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Following the recent papers [9] and [10] by T. Gallay and V. Sverák, in the line of work initiated by H. Feng and V. Sverák in their paper [3], we prove the uniqueness of a solution of the axisymmetric Navier-Stokes equations without swirl when the initial data is a positive linear combination of Dirac masses.

Introduction

In 3-D ideal fluids, a vortex ring is an axisymmetric flow whose vorticity is entirely concentrated in a solid torus, which moves with constant speed along the symmetry axis. See [START_REF] Ambrosetti | Existence of steady vortex rings in an ideal fluid[END_REF][START_REF] Fraenkel | On steady vortex rings of small cross-section in an ideal fluid[END_REF][START_REF] Fraenkel | A global theory of steady vortex rings in an ideal fluid[END_REF][START_REF] Friedman | Vortex rings: existence and asymptoric estimates[END_REF] for the existence of vortex ring solutions to the 3-D Euler equations.

However, for viscous fluids, the vortex ring solutions can not exist, since all localized structures will be spread out by diffusion. Thus it is natural to consider the Navier-Stokes equations with a vortex filament, and more generally with positive linear combinations of circular vortex filaments which have a common axis of symmetry as initial data.

To state this precisely, let us start with the Navier-Stokes equations in R 3

(1.1) ∂ t u + u • ∇u -∆u + ∇p = 0, div u = 0, (t, x) ∈ R + × R 3 , where u(t, x) = (u 1 , u 2 , u 3 ) stands for the velocity field and p the scalar pressure function of the fluid, which guarantees that the velocity field remains divergence free.

In the following, we restrict ourselves to the axisymmetric solutions without swirl of (1.1), for which the velocity field u and the vorticity ω def = curl u take the particular form u(t, x) = u r (t, r, z)e r + u z (t, r, z)e z , ω(t, x) = ω θ (t, r, z)e θ , where (r, θ, z) denotes the cylindrical coordinates in R 3 so that x = (r cos θ, r sin θ, z), and e r = (cos θ, sin θ, 0), e θ = (-sin θ, cos θ, 0), e z = (0, 0, 1), r = x 2 1 + x 2 2 .

In view of [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], we equip the half-plane Ω = {(r, z)|r > 0, z ∈ R} with the measure drdz. More precisely, for any measurable function f : Ω → R, we denote

f L p (Ω) def = Ω |f (r, z)| p drdz 1 p < ∞, 1 ≤ p < ∞,
and f L ∞ (Ω) to be the essential supremum of |f | on Ω. For notational simplicity, we shall always denote a generic point in Ω by x = (r, z).

Recalling the axisymmetric Biot-Savart law discussed in Section 2 of [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], we know that for any given ω θ ∈ L 1 (Ω) ∩ L ∞ (Ω) which vanishes on r = 0, the linear elliptic system    ∂ r u r + 1 r u r + ∂ z u z = 0, ∂ z u r -∂ r u z = ω θ , on Ω, u r | r=0 = 0, ∂ r u z | r=0 = 0, has a unique solution (u r , u z ) ∈ C(Ω) 2 vanishing at infinity. We denote this solution by u = BS[ω θ ]. Hence we only need to study the equation for ω θ :

(1.2)

∂ t ω θ + (u r ∂ r + u z ∂ z )ω θ - u r ω θ r = (∂ 2 r + ∂ 2 z + 1 r ∂ r - 1 r 
2 )ω θ . Now let us discuss the initial condition. We first recall from [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] that, the axisymmetric vorticity equation (1.2) is globally well-posed whenever the initial vorticity is in L 1 (Ω). As a natural extension, then they considered the initial vorticity in M(Ω), which denotes the set of all real-valued finite regular measures on Ω, equipped with the total variation norm

µ tv def = sup Ω φ dµ φ ∈ C 0 (Ω), φ L ∞ (Ω) ≤ 1 ,
where C 0 (Ω) denotes the set of all real-valued continuous functions on Ω that vanishes at infinity and on the boundary ∂Ω. It is also proved in [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] that (1.2) is globally well-posed if the initial vorticity µ is in M(Ω) whose atomic part is small enough.

As mentioned in the first paragraph of the introduction, we focus here on the particular case

µ = n i=1 α i δ x i ,
where α i is some positive constant and δ x i is the Dirac mass at point x i = (r i , z i ) ∈ Ω with r i > 0. Such a µ is purely atomic and we deduce from [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] that (1.2) is global well-posed provided that

µ tv = n i=1 α i
is small enough. On the other hand, for arbitrary positive values of α i , [START_REF] Feng | On the Cauchy problem for axi-symmetric vortex rings[END_REF] gives the existence of a global mild solution, and [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF] proves the uniqueness when n = 1. In this paper, we prove the uniqueness for general n. Our result can be stated as follows:

Theorem 1.1. Fix an integer n. Let

µ = n i=1 α i δ x i ,
where α i is some positive constant and δ x i is the Dirac mass at point

x i = (r i , z i ) ∈ Ω with r i > 0. Then (1.2) has a unique global solution ω θ in C ]0, ∞[, L 1 (Ω) ∩ L ∞ (Ω) in the mild sense (see Definition 2.1), satisfying (1.3) sup t>0 ω θ (t) L 1 (Ω) < ∞, and ω θ (t)drdz ⇀ µ as t → 0.
Moreover, there exists some constant C 0 depending only on (α i , x i ) n i=1 , such that whenever √ t ≤ 1 2 min 1≤i<j≤n |x i -x j |, r i , there holds the following short time estimate:

(1.4) ω θ (t, •) - 1 4πt n i=1 α i e -|•-x i | 2 4t L 1 (Ω) ≤ C 0 √ t| ln t|.
Let us end this section with some notations. We use C (resp. C 0 ) to denote some absolute positive constant (resp. some positive constant depending on (α i , x i ) n i=1 ), which may be different in each occurrence. f g means that there exists some constant C such that f ≤ Cg. For a Banach space B, we shall use the shorthand u L p T B for the norm u(t, •) B L p (0,T ) .

Decomposition of the solution

In order to use the uniqueness result for the case when the initial measure is one single Dirac mass which has been proved in [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF], a natural thought is to decompose the solution into n parts:

ω θ = n i=1 ω θ i ,
according to the decomposition of the initial measure

µ = n i=1 α i δ x i .
The nonlinearity of the equation (1.2) renders this idea nontrivial to implement. The strategy is to use the fundamental solution of some advection-diffusion equation. This will be done in the first subsection.

The purpose of the second subsection will be to show that, at least for short times, ω θ i is very close -in the L 1 (Ω) sense -to the Oseen vortex located at x i with circulation α i . This goal will be achieved using self-similar variables around the point x i .

2.1. The linear semigroup and the trace of the solution at initial time. Let us denote by S(t) t≥0 the evolution semigroup defined by the linearized system of (1.2), namely

(2.1)    ∂ t ω θ -∂ 2 r + ∂ 2 z + 1 r ∂ r - 1 r 2 ω θ = 0, (t, r, z) ∈ R + ×Ω, ω θ | r=0 = 0, ω θ | t=0 = ω θ 0 .
One can see Section 3 of [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] for a detailed study of this semigroup.

By using S(t) t≥0 , we can define the mild solutions of (1.2) in the following way:

Definition 2.1. Let T > 0, we say that ω θ ∈ C ]0, T [, L 1 (Ω) ∩ L ∞ (Ω) is a mild solution of (1.
2) on ]0, T [, if for any 0 < t 0 < t < T , there holds the following integral equation

(2.2) ω θ (t) = S(t -t 0 )ω θ (t 0 ) - t t 0 S(t -s) div * u(s)ω θ (s) ds.
Here u = BS[ω θ ] and div * uω

θ def = ∂ r (u r ω θ ) + ∂ z (u z ω θ ).
Before proceeding further, let us recall some a priori estimates for the mild solution.

Lemma 2.1. Let ω θ be a mild solution of (1.2) on (0, T ) satisfying

(1.3), u = BS[ω θ ]. It is shown in Estimates (2.13), (2.14) of [10]
that, for any t ∈]0, T [, and any k, ℓ ∈ N, there holds

(2.3) t k+ ℓ 2 + 1 2 ∂ k t ∇ ℓ x u(t) L ∞ (Ω) + t 3 2 ∇ω θ (t) L ∞ (Ω) ≤ C 0 .
Moreover, we can deduce from Estimate (9) of [9] that

(2.4) lim t→0 t 1-1 p ω θ (t) L p (Ω) = 0, for any 1 < p ≤ ∞.
Combining the conclusions of Corollary 2.9, 2.10 and Remark 2.11 in [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF], we prove the following.

Proposition 2.1. For any T > 0, if ω θ ∈ C (0, T ), L 1 (Ω) ∩ L ∞ (Ω) is a mild solution of (1.
2) on (0, T ) satisfying (1.3), then for any t ∈ (0, T ) and (r, z) ∈ Ω, we have

(2.5) ω θ (t, r, z) ≥ 0, ω θ (t) L 1 (Ω) ≤ µ tv and lim t→0 ω θ (t) L 1 (Ω) = µ tv .
Moreover, for any bounded and continuous function φ on Ω, there holds the convergence

(2.6) Ω φ(r, z)ω θ (t, r, z) drdz → Ω φ dµ, as t → 0.
Noting that although the initial measure µ is no longer a single Dirac mass as considered in [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF], it is still supported in min 1≤i≤n r i , max 1≤i≤n r i × R. Thus the estimates of Proposition 3.1, 3.3 and then Lemma 3.8 in [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF] still hold for the case here. Precisely, we have

(2.7) T 0 u r (t)/r L ∞ (Ω) dt ≤ C 0 .
Next, let us state a particular case of Aronson's pioneering work [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF] on the fundamental solution of parabolic equations, which will be a key ingredient in our decomposition. Proposition 2.2 (Proposition 3.9 of [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF]). Assume that U, V : (0, T ) × R 3 → R 3 are continuous functions such that div U (t, •) = 0, for all t ∈ (0, T ) and

sup 0<t<T t 1 2 U (t, •) L ∞ (R 3 ) = K 1 < ∞, T 0 V (t, •) L ∞ (R 3 ) dt = K 2 < ∞.
Then the regular solutions of the following type advection-diffusion equation

(2.8) ∂ t f + U • ∇f -V f = ∆f, x ∈ R 3 , t ∈ (0, T ),
can be represented in the following way:

f (t, x) = R 3 Φ U,V (t, x; s, y)f (s, y) dy, x ∈ R 3 , 0 < s < t < T,
where Φ U,V is the (uniquely defined) fundamental solution, which is Hölder continuous in space and time, and satisfies, for all x, y ∈ R 3 and 0 < s < t < T , that

(2.9) 0 < Φ U,V (t, x; s, y) ≤ C (t -s) 3 2 exp - |x -y| 2 4(t -s) + K 1 |x -y| √ t -s + K 2 .
It is easy to derive the evolution equation for ω = ω θ (t, r, z)e θ from (1.1) that (2.10)

∂ t ω + u • ∇ω -r -1 u r ω = ∆ω, x ∈ R 3 , t ∈ (0, T ),
which is exactly of the form (2.8) with U = u, V = r -1 u r . In view of (2.3) and (2.7), the conditions of Proposition 2.2 are satisfied. Thus this ω can be represented as

ω(t, x) = R 3 Φ(t, x; s, y)ω(s, y) dy, x ∈ R 3 , 0 < s < t < T.
From which, we can deduce that ω θ satisfies (2.11)

ω θ (t, r, z) = Ω Φ(t, r, z; s, r ′ , z ′ )ω θ (s, r ′ , z ′ ) dr ′ dz ′ , 0 < s < t < T, where Φ(t, r, z; s, r ′ , z ′ ) = π -π
Φ t, (r, 0, z); s, (r ′ cos θ, r ′ sin θ, z ′ ) • r ′ cos θ dθ.

Using the Gaussian upper bound (2.9) of the fundamental solution Φ, we get Lemma 2.2 (Lemma 3.10 of [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF]). For any η ∈]0, 1[ and 0 < s < t < T , there exists some positive constant C η,α depending only on the choice of η and (α i ) n i=1 , such that

(2.12) 0 < Φ(t, r, z; s, r ′ , z ′ ) ≤ C η,α t -s r ′ r 1 2 H t -s (1 -η)rr ′ e -1-η 4(t-s) (r-r ′ ) 2 +(z-z ′ ) 2
, where H : (0, ∞) → R is decreasing with H(τ ) → 1 as τ → 0 and H(τ

) ∼ 1/ √ πτ as τ → ∞.
Let us write (2.11) in the following way

ω θ (t, r, z) = Ω Φ(t, r, z; 0, r ′ , z ′ )ω θ (s, r ′ , z ′ ) dr ′ dz ′ + Ω Φ(t, r, z; s, r ′ , z ′ ) -Φ(t, r, z; 0, r ′ , z ′ ) ω θ (s, r ′ , z ′ ) dr ′ dz ′ .
In view of the Hölder continuity and Gaussian upper bound (2.9) of the fundamental solution Φ, we deduce that Φ is continuous whenever 0 < s < t < T . Combining this with the facts that Φ is bounded as shown in (2.12), and ω θ (t) L 1 (Ω) ≤ µ tv as shown in (2.5), we know the second integral in the right-hand side converges to 0 as s tends to 0. On the other hand, since Φ is continuous and bounded, we can use (2.6) to derive the limit of the first integral as s tends to 0, and we finally obtain the following useful representation:

ω θ (t, r, z) = Ω Φ(t, r, z; 0, r ′ , z ′ ) dµ.
Recalling µ = n i=1 α i δ x i , we can obtain the decomposition for ω θ as follows:

(2.13)

ω θ (t, r, z) = n i=1
ω θ i (t, r, z), where ω θ i (t, r, z) = α i Φ(t, r, z; 0, r i , z i ), and the corresponding decomposition for u = BS[ω θ ]:

(2.14) u(t, r, z) = n i=1 u i (t, r, z), where u i = BS[ω θ i ].
It is easy to see that

ω θ i ∈ C ]0, T [, L 1 (Ω) ∩ L ∞ (Ω) is a mild solution of (2.15)    ∂ t ω θ i + u • ∇ω θ i -∂ 2 r + ∂ 2 z + 1 r ∂ r - 1 r 2 ω θ i = 0, (t, r, z) ∈]0, T [×Ω, ω θ i ⇀ α i δ x i as t → 0
. Moreover, we have the following estimates for ω θ i . Proposition 2.3. i) For any η ∈]0, 1[, (r, z) ∈ Ω and 0 < t < T , we have

(2.16) 0 < ω θ i (t, r, z) ≤ C η,α t e -1-η 4t (r-r i ) 2 +(z-z i ) 2 .
(2.17)

ω θ i (t) L 1 (Ω) ≤ µ tv and lim t→0 ω θ i (t) L 1 (Ω) = α i .
ii) There exists some positive time t 1 < T , such that for any 0 < t < t 1 , there holds

(2.18) t 3 2 ∇ω θ i (t) L ∞ (Ω) ≤ C 0 .
Proof. i) Using (2.12), we immediately get

(2.19) 0 < ω θ i (t, r, z) ≤ C η,α t r i r 1 2 H t (1 -η)rr i e -1-η 4t (r-r i ) 2 +(z-z i ) 2 .
When 2r ≤ r i , using the facts H(τ ) ≤ 1/ √ πτ and 2|r i -r| ≥ r i in this case gives

r i r 1 2 H t (1 -η)rr i ≤ r i √ π 1 -η t 1 2 ≤ C η,α • e η(1-η) 4t (r-r i ) 2 .
Substituting this into (2.19), and noting the fact that, when η runs over ]0, 1[, (1 -η) To prove (2.17), notice that ω θ i > 0 and

ω θ = n i=1 ω θ i , we have (2.20) n i=1 ω θ i (t) L 1 (Ω) = ω θ (t) L 1 (Ω) ≤ µ tv , ∀t ∈]0, T [, which in particular implies ω θ i (t) L 1 (Ω) ≤ µ tv . By taking limit t → 0 in (2.20), we obtain n i=1 lim t→0 ω θ i (t) L 1 (Ω) = lim t→0 ω θ (t) L 1 (Ω) = µ tv = n i=1 α i .
On the other hand, the initial condition

ω θ i ⇀ α i δ x i as t → 0 implies lim t→0 ω θ i (t) L 1 (Ω) ≥ α i .
Combining the above two sides, clearly there must hold

lim t→0 ω θ i (t) L 1 (Ω) = α i .
ii) For any 0 < t < T , we first write (2.15) in the integral form as

(2.21) ω θ i (t) = S(t/2)ω θ i (t/2) - t t/2 S(t -s) div * u(s)ω θ i (s) ds.
Then we need the following lemma, which is a particular case of Lemma 2.3. For any 1 ≤ p ≤ q ≤ ∞, and f (r, z) ∈ L p (Ω), there holds

(2.22) ∇S(t)f L q (Ω) ≤ C t 1 2 + 1 p -1 q f L p (Ω) ,
Using (2.21) and (2.22), together with the bounds (2.3) and (2.5), as well as the fact that ω θ i ≤ ω θ point-wisely, we achieve

∇ω θ i (t) L ∞ (Ω) ≤ C t 3/2 ω θ i (t/2) L 1 (Ω) + t t 2 C (t -s) 1/2 ∇u(s) L ∞ (Ω) ω θ i (s) L ∞ (Ω) + u(s) L ∞ (Ω) ∇ω θ i (s) L ∞ (Ω) ds ≤ C 0 t 3/2 + t t 2 C 0 (t -s) 1/2 1 s 2 + 1 √ s • s 1 2 u(s) L ∞ (Ω) ∇ω θ i (s) L ∞ (Ω) ds ≤ C 0 t 3/2 + C 0 sup t/2<s<t s 1 2 u(s) L ∞ (Ω) • sup t/2<s<t ∇ω θ i (s) L ∞ (Ω) .
Multiplying both sides by t 3/2 , we get

t 3 2 ∇ω θ i (t) L ∞ (Ω) ≤ C 0 + C 0 sup t/2<s<t s 1 2 u(s) L ∞ (Ω) • sup t/2<s<t s 3 2 ∇ω θ i (s) L ∞ (Ω) .
Then taking supremum over t leads to

(2.23) sup 0<s<t s 3 2 ∇ω θ i (s) L ∞ (Ω) ≤ C 0 1 + sup 0<s<t s 1 2 u(s) L ∞ (Ω) • sup 0<s<t s 3 2 ∇ω θ i (s) L ∞ (Ω) .
Noting that u = BS[ω θ ], we can use Proposition 2.3 of [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] to obtain

u L ∞ (Ω) ≤ C ω θ 1 2 L 1 (Ω) ω θ 1 2 L ∞ (Ω) , which together with (2.4) indicates that (2.24) lim t→0 t 1 2 u(t) L ∞ (Ω) = 0.
Thus there exists some t 1 > 0, such that for any s ∈]0, t 1 [ and the C 0 in (2.23), there holds

C 0 • s 1 2 u(s) L ∞ (Ω) < 1 2 ,
which guarantees that the term

C 0 sup 0<s<t s 1 2 u(s) L ∞ (Ω) • sup 0<s<t s 3 2 ∇ω θ i (s) L ∞ (Ω) in (2.23
) can be absorbed by the left hand side. This gives exactly the desired estimate (2.18).

2.2. Self-similar variables. In view of (2.16), we know that ω θ j concentrates in a self-similar way around x j for short time. Thus it is very natural to introduce the self-similar variables:

(2.25) R j = r -r j √ t , Z j = z -z j √ t , X j = x -x j √ t and ǫ j = √ t r j , j = 1, • • • , n.
Correspondingly, for any j ∈ {1, • • • , n}, t ∈ (0, T ) and any (r, z) ∈ Ω, we set

(2.26) ω θ j (t, r, z) = α j t f j t, r -r j √ t , z -z j √ t , u j (t, r, z) = α j √ t U j t, r -r j √ t , z -z j √ t .
In the new coordinates (R j , Z j ), the domain constraint r > 0 translates into r j + √ tR j > 0, which means that the rescaled vorticity f j (t, R j , Z j ) is defined in the time-dependent domain

Ω ǫ j def = {(R j , Z j ) ∈ R 2 | 1 + ǫ j R j > 0}.
Noting that u j = BS[ω θ j ], thus U j can also be determined by f j . Recalling the subsection 4.2 of [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF], we have the following explicit representation

U r j (X j ) = 1 2π Ωǫ j (1 + ǫ j R ′ )(1 + ǫ j R j ) -1 F 1 (ξ 2 j ) Z j -Z ′ |X j -X ′ | 2 f j (X ′ ) dX ′ , U z j (X j ) = - 1 2π Ωǫ j (1 + ǫ j R ′ )(1 + ǫ j R j ) -1 F 1 (ξ 2 j ) R j -R ′ |X j -X ′ | 2 f j (X ′ ) dX ′ + ǫ j 4π Ωǫ j (1 + ǫ j R ′ )(1 + ǫ j R j ) -3 F 1 (ξ 2 j ) + F 2 (ξ 2 j ) f j (X ′ ) dX ′ , (2.27) 
where

F 1 , F 2 is some kernel satisfying s σ 1 F 1 (s), s σ 2 F 2 (s) are bounded on ]0, ∞[ whenever 0 ≤ σ 1 ≤ 3/2, 0 < σ 2 ≤ 3/2,
and ξ 2 j is a shorthand notation for the quantity

ξ 2 j = ǫ 2 j |X j -X ′ | 2 (1 + ǫ j R j ) -1 (1 + ǫ j R ′ ) -1 .
We denote this map from f j to U j by U j = BS ǫ j [f j ]. We use the superscript ǫ j since in the new variables, the map depends explicitly on time through the parameter ǫ j .

In the rest of this paper, the following notations will also be used:

(2.28) R = r -r i √ t , Z = z -z i √ t , X = x -x i √ t and ǫ = √ t r i ,
here although R, Z, X, ǫ indeed depend on i, we omit the index i for notation simplification. After this blow-up procedure, the gaussian bound on ω i given by (2.16) translates into

(2.29) 0 < f i (t, R, Z) ≤ C η,α e -1-η 4 (R 2 +Z 2 )
, and (2.17) translates into (2.30)

Ωǫ f i (t, R, Z) dRdZ → 1, as t → 0.
We can use the estimate (2.29) to derive the point-wise estimate for U ǫ i . First, recalling the proof of Proposition 2.3 in [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], which shows that for any (r, z) ∈ Ω, there holds

|u(r, z)| ≤ C Ω 1 (r -r ′ ) 2 + (z -z ′ ) 2 |ω θ (r ′ , z ′ )| dr ′ dz ′ .
Then using the self-similar variables (2.25), we obtain

|U i (t, R, Z)| ≤ C Ωǫ 1 (R -R ′ ) 2 + (Z -Z ′ ) 2 f i (t, R ′ , Z ′ ) dR ′ dZ ′
Finally substituting (2.29) with some fixed η into this, leads to

(2.31) 1 + |R| + |Z| |U i (t, R, Z)| ≤ C 0 .
Using the notation (2.26), let us also do this self-similar blow-up of the whole velocity u near the point x i ∈ Ω and near the initial time t = 0, and we get

(2.32) u(t, r, z) = α i √ t U i (t, R, Z) + j =i α j √ t U j t, R + r i -r j √ t , Z + z i -z j √ t .
In view of (2.31), let t → 0 and R, Z fixed, all U j t, R +

r i -r j √ t , Z + z i -z j √ t
for j = i vanish, and only U i (t, R, Z) remains. Thus after this blow-up procedure, the convection term can be very close to U i • ∇f i , for a short time. Combining with the fact that the initial measure for

ω i = ω θ i e θ is α i δ x i
, hence if we believe in uniqueness, it is reasonable to expect that, for a short time, ω i will be very close to an Oseen vortex located at x i with circulation α i .

In order to write this observation precisely, let us denote the following functions on R 2 :

w(x, y) def = e (|x| 2 +|y| 2 )/4 , G(x, y) def = 1 4π e -(|x| 2 +|y| 2 )/4 , (x, y) ∈ R 2 ,
and denote by X the weighted space L 2 (R 2 , w(x, y)dxdy). We have:

Proposition 2.1. For any i ∈ {1, • • • , n}, we have f i (t, •) -G(•) X → 0 as t goes to 0,
where f i denotes the extension of f i by zero outside Ω ǫ .

Proof. First, let us denote by X 0 a subspace of X , which is defined by the stronger norm

f X 0 def = f w 1-η L ∞ (R 2 ) + ∇f L ∞ (R 2 ) ,
where η is a real number satisfying 0 < η < 1 2 . We have: Lemma 2.1 (Lemma 4.4 in [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF]). The space X 0 is compactly embedded in X , and the unit ball in X 0 is closed for the topology induced by X .

In the self-similar variables, the gradient bound for ω θ i , namely (2.18), translates into

∇f i (t) L ∞ (R 2 ) < ∞, ∀t ∈]0, T [.
Combining this with the gaussian bound for f i , (2.29), we know that, (f i (t)) 0<t<T is a bounded subset of X 0 , hence compact in X . Let h * be an accumulation point in X of (f i (t)) 0<t<T as t goes to 0, and (t m ) m∈N be the corresponding sequence of positive time satisfying

(2.33) t m → 0, f i (t m ) -h * X → 0 as m → ∞.
Now, let us temporarily consider the whole 3-D vorticity field ω and the whole 3-D velocity field u. For any m ∈ N, y ∈ R 3 , and s ∈]0, t -1 m T [, we define the following sequence

u (m) (s, y) = √ t m u(t m s, x i + √ t m y) ω (m) (s, y) = t m ω(t m s, x i + √ t m y),
where x i = (r i , 0, z i ) ∈ R 3 . In other words, the vector fields ω (m) , u (m) are defined by a self-similar blow-up of the original quantities ω, u near the point x i ∈ R 3 and near the initial time t = 0. It is easy to verify that ω, u satisfy the 3-D vorticity equation:

∂ s ω (m) + u (m) • ∇ω (m) -∆ω (m) = ω (m) • ∇u (m) , div u (m) = 0, curl u (m) = ω (m) , for s ∈]0, t -1 m T [, y ∈ R 3 .
The self-similar rescaling from u to u (m) preserves the bounds given by (2.3), precisely for all indices k, ℓ ∈ N, we have the following a priori estimates

∂ k s ∇ ℓ y u (m) (s) L ∞ (R 3 ) ≤ C 0 s -1 2 +k+ ℓ 2 , s ∈]0, t -1
m T [, which holds uniformly in m. Hence, up to an extraction, we can assume that

ω (m) → ω, u (m) → u, as m → ∞,
with uniform convergence of both vector fields along with all their derivatives on any compact subset of ]0, t -1 m T [× R 3 . Thus the limiting fields ω, u are smooth and satisfy (2.34)

∂ s ω + u • ∇ω -∆ω = ω • ∇u, div u = 0, curl u = ω.
The goal now is to relate ω to ω i and f i . The idea is that the other ω j , f j (j = i) should be eliminated by the blow-up procedure. Using the definitions, we get

ω (m) (s, y) = t m ω(t m s, x i + √ t m y) = t m ω(t m s, (r i + √ t m y 1 ) 2 + t m y 2 2 , 0, z i + √ t m y 3 ) = α i s f i (t m s, X (m) 
ii (s, y))

+ j =i α j s f j (t m s, X (m) ij (s, y)) e θ (x i + √ t m y), (2.35) 
where

X (m) ij (s, y) def = (r i + √ t m y 1 ) 2 + t m y 2 2 -r j √ t m s , z i -z j + √ t m y 3 √ t m s .
If i = j, for any bounded subset B ⊂ R 3 and any y ∈ B, there exists a large constant N B , such that for any m > N B , there holds

|X (m) ij (s, y)| 2 ≥ (r i -r j ) 2 + (z i -z j ) 2 2t m s .
Then the gaussian bound for f j (2.29) entails

0 ≤ f j (t m s, X (m) ij (s, y)) ≤ C η,α exp - (1 -η)|x i -x j | 2 8t m s .
Hence, the only contribution in the limit procedure m → ∞ comes, as expected, from the i-th circular vortex. Regarding f i , as shown before, f i (•, •, t) is bounded in X 0 . Thus for any fixed s > 0, up to another extraction, there must exist some h s ∈ X such that (2.36)

f i (t m s) -h s X → 0 as m → ∞.
The boundedness of (f i (t m s)) m in X 0 implies that, this convergence of (f i (t m s)) m to h s also holds uniformly on any compact set of R 3 . Therefore, taking the limit m → ∞ on both sides of (2.35) and noting that e θ (x i ) = e 2 = (0, 1, 0), we obtain

ω(s, y) = α i s h s y 1 √ s , y 3 
√ s e 2 def = (0, ω 2 (s, y 1 , y 3 ), 0).

Taking the limit m → ∞ in (2.29) and (2.30), we deduce

(2.37) |ω 2 (s, y 1 , y 3 )| C η,α s -1 e -1-η 4s |y| 2 , R 2 
ω 2 (s, y 1 , y 3 ) dy 1 dy 3 = α i .

We now turn to the velocity field. Similarly as (2.35), we can write

(2.38) u (m) (s, y) = α i √ s U ǫ i (t m s, X (m) 
ii (s, y))

+ j =i α j √ s U ǫ j (t m s, X (m) 
ij (s, y)).

In view of (2.31), as t m → 0, all U ǫ j (t m s, X

ij (s, y)) for j = i vanish, and only

U ǫ i (t m s, X (m) 
ii (s, y)) remains. Regarding U i , using (2.31) again and taking the limit m → ∞, we get

(2.39) |u(s, y)| ( √ s + |y 1 | + |y 3 |) -1 .
Moreover, as shown in (2.34), u satisfies the following elliptic system div u = 0, curl u = ω.

This div-curl system has at most one solution with the decay property (2.39), hence u(s, y) = u 1 (s, y 1 , y 3 )e 1 + u 3 (s, y 1 , y 3 )e 3 = (u 1 (s, y 1 , y 3 ), 0, u 3 (s, y 1 , y 3 )),

where (u 1 , u 3 ) is the two dimensional velocity field obtained from the scalar vorticity ω 2 via the Biot-Savart law in R 2 . Summarizing, we have shown that the limiting vorticity ω 2 , together with the associated velocity (u 1 , u 3 ) solves the 2-D Navier-Stokes equations, and it follows from (2.37) that ω 2 (s, •) is uniformly bounded in L 1 (R 2 ) and converges weakly to the Dirac measure α i δ 0 as s → 0. Then we deduce, by using Proposition 1.3 in [START_REF] Gallay | Global stability of vortex solutions of the two-dimensional Navier-Stokes equation[END_REF], that ω 2 (s, y 1 , y 3 ) = α i s G y 1 √ s , y 3 √ s , i.e. h s = G for any s > 0. In particular, choosing s = 1 so that t m s = t m , and comparing (2.33) with (2.36), we conclude that h * = G, which is the desired result.

In view of Proposition 2.1, it is natural to make a further decomposition of ω. Let andf i to be a function on ]0, T [×Ω i ǫ defined as (2.40)

f 0 (t, x, y) def = G(x, y)χ t(x 2 + y 2 )/d , (x, y) ∈ R 2 , t ∈]0, T [,
f i (t, R, Z) = f i (t, R, Z) -f 0 (t, R, Z), (R, Z) ∈ Ω ǫ , t ∈]0, T [.
Then we can decompose ω θ further as follows:

(2.41)

ω θ (t, r, z) = n j=1 α j t f 0 (t, R j , Z j ) + α j t f j (t, R j , Z j ) .
And correspondingly, u = BS[ω θ ] can be decomposed further into

u(t, r, z) = n j=1 α j √ t U 0,j (t, R j , Z j ) + α j √ t U j (t, R j , Z j ) , where U 0,j = BS ǫ j [f 0 ], U j = BS ǫ j [ f j ].
(2.42) Remark 2.1. For any j ∈ {1, • • • , n}, due to the cutoff function χ, it is easy to see that f 0 (t, R j , Z j ) vanishes when √ tR < -d/4, and thus vanishes when √ tR < -r j /4. In particular, this implies that f 0 (t, R j , Z j ) satisfies the Dirichlet boundary condition on ∂Ω ǫ j , and thus f j (t, R j , Z j ) also satisfies the Dirichlet boundary condition on ∂Ω ǫ j .

It is clear that f 0 (t) ∈ X for all t ∈]0, T [, and f 0 (t) -G X → 0 as t → 0. Thus the perturbation f j (t) (extended by zero outside Ω ǫ j ) belongs to X for all t ∈]0, T [, and Proposition 2.1 implies that f j (t) X → 0 as t → 0. In the next section, we shall give a more accurate quantitative rate of this convergence.

Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In view of the decomposition (2.41), to prove the uniqueness claim in Theorem 1.1, we only need to show the perturbation part ( f j ) n j=1 is uniquely determined. At the end of last section, we have shown that f j (t) X → 0 as t → 0, but this is not enough to prove uniqueness. We shall give a more accurate quantitative rate of this convergence, which in particular implies the short time estimate (1.4). This will be done in the first subsection.

After some modifications to the energy estimates in the proof of the short time estimate, we can prove the uniqueness claim in Theorem 1.1.This will be done in the second subsection.

3.1. Short time asymptotics. Using (2.15) and (2.26), we can derive the evolution equation satisfied by the rescaled vorticity f i reads

(3.1) t∂ t f i (t, X)+div * α i U i (t, X)f i (t, X)+W i (t, X)f i (t, X) = (Lf i )(t, X)+∂ R ǫf i (t, X) 1 + ǫR ,
for X ∈ Ω ǫ and t ∈]0, T [, where the operator L is defined for a generic function f by

Lf (X) def = ∆ X f (X) + X 2 • ∇ X f (X) + f (X),
the operator div * is defined for a generic vector field V (X) = V r (X)e r + V z (X)e z by div * V (X)

def = ∂ R V r (X) + ∂ Z V z (X),
and W i stands for the other parts of the rescaled velocity:

W i (t, X) def = j =i α j U j (t, X j ), where X j = x -x j √ t = X + x i -x j √ t .
Then we can deduce from (2.41), (2.42) and (3.1) that

(3.2) t∂ t f i + α i div * (U 0,i f i + U i f 0 + U i f i ) + div * (W i f i ) = L f i + ∂ R ǫ f i 1 + ǫR + H,
where

H = -t∂ t f 0 + Lf 0 + ∂ R ǫf 0 (t, X) 1 + ǫR -α i div * (U 0,i f 0 ).
And we shall define, following [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF], the two types of energy for each vortex

E j (t) def = 1 2 Ωǫ j f j (t, X j ) 2 w(X j ) dX j , E j (t) def = 1 2 Ωǫ j |∇ f j (t, X j )| 2 + (1 + |X j | 2 ) f j (t, X j ) 2 w(X j ) dX j , (3.3) 
as well as the total energies

E(t) def = n j=1 E j (t), E(t) def = n j=1 E j (t).
As we have pointed out in Remark 2.1 that, f j satisfies the homogeneous Dirichlet condition on ∂Ω ǫ j , thus although the integral in (3.3) is taken over the time-dependent domain Ω ǫ j , there is no contribution from the boundary when we differentiate with respect to time. Hence we can get, by doing L 2 (Ω ǫ , w(X)dX) energy estimate to (3.2) and integrating by parts, that

(3.4) tE ′ i (t) = A i (t) + I i (t)
, where

A i (t) = Ωǫ L f i (t, X) + ∂ R ǫ f i (t, X) 1 + ǫR + H(t, X) -α i div * (U 0,i f i + U i f 0 + U i f i )(t, X) f i (t, X) • w(X) dX, I i (t) = Ωǫ W i (t, X)f i (t, X) ∇ X f i (t, X) + X 2 f i (t, X) • w(X) dX.
The main result of this subsection states as follows:

Proposition 3.1. There exists some positive constant δ depending on the initial measure µ, such that for t sufficiently small, there holds

(3.5) tE ′ i (t) ≤ -2δE i (t) + C 0 √ t| ln t|E i (t) 1 2 + CE i (t) 1 2 E i (t) + R i (t),
where the quantity R i satisfies the inequality 0 < R i (t) ≤ e -C 0 /t .

Proof. Noting that the terms in A i (t) are exactly the same as the ones appearing on the right-hand side of the equality (4.42) in [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF]. Thus using the Proposition 4.5 in [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF], we know that there exists some ǫ 0 ∈]0, 1/2[, if t > 0 is small enough so that ǫ i < ǫ 0 , then

(3.6) A i (t) ≤ -2δE i (t) + C √ t| ln t|E i (t) 1 2 + CE i (t) 1 2 E i (t) + R i (t).
In the following we shall concentrate on the interaction part I i (t). Using the decomposition (2.40) and (2.42), we can write

W i (t, X)f i (t, X) = j =i α j U 0,j (t, X j ) + α j U j (t, X j ) f 0 (t, X) + f i (t, X) .
Thus there are four types of integral terms in I i (t), which we handle separately.

Before proceeding, let us decompose Ω ǫ j into two parts, namely

Ω + ǫ j def = X ∈ Ω ǫ j s.t. |X| > d 4 √ t , Ω - ǫ j def = X ∈ Ω ǫ j s.t. |X| ≤ d 4 √ t .
Type 1:

I i,1 (t) = j =i Ωǫ α j U j (t, X j )f 0 (t, X) • ∇ X + X/2 f i (t, X) • w(X) dX.
Due to the cutoff function χ, we know that f 0 (t, X) vanishes whenever |X| > d 4 √

t . Thus I i,1 (t) actually only integrates on Ω - ǫ , and for X in Ω - ǫ , we have

|X j | = X + x i -x j √ t ≥ 3d 4 √ t .
Then the estimate (2.31) gives

(3.7) U j (t, X j ) ≤ C 0 √ t.
Thanks to this bound, the definition of f 0 , and Cauchy inequality, we get

|I i,1 (t)| ≤ C 0 √ t j =i Ω - ǫ e -|X| 2 /4 ∇ X f i (t, X) + X 2 f i (t, X) w(X) dX ≤ C 0 √ t e -|X| 2 /8 L 2 (Ω - ǫ ) ∇ X + X/2 f i (t, X) • w(X) 1/2 L 2 (Ω - ǫ ) ≤ C 0 √ tE i (t) 1 2 . 
(3.8)

Type 2: I i,2 (t) = j =i Ωǫ α j U j (t, X j ) f i (t, X) • ∇ X + X/2 f i (t, X) • w(X) dX.
We decompose I i,2 into two different parts according to the integra domain. On Ω - ǫ , by using the bound (3.7) and Cauchy inequality again, we obtain (3.9)

Ω - ǫ U j (t, X j ) f i (t, X) • ∇ X + X/2 f i (t, X) • w(X) dX ≤ C 0 √ tE i (t) 1 2 E i (t) 1 2 .
To handle the integral on Ω + ǫ , a mere application of (2.31) gives (3.10)

U j L ∞ T (L ∞ (Ωǫ j )) ≤ C 0 .
And it follows from the Gaussian bound for f i (2.29) and the fact that f 0 vanishes on Ω + ǫ that, the same Gaussian bound also holds for f i , precisely

(3.11) 0 < f i (t, X) ≤ C η,α e -1-η 4 |X| 2 , ∀X ∈ Ω + ǫ .
Using the above bounds (3.10) and (3.24) with η = 1 4 , we get

Ω + ǫ U j (t, X j ) f i (t, X) • ∇ X + X/2 f i (t, X) • w(X) dX ≤ C 0 f i (t)w 1 2 L 2 (Ω + ǫ ) E i (t) 1 2 ≤ C 0 e -d 2 256t E i (t) 1 2 
. Combining this with the estimate (3.9), we finally get

(3.12) |I i,2 (t)| ≤ C 0 √ tE i (t) 1 2 E i (t) 1 2 + C 0 e -d 2 256t E i (t) 1 2 
. Substituting the estimates (3.6), (3.8) and(3.12) ,and using the trivial bounds

E i ≤ E i ≤ E, E i ≤ E allows us to obtain tE ′ i (t) ≤ -2δE i (t)+C √ t| ln t|E i (t) 1 2 + CE i (t) 1 2 E i (t) + R i (t) + C 0 √ tE i (t) 1 2 + C 0 √ tE i (t) 1 2 E i (t) 1 2 + C 0 e -d 2 256t E i (t) 1 2 .
Recalling that E(t) goes to 0 as t goes to 0 yields the simplified bound

tE ′ i (t) ≤ -2δE i (t) + C 0 √ t| ln t|E i (t) 1 2 + CE i (t) 1 2 E i (t) + R i (t)
, which is the desired differential inequality. This completes the proof of this proposition.

Proof of the estimate (1.4). Applying Young's inequality to (3.5) gives

(3.13) tE ′ i (t) ≤ - 3 2 δE i (t) + C 0 t| ln t| 2 + CE i (t) 1 2 E i (t) + R i (t).
Recalling that by definition ǫ i = √ t/r i and E(t) goes to 0 as t goes to 0, thus there exists some small constant t 0 depending only on the initial measure µ, such that both ǫ i < ǫ 0 and E i (t) 1/2 < δ/2 hold whenever t < t 0 . Combining this with the facts that E i ≤ E i and 0 < R i (t) ≤ e -C 0 /t , we can get from (3.13), for t < t 0 , that

tE ′ i (t) ≤ -δE i (t) + C 0 t| ln t| 2 + R i (t) ≤ -δE i (t) + C 0 t| ln t| 2 .
Integrating this differential inequality yields the bound

(3.14) E i (t) ≤ C 0 t -δ t 0 s δ | ln s| 2 ds ≤ C 0 t| ln t| 2 .
Then in view of the definition (3.3), the above inequality leads to

f i (t) -f 0 (t) L 1 (Ωǫ) = f i L 1 (Ωǫ) ≤ CE 1/2 i (t) ≤ C 0 √ t| ln t|.
And since f 0 is extremely close to G, we finally obtain

f i (t) -G L 1 (Ωǫ) ≤ f i (t) -f 0 (t) L 1 (Ωǫ) + f 0 (t) -G L 1 (Ωǫ) ≤ C 0 √ t| ln t| + e -C 0 /t ≤ C 0 √ t| ln t|. (3.15)
Returning to the original variables, and summing up over i, gives exactly the short time estimate (1.4) for t < t 0 .

3.2. Uniqueness. The purpose of this final subsection is to prove the uniqueness result in Theorem 1.1. Assume that ω θ, (1) , ω θ, (2) ∈ C ]0, T [, L 1 (Ω) ∩ L ∞ (Ω) are two mild solutions to the vorticity equation (1.2) satisfying (1.3). Introducing the self-similar variables and decompose these two solutions just as what we have done in Subsection 2.2, precisely for ℓ = 1, 2, we write

ω θ,(ℓ) (t, r, z) = n j=1 α j t f (ℓ) j (t, R j , Z j ) = n j=1 α j t f 0 (t, R j , Z j ) + α j t f (ℓ) j (t, R j , Z j ) ,
and correspondingly, u (ℓ) = BS[ω θ,(ℓ) ] can be decomposed into

u(t, r, z) (ℓ) = n j=1 α j √ t U (ℓ) j (t, R j , Z j ) = n j=1 α j √ t U 0,j (t, R j , Z j ) + α j √ t U (ℓ) j (t, R j , Z j ) .
The differences of the rescaled solutions will be denoted by

f ∆ i def = f (1) i -f (2) i = f (1) i -f (2) i , U ∆ i def = U (1) i -U (2) i = U (1) i -U (2) 
i . The evolution equation for

f ∆ i reads t∂ t f ∆ i + α i div * (U 0,i f ∆ i + U ∆ i f 0 ) + α i div * ( U (1) i f (1) i -U (2) i f (2) 
i )

+ div * (W 0,i f ∆ i + W ∆ i f 0 ) + div * ( W (1) i f (1) i -W (2) i f 
(2)

i ) = L f ∆ i + ∂ R ǫ f ∆ i 1 + ǫR , (3.16) 
where

W 0,i (t, X) def = j =i α j U 0,j (t, X j ), W (ℓ) i (t, X) def = j =i α j U (ℓ) j (t, X j ).
In analogy with (3.3), the energies for each solution are straightforwardly denoted by

E (ℓ) j (t) def = 1 2 Ωǫ j f (ℓ) j (t, X j ) 2 w(X j ) dX j , E (ℓ) (t) def = n j=1 E (ℓ) j (t), E (ℓ) j (t) def = 1 2 Ωǫ j |∇ f (ℓ) j (t, X j )| 2 + (1 + |X j | 2 ) f (ℓ) j (t, X j ) 2 w(X j ) dX j , E (ℓ) (t) def = n j=1 E (ℓ) j (t),
as well as the energies for the difference

E ∆ j (t) def = 1 2 Ωǫ j f ∆ j (t, X j ) 2 w(X j ) dX j , E ∆ (t) def = n j=1 E ∆ j (t), E ∆ j (t) def = 1 2 Ωǫ j |∇ f ∆ j (t, X j )| 2 + (1 + |X j | 2 ) f ∆ j (t, X j ) 2 w(X j ) dX j , E ∆ (t) def = n j=1 E ∆ j (t).
In view of (3.14), combining with the elementary fact that E ∆ j ≤ 2 E

(1)

j + E (2) j 
, we know that E ∆ j (t) also decays to 0 with rate at least t| ln t| 2 as t → 0. We believe that E ∆ j (t) decays faster than E (ℓ) j since the source H and div * (W 0,i f 0 ) has disappeared when taking the difference of the equations for f (1) i and f

(2) i . Precisely, we have: Proposition 3.2. There exists a positive time t 1 such that for all 0 < t < t 1 , there holds

(3.17) E ∆ (t) ≤ e -C 0 /t .
Proof. Similarly as in the proof of Proposition 3.1, by doing an L 2 (Ω ǫ , w(X)dX) energy estimate to (3.16) and integrating by parts, we obtain

(3.18) t d dt E ∆ i (t) = A ∆ i (t) + I ∆ i (t),
where

A ∆ i (t) = Ωǫ L f ∆ i (t, X) + ∂ R ǫ f ∆ i (t, X) 1 + ǫR -α i div * (U 0,i f ∆ i + U ∆ i f 0 ) -α i div * ( U (1) i f (1) i -U (2) i f (2) i ) f ∆ i (t, X) • w(X) dX, I ∆ i (t) = Ωǫ W 0,i f ∆ i + W ∆ i f 0 + W (1) i f (1) i -W (2) i f (2) i (t, X) • ∇ X + X/2 f ∆ i (t, X) • w(X) dX.
First, the estimate (4.71) of [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF] claims that there exists some positive constant δ and some ǫ 0 ∈]0, 1[ such that as long as ǫ < ǫ 0 , there holds

(3.19) A ∆ i (t) ≤ -2δE ∆ i (t) + C E (1) 
i (t)

1 2 + E (2) 
i (t)

1 2 E ∆ i (t) + R ∆ i (t),
where the quantity R ∆ i satisfies the inequality 0 < R ∆ i (t) ≤ e -C 0 /t . We mention that the terms with type C 0 √ t| ln t|E i (t) 1 2 in (3.6) does not appear here, due to the cancellation of the source term H when taking the difference.

For the interaction part I ∆ i (t), thanks to the cancellation of div * (W 0,i f 0 ), there are only three types of integral terms, which we handle separately in the following. Type 1:

I ∆ i,1 (t) = Ωǫ W 0,i (t, X) f ∆ i (t, X) • ∇ X + X/2 f ∆ i (t, X)
• w(X) dX. We decompose I ∆ i,1 into two different parts according to the integra domain. On Ω - ǫ , we have the point-wise estimate: Lemma 3.1. For any j = i, and any X j in Ω - ǫ j (i.e. X in Ω - ǫ ), we have

|U 0,j (t, X j )| ≤ C 0 √ t.
Proof. Using the explicit formula (2.27), and the fact that f 0 supports in Ω - ǫ , we get

U r 0,j (t, X j ) = 1 2π Ω - ǫ (1 + ǫ j R ′ )(1 + ǫ j R j ) -1 F 1 (ξ 2 j ) Z j -Z ′ |X j -X ′ | 2 f 0 (t, X ′ ) dX ′ , U z 0,j (t, X j ) = - 1 2π Ω - ǫ (1 + ǫ j R ′ )(1 + ǫ j R j ) -1 F 1 (ξ 2 j ) R j -R ′ |X j -X ′ | 2 f 0 (t, X ′ ) dX ′ + ǫ j 4π Ω - ǫ (1 + ǫ j R ′ )(1 + ǫ j R j ) -3 F 1 (ξ 2 j ) + F 2 (ξ 2 j ) f 0 (t, X ′ ) dX ′ , where ξ 2 j = ǫ 2 j |X j -X ′ | 2 (1 + ǫ j R j ) -1 (1 + ǫ j R ′ ) -1 . For X and X ′ in Ω - ǫ , we have |X j -X ′ | = X -X ′ + x i -x j √ t ∈ d 2 √ t , 1 √ t |x i -x j | + d 2 , 1 + ǫ j R ′ ∈ 3 4 , 5 4 
, and 1 + ǫ j R j = r i r j + √ tR r j ∈ 3r i 4r j , 5r i 4r j .

Using the above bounds and the fact that F 1 (s), s

1 2 F 2 (s) are bounded on ]0, ∞[, we achieve |U 0,j (X j )| ≤ C 0 Ω - ǫ √ te -|X ′ | 2 /4 dX ′ ≤ C 0 √ t,
which completes the proof of this lemma.

A direct consequence of this lemma is that, W 0,i (t, X) ≤ C 0 √ t for any X ∈ Ω - ǫ . Using this point-wise bound and Cauchy inequality, we obtain (3.20)

Ω - ǫ W 0,i (t, X) f ∆ i (t, X) • ∇ X + X/2 f ∆ i (t, X) • w(X) dX ≤ C 0 √ tE ∆ i (t) 1 2 E ∆ i (t) 1 2 
.

To handle the integral on Ω + ǫ , we need some more careful estimates on the rescaled velocity. After the blow-up procedure (2.26), Proposition 2.3 of [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF] translates into:

Lemma 3.2. i) If 1 < p < 2 < q < ∞, 1 q = 1 p -1 2 , then (3.21) BS ǫ [f ] L q (Ωǫ) ≤ C f L p (Ωǫ) . ii) If 1 ≤ p < 2 < q ≤ ∞, then (3.22) BS ǫ [f ] L ∞ (Ωǫ) ≤ C f σ L p (Ωǫ) f 1-σ L q (Ωǫ) , where σ = p 2 q -2 q -p ∈]0, 1[.
It follows from a mere application of (3.22) to a gaussian function that

(3.23) W 0,i L ∞ T (L ∞ (Ωǫ)) ≤ C.
And it follows from the Gaussian bound for f (ℓ) i (2.29) and the fact that f 0 vanishes on Ω + ǫ that, the same Gaussian bound also holds for f

(ℓ) i , precisely (3.24) 0 < f (ℓ) i (t, X) ≤ C η,α e -1-η 4 |X| 2 , ∀X ∈ Ω + ǫ .
Using the above bounds (3.23) and (3.24) with η = 1 4 , we get

Ω + ǫ W 0,i (t, X) f ∆ i (t, X) • ∇ X + X/2 f ∆ i (t, X) • w(X) dX ≤ C f ∆ i (t)w 1 2 L 2 (Ω + ǫ ) E ∆ i (t) 1 2 ≤ C 0 e -d 2 256t E ∆ i (t) 1 2 
.

Combining this with the estimate (3.20), we finally get

(3.25) |I ∆ i,1 (t)| ≤ C 0 √ tE ∆ i (t) 1 2 E ∆ i (t) 1 2 + C 0 e -d 2 256t E ∆ i (t) 1 2 
.

Type 2:

I ∆ i,2 (t) = Ωǫ W ∆ i (t, X)f 0 (t, X) • ∇ X + X/2 f ∆ i (t, X) • w(X) dX.
Noting that f 0 supports only on Ω - ǫ , and f 0 (X)w(X) ≤ 1 on Ω ǫ , we get

(3.26) |I ∆ i,2 (t)| ≤ Ω - ǫ j =i α j ( U (1) 
j -U (2) j )(t, X j ) • ∇ X + X/2 f ∆ i (t, X) dX.
Let us decompose U (ℓ) j as the sum of U (ℓ),+ j and U (ℓ),j

, with

U (ℓ),± j (X j ) def = BS ǫ j f (ℓ) j (X j )1 Ω ± ǫ j (X j ) ,
where 1 Ω ± ǫ stands for the characteristic function of Ω ± ǫ .

Exactly along the proof of Lemma 3.1, we can get, for any X ∈ Ω - ǫ , that

U (1),- j -U (2),- j X + x i -x j √ t ≤ C 0 √ t Ω - ǫ j f (1) j (X ′ ) -f (2) j (X ′ ) dX ′ ≤ C 0 √ t w -1/2 L 2 E ∆ j (t) 1 2 ≤ C 0 √ tE ∆ j (t) 1 2 
.

Using this bound and the fact that L 2 Ω - ǫ , w(X)dX ֒→ L 1 (Ω - ǫ , dX) , we achieve

Ω - ǫ j =i α j ( U (1),- j -U (2),- j )(t, X j ) • ∇ X + X/2 f ∆ i (t, X) dX ≤ C 0 √ tE ∆ (t) 1 2 E ∆ i (t) 1 2 . 
(3.27)

For U (ℓ),+ j

, we use (3.21) with p = 4/3, q = 4, and Hölder's inequality to obtain

U (1),+ j -U (2),+ j L 4 (Ωǫ j ) ≤ C 0 f (1) j -f (2) j L 4 3 (Ω + ǫ j ) ≤ C 0 w -1/2 L 4 (Ω + ǫ j ) f (1) j -f (2) j w 1/2 L 2 (Ω + ǫ j ) ≤ C 0 e -C 0 /t E ∆ j (t) 1 2
Using this estimate and Hölder's inequality again, we achieve

Ω - ǫ j =i α j ( U (1),+ j -U (2),+ j )(t, X j ) • ∇ X + X/2 f ∆ i (t, X) dX ≤ j =i U (1),+ j -U (2),+ j L 4 (Ω - ǫ ) w -1/2 L 4 (Ω - ǫ ) ∇ X + X/2 f ∆ i • w 1/2 L 2 (Ω - ǫ ) ≤ C 0 e -C 0 /t E ∆ (t) 1 2 E ∆ i (t) 1 2 . 
(3.28)

Combining the estimates (3.27) and (3.28), we finally achieve that

(3.29) |I ∆ i,2 (t)| ≤ C 0 √ tE ∆ (t) 1 2 E ∆ i (t) 1 2 
.

Type 3:

I ∆ i,3 (t) = Ωǫ W (1) i f (1) i -W (2) i f (2) i (t, X) • ∇ X + X/2 f ∆ i (t, X) • w(X) dX. The strategy of estimating I ∆ i,3 (t) is to write W (1) i f (1) i -W (2) i f (2) i = W ∆ i f (1) i + W (2) i f ∆ i ,
where

W ∆ i def = W (1) i -W (2) 
i . Then we get, by using Hölder's inequality, that

|I ∆ i,3 (t)| ≤ W ∆ i L ∞ (Ωǫ) f (1) i w 1 2 L 2 (Ωǫ) + W (2) i L ∞ (Ωǫ) f ∆ i w 1 2 L 2 (Ωǫ) × ∇ X + X/2 f ∆ i w 1 2 L 2 (Ωǫ) ≤ W ∆ i L ∞ (Ωǫ) E (1) 
i (t)

1 2 + W (2) i L ∞ (Ωǫ) E ∆ i (t) 1 2 E ∆ i (t) 1 2 . 
(3.30)

By using (3.22) with p = 4/3, q = 4, and Gagliardo-Nirenberg inequality, we obtain

W ∆ i L ∞ (Ωǫ) ≤ C 0 j =i f ∆ j 1/2 L 4/3 (Ωǫ) f ∆ j 1/2 L 4 (Ωǫ) ≤ C 0 j =i f ∆ j w 1/2 1/2 L 2 (Ωǫ) w -1/2 1/2 L 2 (Ωǫ) f ∆ j 1/4 L 2 (Ωǫ) ∇ f ∆ j 1/4 L 2 (Ωǫ) ≤ C 0 j =i E ∆ j (t) 3 8 E ∆ j (t) 1 8 
.

Similarly, and noting that f Substituting the above two estimates into (3.30), we achieve

|I ∆ i,3 (t)| ≤ C 0 E (1) 
i (t) Then integrating this differential inequality from 0 to t < t 1 gives E ∆ (t) ≤ C 0 t -δ/2 t 0 s δ/2-1 e -C 0 /s ds ≤ e -C 0 /t , which is exactly the desired estimate (3.17).

Proposition 3.2 already shows that E ∆ (t) converges extremely rapidly to 0 as t → 0, but our actual goal is to prove that E ∆ (t) vanishes identically, which will be done in the following.

Proof of the uniqueness result in Theorem 1.1. The key is to get a new differential inequality for E ∆ (t) like (3.34), but in which the "inhomogeneous" term like C 0 e -C 0 /t does not appear.

First, the estimate (4.73) of [START_REF] Gallay | Uniqueness of axisymmetric viscous flows originating from circular vortex filaments[END_REF] claims that as long as ǫ < 1/2, there holds

(3.35) A ∆ i (t) ≤ -δE ∆ i (t) + C 0 E ∆ i (t) + C 0 E (1) 
i (t)

1 2 + E (2) 
i (t)

1 2 E ∆ i (t). For the estimate of I ∆ i (t), we only need to modify the estimate of I ∆ i,1 (t). By simply using the bound for U i given by (2.31), we can achieve

|I ∆ i,1 (t)| ≤ C 0 E ∆ i (t) 1 2 E ∆ i (t) 1 2 
.

The other terms in I ∆ i (t) can be estimated exactly along the proof of Proposition 3.2. Then for small t, we deduce

|I ∆ i (t)| ≤ C 0 E ∆ (t) 1 2 E ∆ (t) 1 2 + C 0 E (1) 
i (t) In view of (3.17), the right-hand side of (3.38) converges to 0 as t ′ → 0. Thus E ∆ (t) = 0, which means that f (1) (t) = f (2) (t) for all 0 < t < min(t 1 , t 2 ). Returning to the original variables, we conclude that ω θ,(1) (t) = ω θ,(2) (t) for all 0 < t < min(t 1 , t 2 ). Then the desired uniqueness follows from the global well-posedness result established in Theorem 1.1 of [START_REF] Gallay | Remarks on the Cauchy problem for the axisymmetric Navier-Stokes equations[END_REF], and the whole theorem has been proved.

  |x i -x j |, r i , and χ : [0, ∞[→ [0, 1] to be a smooth non-increasing cutoff function such that χ = 1 on [0, 1/8] and χ vanishes outside [0, 1/4]. Let f 0 to be a function on ]0, T [× R 2 defined as

  2 also runs over ]0, 1[, gives exactly (2.16) in this case. And when 2r > r i , (2.16) follows by simply bounding H by 1 in (2.19).

  Overall, by putting (3.25), (3.29) and (3.31) together, using Young's inequality and the fact thatE ∆ i ≤ E ∆ i ≤ E ∆ , we achieve (3.32) I ∆ (t) ≤ δE ∆ i (t) + C 0 √ t + E ∆ (t) + C 0 e -C 0 /t . Then substituting(3.19) and (3.32) into (3.18), and summing up over i, leads to

	(3.31)	1 2 E ∆ (t)	3 8 E ∆ (t)	1 8 + E (2) (t)	1 4 E ∆ i (t)	1 2 E ∆ i (t)	1 2 .
	(1) i (t) 4 E (3.33) t 1 2 + E (2) (t) 1 d dt E 1 4 2 . Then (3.33) turns into ≤ δ (3.34) t d dt E ∆ (t) ≤ -δ 2 E

∆ (t) ≤ -δE ∆ (t) + C 0 √ t + E (1) (t) 1 2 + E (2) (t) 1 2 + E (2) (t) 1 4 E ∆ (t) + C 0 e -C 0 /t .

The bound (3.14) guarantees the existence of a positive time t 1 , such that for all 0 < t < t 1 , there holds

C 0 √ t + E (1) (t) 1 2 + E (2) (t) 1 2 + E (2) (t) ∆ (t) + C 0 e -C 0 /t ≤ -δ 2 E ∆ (t) + C 0 e -C 0 /t .

  (t) + C 0 E ∆ (t) + C 0 EThe bound(3.14) guarantees the existence of a positive time t 2 , such that for all 0 < t < t 2 , there holdsC 0 √ t + E (1) (t) E ∆ (t ′ ), ∀0 < t ′ < t.

	(3.36)			≤	δ 2n	1 2 + E (2) (t) E ∆ (1) i (t) 1 2 + E (2) (t) 1 4 E ∆ (t) 1 4 E ∆ (t).
	Substituting (3.35) and (3.36) into (3.18), and summing up over i, leads to
	(3.37)	t	d dt	E ∆ (t) ≤ -	δ 2	E ∆ (t) + C 0 E ∆ (t) + C 0 E (1) (t)	1 2 + E (2) (t)	1 2 + E (2) (t)	1 4 E ∆ (t).
								1 2 + E (2) (t) t d dt E ∆ (t) ≤ C 0 E ∆ (t), 1 2 + E (2) (t) 1 4 2 . Then (3.37) turns into ≤ δ
	hence								
	(3.38)						E ∆ (t) ≤	t ′ t	C 0
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