for a generic function f by

Lf(X)
def
= ∆Xf(X) +

X

2
· ∇Xf(X) + f(X),

the operator div∗ is defined for a generic vector field V (X) = V r(X)er + V z(X)ez by

div∗
(
V (X)

) def
= ∂RV

r(X) + ∂ZV
z(X),

and Wi stands for the other parts of the rescaled velocity:

Wi(t,X)
def
=
∑

j 6=i

αjUj(t,Xj), where Xj =
x− xj√

t
= X +

xi − xj√
t

.

Then we can deduce from (2.41), (2.42) and (3.1) that

(3.2) t∂tf̃i + αi div∗(U0,if̃i + Ũif0 + Ũif̃i) + div∗(Wifi) = Lf̃i + ∂R

( ǫf̃i
1 + ǫR

)
+H,

where

H = −t∂tf0 + Lf0 + ∂R

(ǫf0(t,X)

1 + ǫR

)
− αi div∗(U0,if0).

And we shall define, following [10], the two types of energy for each vortex

Ej(t)
def
=

1

2

∫

Ωǫj

f̃j(t,Xj)
2w(Xj) dXj ,

Ej(t) def
=

1

2

∫

Ωǫj

(
|∇f̃j(t,Xj)|2 + (1 + |Xj |2)f̃j(t,Xj)

2
)
w(Xj) dXj ,

(3.3)

as well as the total energies

E(t)
def
=

n∑

j=1

Ej(t), E(t) def
=

n∑

j=1

Ej(t).

As we have pointed out in Remark 2.1 that, f̃j satisfies the homogeneous Dirichlet condition
on ∂Ωǫj , thus although the integral in (3.3) is taken over the time-dependent domain Ωǫj ,
there is no contribution from the boundary when we differentiate with respect to time. Hence
we can get, by doing L2(Ωǫ, w(X)dX) energy estimate to (3.2) and integrating by parts, that

(3.4) tE′
i(t) = Ai(t) + Ii(t),

where

Ai(t) =

∫

Ωǫ

(
Lf̃i(t,X) + ∂R

(ǫf̃i(t,X)

1 + ǫR

)
+H(t,X)

− αi div∗(U0,if̃i + Ũif0 + Ũif̃i)(t,X)
)
f̃i(t,X) · w(X) dX,

Ii(t) =

∫

Ωǫ

Wi(t,X)fi(t,X)
(
∇X f̃i(t,X) +

X

2
f̃i(t,X)

)
· w(X) dX.
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The main result of this subsection states as follows:

Proposition 3.1. There exists some positive constant δ depending on the initial measure µ,
such that for t sufficiently small, there holds

(3.5) tE′
i(t) ≤ −2δEi(t) + C0

√
t| ln t|Ei(t)

1
2 + CEi(t)

1
2 Ei(t) +Ri(t),

where the quantity Ri satisfies the inequality 0 < Ri(t) ≤ e−C0/t.

Proof. Noting that the terms in Ai(t) are exactly the same as the ones appearing on the
right-hand side of the equality (4.42) in [10]. Thus using the Proposition 4.5 in [10], we know
that there exists some ǫ0 ∈]0, 1/2[, if t > 0 is small enough so that ǫi < ǫ0, then

(3.6) Ai(t) ≤ −2δEi(t) + C
√
t| ln t|Ei(t)

1
2 + CEi(t)

1
2 Ei(t) +Ri(t).

In the following we shall concentrate on the interaction part Ii(t). Using the decomposition
(2.40) and (2.42), we can write

Wi(t,X)fi(t,X) =
∑

j 6=i

(
αjU0,j(t,Xj) + αjŨj(t,Xj)

)(
f0(t,X) + f̃i(t,X)

)
.

Thus there are four types of integral terms in Ii(t), which we handle separately.
Before proceeding, let us decompose Ωǫj into two parts, namely

Ω+
ǫj

def
=
{
X ∈ Ωǫj s.t. |X| > d

4
√
t

}
, Ω−

ǫj

def
=
{
X ∈ Ωǫj s.t. |X| ≤ d

4
√
t

}
.

Type 1: Ii,1(t) =
∑
j 6=i

∫
Ωǫ

αjUj(t,Xj)f0(t,X) ·
(
∇X +X/2

)
f̃i(t,X) · w(X) dX.

Due to the cutoff function χ, we know that f0(t,X) vanishes whenever |X| > d
4
√
t
. Thus

Ii,1(t) actually only integrates on Ω−
ǫ , and for X in Ω−

ǫ , we have

|Xj | =
∣∣∣X +

xi − xj√
t

∣∣∣ ≥ 3d

4
√
t
.

Then the estimate (2.31) gives

(3.7) Uj(t,Xj) ≤ C0

√
t.

Thanks to this bound, the definition of f0, and Cauchy inequality, we get

|Ii,1(t)| ≤ C0

√
t
∑

j 6=i

∫

Ω−
ǫ

e−|X|2/4(∇X f̃i(t,X) +
X

2
f̃i(t,X)

)
w(X) dX

≤ C0

√
t
∥∥e−|X|2/8∥∥

L2(Ω−
ǫ )

∥∥(∇X +X/2
)
f̃i(t,X) · w(X)1/2

∥∥
L2(Ω−

ǫ )

≤ C0

√
tEi(t)

1
2 .

(3.8)

Type 2: Ii,2(t) =
∑
j 6=i

∫
Ωǫ

αjUj(t,Xj)f̃i(t,X) ·
(
∇X +X/2

)
f̃i(t,X) · w(X) dX.

We decompose Ii,2 into two different parts according to the integra domain. On Ω−
ǫ , by

using the bound (3.7) and Cauchy inequality again, we obtain

(3.9)
∣∣∣
∫

Ω−
ǫ

Uj(t,Xj)f̃i(t,X) ·
(
∇X +X/2

)
f̃i(t,X) · w(X) dX

∣∣∣ ≤ C0

√
tEi(t)

1
2Ei(t)

1
2 .

To handle the integral on Ω+
ǫ , a mere application of (2.31) gives

(3.10) ‖Uj‖L∞
T (L∞(Ωǫj ))

≤ C0.
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And it follows from the Gaussian bound for fi (2.29) and the fact that f0 vanishes on Ω+
ǫ

that, the same Gaussian bound also holds for f̃i, precisely

(3.11) 0 < f̃i(t,X) ≤ Cη,αe
− 1−η

4
|X|2 , ∀X ∈ Ω+

ǫ .

Using the above bounds (3.10) and (3.24) with η = 1
4 , we get

∣∣∣
∫

Ω+
ǫ

Uj(t,Xj)f̃i(t,X) ·
(
∇X +X/2

)
f̃i(t,X) · w(X) dX

∣∣∣ ≤ C0‖f̃i(t)w
1
2‖L2(Ω+

ǫ )Ei(t)
1
2

≤ C0e
− d2

256t Ei(t)
1
2 .

Combining this with the estimate (3.9), we finally get

(3.12) |Ii,2(t)| ≤ C0

√
tEi(t)

1
2Ei(t)

1
2 + C0e

− d2

256t Ei(t)
1
2 .

Substituting the estimates (3.6), (3.8) and(3.12) ,and using the trivial bounds

Ei ≤ Ei ≤ E , Ei ≤ E

allows us to obtain

tE′
i(t) ≤ −2δEi(t)+C

√
t| ln t|Ei(t)

1
2 + CEi(t)

1
2 Ei(t) +Ri(t)

+ C0

√
tEi(t)

1
2 + C0

√
tEi(t)

1
2 Ei(t)

1
2 + C0e

− d2

256t Ei(t)
1
2 .

Recalling that E(t) goes to 0 as t goes to 0 yields the simplified bound

tE′
i(t) ≤ −2δEi(t) + C0

√
t| ln t|Ei(t)

1
2 + CEi(t)

1
2 Ei(t) +Ri(t),

which is the desired differential inequality. This completes the proof of this proposition. �

Proof of the estimate (1.4). Applying Young’s inequality to (3.5) gives

(3.13) tE′
i(t) ≤ −3

2
δEi(t) + C0t| ln t|2 +CEi(t)

1
2Ei(t) +Ri(t).

Recalling that by definition ǫi =
√
t/ri and E(t) goes to 0 as t goes to 0, thus there exists

some small constant t0 depending only on the initial measure µ, such that both ǫi < ǫ0
and Ei(t)

1/2 < δ/2 hold whenever t < t0. Combining this with the facts that Ei ≤ Ei and
0 < Ri(t) ≤ e−C0/t, we can get from (3.13), for t < t0, that

tE′
i(t) ≤ −δEi(t) + C0t| ln t|2 +Ri(t)

≤ −δEi(t) + C0t| ln t|2.
Integrating this differential inequality yields the bound

(3.14) Ei(t) ≤ C0t
−δ

∫ t

0
sδ| ln s|2 ds ≤ C0t| ln t|2.

Then in view of the definition (3.3), the above inequality leads to

‖fi(t)− f0(t)‖L1(Ωǫ) = ‖f̃i‖L1(Ωǫ) ≤ CE
1/2
i (t) ≤ C0

√
t| ln t|.

And since f0 is extremely close to G, we finally obtain

‖fi(t)−G‖L1(Ωǫ) ≤ ‖fi(t)− f0(t)‖L1(Ωǫ) + ‖f0(t)−G‖L1(Ωǫ)

≤ C0

√
t| ln t|+ e−C0/t ≤ C0

√
t| ln t|.

(3.15)

Returning to the original variables, and summing up over i, gives exactly the short time
estimate (1.4) for t < t0. �



UNIQUENESS OF AXISYMMETRIC VISCOUS FLOWS 15

3.2. Uniqueness. The purpose of this final subsection is to prove the uniqueness result in
Theorem 1.1. Assume that ωθ,(1), ωθ,(2) ∈ C

(
]0, T [, L1(Ω) ∩ L∞(Ω)

)
are two mild solutions

to the vorticity equation (1.2) satisfying (1.3). Introducing the self-similar variables and
decompose these two solutions just as what we have done in Subsection 2.2, precisely for
ℓ = 1, 2, we write

ωθ,(ℓ)(t, r, z) =

n∑

j=1

αj

t
f
(ℓ)
j (t, Rj , Zj) =

n∑

j=1

(αj

t
f0(t, Rj , Zj) +

αj

t
f̃
(ℓ)
j (t, Rj , Zj)

)
,

and correspondingly, u(ℓ) = BS[ωθ,(ℓ)] can be decomposed into

u(t, r, z)(ℓ) =

n∑

j=1

αj√
t
U

(ℓ)
j (t, Rj , Zj) =

n∑

j=1

(αj√
t
U0,j(t, Rj , Zj) +

αj√
t
Ũ

(ℓ)
j (t, Rj , Zj)

)
.

The differences of the rescaled solutions will be denoted by

f̃∆
i

def
= f

(1)
i − f

(2)
i = f̃

(1)
i − f̃

(2)
i , Ũ∆

i
def
= U

(1)
i − U

(2)
i = Ũ

(1)
i − Ũ

(2)
i .

The evolution equation for f̃∆
i reads

t∂tf̃
∆
i + αi div∗(U0,if̃

∆
i + Ũ∆

i f0) + αi div∗(Ũ
(1)
i f̃

(1)
i − Ũ

(2)
i f̃

(2)
i )

+ div∗(W0,if̃
∆
i + W̃∆

i f0) + div∗(W̃
(1)
i f̃

(1)
i − W̃

(2)
i f̃

(2)
i ) = Lf̃∆

i + ∂R

( ǫf̃∆
i

1 + ǫR

)
,

(3.16)

where

W0,i(t,X)
def
=
∑

j 6=i

αjU0,j(t,Xj), W̃
(ℓ)
i (t,X)

def
=
∑

j 6=i

αjŨ
(ℓ)
j (t,Xj).

In analogy with (3.3), the energies for each solution are straightforwardly denoted by

E
(ℓ)
j (t)

def
=

1

2

∫

Ωǫj

f̃
(ℓ)
j (t,Xj)

2w(Xj) dXj , E(ℓ)(t)
def
=

n∑

j=1

E
(ℓ)
j (t),

E(ℓ)
j (t)

def
=

1

2

∫

Ωǫj

(
|∇f̃

(ℓ)
j (t,Xj)|2 + (1 + |Xj |2)f̃ (ℓ)

j (t,Xj)
2
)
w(Xj) dXj , E(ℓ)(t)

def
=

n∑

j=1

E(ℓ)
j (t),

as well as the energies for the difference

E∆
j (t)

def
=

1

2

∫

Ωǫj

f̃∆
j (t,Xj)

2w(Xj) dXj , E∆(t)
def
=

n∑

j=1

E∆
j (t),

E∆
j (t)

def
=

1

2

∫

Ωǫj

(
|∇f̃∆

j (t,Xj)|2 + (1 + |Xj |2)f̃∆
j (t,Xj)

2
)
w(Xj) dXj , E∆(t)

def
=

n∑

j=1

E∆
j (t).

In view of (3.14), combining with the elementary fact that E∆
j ≤ 2

(
E

(1)
j + E

(2)
j

)
, we know

that E∆
j (t) also decays to 0 with rate at least t| ln t|2 as t → 0. We believe that E∆

j (t)

decays faster than E
(ℓ)
j since the source H and div∗(W0,if0) has disappeared when taking the

difference of the equations for f
(1)
i and f

(2)
i . Precisely, we have:

Proposition 3.2. There exists a positive time t1 such that for all 0 < t < t1, there holds

(3.17) E∆(t) ≤ e−C0/t.
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Proof. Similarly as in the proof of Proposition 3.1, by doing an L2(Ωǫ, w(X)dX) energy
estimate to (3.16) and integrating by parts, we obtain

(3.18) t
d

dt
E∆

i (t) = A∆
i (t) + I∆i (t),

where

A∆
i (t) =

∫

Ωǫ

(
Lf̃∆

i (t,X) + ∂R
(ǫf̃∆

i (t,X)

1 + ǫR

)
− αi div∗(U0,if̃

∆
i + Ũ∆

i f0)

− αi div∗(Ũ
(1)
i f̃

(1)
i − Ũ

(2)
i f̃

(2)
i )
)
f̃∆
i (t,X) · w(X) dX,

I∆i (t) =

∫

Ωǫ

(
W0,if̃

∆
i + W̃∆

i f0 + W̃
(1)
i f̃

(1)
i − W̃

(2)
i f̃

(2)
i

)
(t,X) ·

(
∇X +X/2

)
f̃∆
i (t,X) · w(X) dX.

First, the estimate (4.71) of [10] claims that there exists some positive constant δ and some
ǫ0 ∈]0, 1[ such that as long as ǫ < ǫ0, there holds

(3.19) A∆
i (t) ≤ −2δE∆

i (t) + C
(
E

(1)
i (t)

1
2 + E

(2)
i (t)

1
2
)
E∆
i (t) +R∆

i (t),

where the quantity R∆
i satisfies the inequality 0 < R∆

i (t) ≤ e−C0/t. We mention that the

terms with type C0

√
t| ln t|Ei(t)

1
2 in (3.6) does not appear here, due to the cancellation of the

source term H when taking the difference.
For the interaction part I∆i (t), thanks to the cancellation of div∗(W0,if0), there are only

three types of integral terms, which we handle separately in the following.

Type 1: I∆i,1(t) =
∫
Ωǫ

W0,i(t,X)f̃∆
i (t,X) ·

(
∇X +X/2

)
f̃∆
i (t,X) · w(X) dX.

We decompose I∆i,1 into two different parts according to the integra domain. On Ω−
ǫ , we

have the point-wise estimate:

Lemma 3.1. For any j 6= i, and any Xj in Ω−
ǫj (i.e. X in Ω−

ǫ ), we have

|U0,j(t,Xj)| ≤ C0

√
t.

Proof. Using the explicit formula (2.27), and the fact that f0 supports in Ω−
ǫ , we get

U r
0,j(t,Xj) =

1

2π

∫

Ω−
ǫ

√
(1 + ǫjR′)(1 + ǫjRj)−1F1(ξ

2
j )

Zj − Z ′

|Xj −X ′|2 f0(t,X
′) dX ′,

U z
0,j(t,Xj) = − 1

2π

∫

Ω−
ǫ

√
(1 + ǫjR′)(1 + ǫjRj)−1F1(ξ

2
j )

Rj −R′

|Xj −X ′|2 f0(t,X
′) dX ′

+
ǫj
4π

∫

Ω−
ǫ

√
(1 + ǫjR′)(1 + ǫjRj)−3

(
F1(ξ

2
j ) + F2(ξ

2
j )
)
f0(t,X

′) dX ′,

where

ξ2j = ǫ2j |Xj −X ′|2(1 + ǫjRj)
−1(1 + ǫjR

′)−1.

For X and X ′ in Ω−
ǫ , we have

|Xj −X ′| =
∣∣∣X −X ′ +

xi − xj√
t

∣∣∣ ∈
[ d

2
√
t
,
1√
t

(
|xi − xj|+

d

2

)]
,

1 + ǫjR
′ ∈
[3
4
,
5

4

]
, and 1 + ǫjRj =

ri
rj

+

√
tR

rj
∈
[ 3ri
4rj

,
5ri
4rj

]
.
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Using the above bounds and the fact that F1(s), s
1
2F2(s) are bounded on ]0,∞[, we achieve

|U0,j(Xj)| ≤ C0

∫

Ω−
ǫ

√
te−|X′|2/4 dX ′ ≤ C0

√
t,

which completes the proof of this lemma. �

A direct consequence of this lemma is that, W0,i(t,X) ≤ C0

√
t for any X ∈ Ω−

ǫ . Using
this point-wise bound and Cauchy inequality, we obtain

(3.20)
∣∣∣
∫

Ω−
ǫ

W0,i(t,X)f̃∆
i (t,X) ·

(
∇X +X/2

)
f̃∆
i (t,X) · w(X) dX

∣∣∣ ≤ C0

√
tE∆

i (t)
1
2 E∆

i (t)
1
2 .

To handle the integral on Ω+
ǫ , we need some more careful estimates on the rescaled velocity.

After the blow-up procedure (2.26), Proposition 2.3 of [9] translates into:

Lemma 3.2. i) If 1 < p < 2 < q < ∞, 1
q = 1

p − 1
2 , then

(3.21) ‖BSǫ[f ]‖Lq(Ωǫ) ≤ C‖f‖Lp(Ωǫ).

ii) If 1 ≤ p < 2 < q ≤ ∞, then

(3.22) ‖BSǫ[f ]‖L∞(Ωǫ) ≤ C‖f‖σLp(Ωǫ)
‖f‖1−σ

Lq(Ωǫ)
, where σ =

p

2

q − 2

q − p
∈]0, 1[.

It follows from a mere application of (3.22) to a gaussian function that

(3.23) ‖W0,i‖L∞
T (L∞(Ωǫ)) ≤ C.

And it follows from the Gaussian bound for f
(ℓ)
i (2.29) and the fact that f0 vanishes on Ω+

ǫ

that, the same Gaussian bound also holds for f̃
(ℓ)
i , precisely

(3.24) 0 < f̃
(ℓ)
i (t,X) ≤ Cη,αe

− 1−η
4

|X|2 , ∀X ∈ Ω+
ǫ .

Using the above bounds (3.23) and (3.24) with η = 1
4 , we get

∣∣∣
∫

Ω+
ǫ

W0,i(t,X)f̃∆
i (t,X) ·

(
∇X +X/2

)
f̃∆
i (t,X) · w(X) dX

∣∣∣ ≤ C‖f̃∆
i (t)w

1
2 ‖L2(Ω+

ǫ )E∆
i (t)

1
2

≤ C0e
− d2

256t E∆
i (t)

1
2 .

Combining this with the estimate (3.20), we finally get

(3.25) |I∆i,1(t)| ≤ C0

√
tE∆

i (t)
1
2E∆

i (t)
1
2 + C0e

− d2

256t E∆
i (t)

1
2 .

Type 2: I∆i,2(t) =
∫
Ωǫ

W̃∆
i (t,X)f0(t,X) ·

(
∇X +X/2

)
f̃∆
i (t,X) · w(X) dX.

Noting that f0 supports only on Ω−
ǫ , and f0(X)w(X) ≤ 1 on Ωǫ, we get

(3.26) |I∆i,2(t)| ≤
∫

Ω−
ǫ

∑

j 6=i

∣∣αj(Ũ
(1)
j − Ũ

(2)
j )(t,Xj) ·

(
∇X +X/2

)
f̃∆
i (t,X)

∣∣ dX.

Let us decompose Ũ
(ℓ)
j as the sum of Ũ

(ℓ),+
j and Ũ

(ℓ),−
j , with

Ũ
(ℓ),±
j (Xj)

def
= BSǫj

[
f̃
(ℓ)
j (Xj)1Ω±

ǫj
(Xj)

]
,

where 1Ω±
ǫ
stands for the characteristic function of Ω±

ǫ .



18 G. LÉVY AND Y. LIU

Exactly along the proof of Lemma 3.1, we can get, for any X ∈ Ω−
ǫ , that

∣∣(Ũ (1),−
j − Ũ

(2),−
j

)(
X +

xi − xj√
t

)∣∣ ≤ C0

√
t

∫

Ω−
ǫj

∣∣f̃ (1)
j (X ′)− f̃

(2)
j (X ′)

∣∣ dX ′

≤ C0

√
t‖w−1/2‖L2E∆

j (t)
1
2

≤ C0

√
tE∆

j (t)
1
2 .

Using this bound and the fact that L2
(
Ω−
ǫ , w(X)dX

)
→֒ L1(Ω−

ǫ , dX) , we achieve

∫

Ω−
ǫ

∑

j 6=i

∣∣αj(Ũ
(1),−
j − Ũ

(2),−
j )(t,Xj) ·

(
∇X +X/2

)
f̃∆
i (t,X)

∣∣ dX

≤ C0

√
tE∆(t)

1
2E∆

i (t)
1
2 .

(3.27)

For Ũ
(ℓ),+
j , we use (3.21) with p = 4/3, q = 4, and Hölder’s inequality to obtain

∥∥Ũ (1),+
j − Ũ

(2),+
j

∥∥
L4(Ωǫj )

≤ C0

∥∥f̃ (1)
j − f̃

(2)
j

∥∥
L

4
3 (Ω+

ǫj
)

≤ C0‖w−1/2‖L4(Ω+
ǫj
)

∥∥(f̃ (1)
j − f̃

(2)
j

)
w1/2

∥∥
L2(Ω+

ǫj
)

≤ C0e
−C0/tE∆

j (t)
1
2 .

Using this estimate and Hölder’s inequality again, we achieve

∫

Ω−
ǫ

∑

j 6=i

∣∣αj(Ũ
(1),+
j − Ũ

(2),+
j )(t,Xj) ·

(
∇X +X/2

)
f̃∆
i (t,X)

∣∣ dX

≤
∑

j 6=i

∥∥Ũ (1),+
j − Ũ

(2),+
j

∥∥
L4(Ω−

ǫ )
‖w−1/2‖L4(Ω−

ǫ )

∥∥(∇X +X/2
)
f̃∆
i · w1/2

∥∥
L2(Ω−

ǫ )

≤ C0e
−C0/tE∆(t)

1
2 E∆

i (t)
1
2 .

(3.28)

Combining the estimates (3.27) and (3.28), we finally achieve that

(3.29) |I∆i,2(t)| ≤ C0

√
tE∆(t)

1
2 E∆

i (t)
1
2 .

Type 3: I∆i,3(t) =
∫
Ωǫ

(
W̃

(1)
i f̃

(1)
i − W̃

(2)
i f̃

(2)
i

)
(t,X) ·

(
∇X +X/2

)
f̃∆
i (t,X) · w(X) dX.

The strategy of estimating I∆i,3(t) is to write

W̃
(1)
i f̃

(1)
i − W̃

(2)
i f̃

(2)
i = W̃∆

i f̃
(1)
i + W̃

(2)
i f̃∆

i ,

where W̃∆
i

def
= W̃

(1)
i − W̃

(2)
i . Then we get, by using Hölder’s inequality, that

|I∆i,3(t)| ≤
(∥∥W̃∆

i

∥∥
L∞(Ωǫ)

∥∥f̃ (1)
i w

1
2

∥∥
L2(Ωǫ)

+
∥∥W̃ (2)

i

∥∥
L∞(Ωǫ)

∥∥f̃∆
i w

1
2

∥∥
L2(Ωǫ)

)

×
∥∥(∇X +X/2

)
f̃∆
i w

1
2

∥∥
L2(Ωǫ)

≤
(∥∥W̃∆

i

∥∥
L∞(Ωǫ)

E
(1)
i (t)

1
2 +

∥∥W̃ (2)
i

∥∥
L∞(Ωǫ)

E∆
i (t)

1
2
)
E∆
i (t)

1
2 .

(3.30)
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By using (3.22) with p = 4/3, q = 4, and Gagliardo-Nirenberg inequality, we obtain
∥∥W̃∆

i

∥∥
L∞(Ωǫ)

≤ C0

∑

j 6=i

∥∥f̃∆
j

∥∥1/2
L4/3(Ωǫ)

∥∥f̃∆
j

∥∥1/2
L4(Ωǫ)

≤ C0

∑

j 6=i

∥∥f̃∆
j w1/2

∥∥1/2
L2(Ωǫ)

∥∥w−1/2
∥∥1/2
L2(Ωǫ)

∥∥f̃∆
j

∥∥1/4
L2(Ωǫ)

∥∥∇f̃∆
j

∥∥1/4
L2(Ωǫ)

≤ C0

∑

j 6=i

E∆
j (t)

3
8 E∆

j (t)
1
8 .

Similarly, and noting that f̃
(2)
j satisfies the point-wise estimate (3.24), we obtain

∥∥W̃ (2)
i

∥∥
L∞(Ωǫ)

≤ C0

∑

j 6=i

∥∥f̃ (2)
j

∥∥1/2
L4/3(Ωǫ)

∥∥f̃ (2)
j

∥∥1/2
L4(Ωǫ)

≤ C0

∑

j 6=i

E
(2)
j (t)

1
4 .

Substituting the above two estimates into (3.30), we achieve

|I∆i,3(t)| ≤ C0

(
E

(1)
i (t)

1
2E∆(t)

3
8 E∆(t)

1
8 + E(2)(t)

1
4E∆

i (t)
1
2

)
E∆
i (t)

1
2 .(3.31)

Overall, by putting (3.25), (3.29) and (3.31) together, using Young’s inequality and the
fact that E∆

i ≤ E∆
i ≤ E∆, we achieve

(3.32) I∆(t) ≤ δE∆
i (t) + C0

(√
t+E

(1)
i (t)

1
2 + E(2)(t)

1
4
)
E∆(t) + C0e

−C0/t.

Then substituting (3.19) and (3.32) into (3.18), and summing up over i, leads to

(3.33) t
d

dt
E∆(t) ≤ −δE∆(t) + C0

(√
t+ E(1)(t)

1
2 + E(2)(t)

1
2 + E(2)(t)

1
4
)
E∆(t) + C0e

−C0/t.

The bound (3.14) guarantees the existence of a positive time t1, such that for all 0 < t < t1,

there holds C0

(√
t+ E(1)(t)

1
2 + E(2)(t)

1
2 + E(2)(t)

1
4

)
≤ δ

2 . Then (3.33) turns into

(3.34) t
d

dt
E∆(t) ≤ −δ

2
E∆(t) + C0e

−C0/t ≤ −δ

2
E∆(t) + C0e

−C0/t.

Then integrating this differential inequality from 0 to t < t1 gives

E∆(t) ≤ C0t
−δ/2

∫ t

0
sδ/2−1e−C0/s ds ≤ e−C0/t,

which is exactly the desired estimate (3.17). �

Proposition 3.2 already shows that E∆(t) converges extremely rapidly to 0 as t → 0, but
our actual goal is to prove that E∆(t) vanishes identically, which will be done in the following.

Proof of the uniqueness result in Theorem 1.1. The key is to get a new differential inequality
for E∆(t) like (3.34), but in which the “inhomogeneous” term like C0e

−C0/t does not appear.
First, the estimate (4.73) of [10] claims that as long as ǫ < 1/2, there holds

(3.35) A∆
i (t) ≤ −δE∆

i (t) + C0E
∆
i (t) + C0

(
E

(1)
i (t)

1
2 + E

(2)
i (t)

1
2
)
E∆
i (t).

For the estimate of I∆i (t), we only need to modify the estimate of I∆i,1(t). By simply using

the bound for Ui given by (2.31), we can achieve

|I∆i,1(t)| ≤ C0E
∆
i (t)

1
2 E∆

i (t)
1
2 .
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The other terms in I∆i (t) can be estimated exactly along the proof of Proposition 3.2. Then
for small t, we deduce

|I∆i (t)| ≤ C0E
∆(t)

1
2 E∆(t)

1
2 + C0

(
E

(1)
i (t)

1
2 + E(2)(t)

1
4
)
E∆(t)

≤ δ

2n
E∆(t) + C0E

∆(t) + C0

(
E

(1)
i (t)

1
2 + E(2)(t)

1
4
)
E∆(t).

(3.36)

Substituting (3.35) and (3.36) into (3.18), and summing up over i, leads to

(3.37) t
d

dt
E∆(t) ≤ −δ

2
E∆(t) + C0E

∆(t) +C0

(
E(1)(t)

1
2 + E(2)(t)

1
2 + E(2)(t)

1
4
)
E∆(t).

The bound (3.14) guarantees the existence of a positive time t2, such that for all 0 < t < t2,

there holds C0

(√
t+ E(1)(t)

1
2 + E(2)(t)

1
2 + E(2)(t)

1
4

)
≤ δ

2 . Then (3.37) turns into

t
d

dt
E∆(t) ≤ C0E

∆(t),

hence

(3.38) E∆(t) ≤
(
t

t′

)C0

E∆(t′), ∀0 < t′ < t.

In view of (3.17), the right-hand side of (3.38) converges to 0 as t′ → 0. Thus E∆(t) = 0,

which means that f (1)(t) = f (2)(t) for all 0 < t < min(t1, t2). Returning to the original
variables, we conclude that ωθ,(1)(t) = ωθ,(2)(t) for all 0 < t < min(t1, t2). Then the desired
uniqueness follows from the global well-posedness result established in Theorem 1.1 of [9],
and the whole theorem has been proved. �
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