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Hypothesis Article

Methane:
Fuel or Exhaust at the Emergence of Life?

Michael J. Russell1 and Wolfgang Nitschke2

A likely impossibility is always preferable to an unconvincing possibility. —Aristotle

Abstract

As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and
comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the
earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with
serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely
adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating
serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the
inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the ‘‘fact’’ that
methanotrophy itself has been termed ‘‘reverse methanogenesis,’’ so allotting the methanogens the founding
pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would
require ‘‘unlearning’’—a challenge to the subconscious! Here we re-examine the ‘‘impossibility’’ of methano-
trophy predating methanogenesis as in what we have termed the ‘‘denitrifying methanotrophic acetogenic
pathway.’’ Advantages offered by such thinking are that methane would not only be a fuel but also a ready source
of reduced carbon to combine with formate or carbon monoxide—available in hydrothermal fluids—to generate
acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of
methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical
conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and
associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a
high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous
ocean simulant is juxtaposed across a precipitate membrane to an alkaline solution of hydrogen and methane. Key
Words: Green rust—Methanotrophy—Nitrate reduction—Emergence of life. Astrobiology 17, 1053–1066.

1. Introduction

Motivated by growing concern as to whether methane
was the fuel or the waste of emergent life, the alkaline

vent theory (AVT) has evolved through a number of changes
to its present, yet still tentative, formulation (Nitschke and
Russell, 2013). As first envisioned, the AVT carried the ex-
pectation that serpentinization would provide the fuels hy-
drogen and methane as usable electron donors, as well as other
small molecules, in a low-entropy hydrothermal alkaline feed
through nonmagmatic submarine springs to spontaneously
precipitated porous mineral mounds.

Under this early view, pores in these mounds were the
‘‘culture chambers’’ in which life emerged (Russell et al.,
1989, 1994). It had been further ventured, following De-
gens, that hydrothermal minerals would have ‘‘catalyzed’’
the synthesis of ‘‘peptides, polysaccharides, lipids, and nu-
cleic acids, which would have been discharged to the hy-
drosphere’’ (Degens, 1979; Russell et al., 1989). This view
was elaborated as ‘‘metabolism quickens, by many orders of
magnitude, oxidation, and reduction reactions on our plan-
et’’. (and). ‘‘links can be assumed between the rather slow,
low-temperature reactions of geochemistry and the quickened
reactions of early biochemistry’’ (Russell et al., 2003).
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Following on from this supposition, Martin and Russell
(2007) mooted the idea that microbial methanogenesis—
assumed then to have been the most ancient form of archaeal
metabolism—had emerged as a ‘‘quickening’’ of the abiotic
serpentinization reaction presumed to occur at moderate hy-
drothermal temperatures. That methanogens occupied one
root of the evolutionary tree and appeared to be thermophilic,
or even hyperthermophilic, was considered to support the
notion (Amend and Shock, 2001; Ciccarelli et al., 2006).

Yet, a nagging and anxious thought regarding the plau-
sibility of these later ideas was: Why would methane be
generated in competition with the high concentration of the
same volatile in the alkaline effluent? That is, why would
methane synthesis be driven against that concentration
gradient? In addition, concerns arising from multiple
sources—kinetic considerations, isotopic investigations,
possible contaminations, biotic sources, and false positives
in experiments, as well as phylogenetic analyses—have
thrown doubt on the assumption that methanogenesis was
foundational to the archael domain (Woese et al., 1990; Kelley
and Früh-Green, 1999; Seewald et al., 2006; McCollom and
Seewald, 2007; Proskurowski et al., 2008; Shock and Canovas,
2010; Lazar et al., 2012; Paukert et al., 2012; Nitschke and
Russell, 2013; Reeves et al., 2014; Suda et al., 2014;
McDermott et al., 2015; Seyfried et al., 2015; McCollom
and Donaldson, 2016). Most arresting was the fact that
Proskurowski et al. (2008) demonstrated an absence of ra-
diocarbon in methane in the Lost City fluids, strongly im-
plying that this methane is not derived from CO2 delivered by
percolated and convecting ocean waters, but that any hy-
drocarbon source of the methane, or the methane itself, was
intrinsic to, or had lodged within, the ocean crust and merely
been released to, but not generated by, the circulating fluids.

That methane is a major volatile, second only to hydrogen
in terrestrial alkaline springs, was already well known when
the AVT was first formulated (Moiseyev, 1968; Neal and
Stanger, 1984). Convecting, advecting, and/or artesian
aqueous fluids fed from surface waters and exhaling from
serpentinizing terrestrial ultramafic rocks are always alkaline
and always enriched in hydrogen (£25 mM) and methane
(£3 mM) (Abrajano et al., 1988; Etiope et al., 2012; Green-
berger et al., 2015; Konn et al., 2015; Seyfried et al., 2015).

There is sturdy contextual and experimental evidence
to suppose that the hydrogen was, and is, generated still
through the exergonic oxidation of iron in olivine and, to a
lesser degree, in the more recalcitrant orthopyroxene, by
water (Coveney et al., 1987; McCollom and Bach, 2009),
with recent research possibly adding iron-rich spinels to the
mixture (Mayhew et al., 2013). It has also been argued that
a proportion of the hydrogen so released goes on to reduce
carbonate or bicarbonate, originally present in the same
circulating fluid, to methane in a mechanism akin to the
Sabatier reaction (Horita and Berndt, 1999; Neubeck et al.,
2011; Wang and Gong, 2011; Etiope et al., 2012). Indeed,
multiple investigations to determine whether methane could
be generated through the reduction of CO2 species have
been made and several showed that CO, CO2, or HCO3

-

species can be reduced by iron–nickel alloys to form
methane under low-temperature (<200�C) alkaline hydro-
thermal conditions (Horita and Berndt, 1999; Wang and
Gong, 2011). Certainly, reduction of such precursors to
methane, while facing substantial kinetic obstacles, is ther-

modynamically favorable (Shock, 1992; Maden, 2000;
Lyons et al., 2005; McCollom and Seewald, 2007).

Moreover, we were aware from the calculations of
Shock (1992) that serpentinization reactions taking place in
off-ridge systems at moderate temperatures of 120–150� are
more favorable to the thermodynamic drive to CO2 reduc-
tion than those at higher temperature—indeed, the lower the
better in terms of the Gibbs free energy though not in terms
of kinetics (cf., Herschy et al., 2014).

Yet, the recent article by McCollom and Donaldson (2016)
has thrown what was a seemingly straightforward segue from
geochemistry to biochemistry in some disarray. In experiments
lasting >20 weeks, they failed to observe the generation of
methane from CO2, thus placing the idea of methanogenesis as
‘‘an observable homologue at hydrothermal vents,’’ and
thereby its foundational status, in doubt ( pace Sousa and
Martin, 2014). Compounding the uncertainties regarding the
original AVT formulation is the suggestion of Windman et al.
(2007) that hydrothermal formate, rather than hydrogen, was
an initial fuel. Being thus forced to rethink our assumptions led
us to attempt to make more sense of the stepped transitions
from mineral to life–life that still extracts its inorganic com-
ponents ultimately from mineral, while still being driven by
redox disequilibria (Leduc, 1911; Nitschke and Russell, 2009,
2013; cf., McGlynn, 2017).

2. So What Were the First Fuels and Oxidants?

The original idea that life emerged autogenically into the
very first autotrophs has a long pedigree (Traube, 1867;
Pfeffer, 1877; Darwin, C, in Darwin, F, 1888; Haeckel, 1892;
Mereschkowsky, 1910; Leduc, 1911; Goldschmidt, 1952)—a
view beclouded for some 80 years by Oparin’s and Haldane’s
primordial soup (Lane et al., 2010). Autotrophic views res-
urfaced in the context of submarine hydrothermal vents late
last century with, for example, gradients across hydrothermal
chimneys inducing the anaerobic utilization of H2 and native
sulfur as well as the production and consumption of CH4

(Corliss et al., 1981; Baross and Hoffman, 1985). In a similar
vein, Wächtershäuser (1988) called upon a putative pyrite
reaction to supply electrons for CO2 fixation. In contrast,
Russell et al. (1989) appealed directly to hydrothermally
generated organic molecules as well as to hydrogen and
methane as fuels.

However, since McCollom and Donaldson (2016) con-
cluded that the reduction of CO2 all the way to CH4 during
serpentinization may take thousands of years, we reconsider
previous researches that assumed hydrothermal methane to
have been variously (i) leached, or cracked, from primary
abiotic and/or biotic organic precursors within the ultramafic
crustal rocks, (ii) reduced from mantle-derived CO2 in the
lower-to-mid crust and trapped thereafter in fluid inclusions,
or (iii) even leached from under-thrust sediments and me-
tasediments or Precambrian continental lithosphere. All
these studies force a reassessment of what might have been
the very first steps to life (Watanabe et al., 1983; Pineau and
Mathez, 1990; Proskurowski et al., 2008; McCollom, 2013;
Lollar et al., 2014; Suda et al., 2014).

As formate is the only rapidly produced organic molecule
through CO2 reduction in conditions at, or simulating those
at, an alkaline vent (Lang et al., 2010, 2012; Seyfried et al.,
2015), and because McCollom and Donaldson (2016) also
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threw doubt on the assumption that hydrogen is produced
rapidly through the serpentinization reaction, we no longer
presuppose an immediate quickening or takeover of the
hydrogenase reaction either! Perhaps the biological hydro-
genation only came into play after the first steps of metab-
olism were mounted (Schuchmann and Muller, 2013).
Otherwise, following Windman and coworkers’ suggestion
(Windman et al., 2007), formate could be considered as both
a fuel and as another source of carbon.

Although these findings threaten the simple ‘‘rocky-
roots,’’ or purely reductive form of the acetogenic pathway
(Russell and Martin, 2004; Sousa and Martin, 2014), were
CO2 to be reduced to only formate during serpentinization,
then we are left with the tributary to the methyl group being
derived oxidatively from CH4, although still arriving at the
target molecule of the acetyl coenzyme-A pathway, acetate,
through methylation of CO (Nitschke and Russell, 2013;
Sojo et al., 2015). Thus, in our opinion, abandonment of the
methanogenic aspect of the acetyl-coA pathway as the ini-
tiator of metabolism leaves only one alternative, namely, a
denitrifying methanotrophic acetogenic pathway (DMAP)
(Nitschke and Russell, 2013) (Fig. 1). Under this view,

hydrothermal methane is considered a fuel for, rather than
the exhaust of, emergent life. However, for this scenario to
work requires the presence of sufficiently oxidizing electron
acceptors.

Guided by results from geochemistry and extant biology
(Mancinelli and McKay, 1988; Ducluzeau et al., 2009;
Ettwig et al., 2010; Kampschreur et al., 2011), we consider
that nitric oxide, released on the partial reduction of the
nitrogen oxyanions nitrate and nitrite in green rust (GR)
(‘‘fougerite’’ sensu stricto, FeII

4FeIII
2(OH)12CO3�3H2O), is

the most likely candidate for oxidizing methane in alkaline
hydrothermal vent settings (Nitschke and Russell, 2013;
Russell and Beckett, 2017). Again, in line with biology, we
propose that methane was sequentially oxidized first to
methanol and then to formaldehyde and maybe methylene.
The view of a crucial role for nitrogen oxyanions and nitric
oxide is given credence by estimations of NO pressure around
a millibar at times in the Hadean atmosphere as in the work of
Wong et al. (2017a)—enough to produce micromolar con-
centrations of nitrate and nitrite in the then ocean.

The fact that nitrate and nitrite can be reduced to NO with
GR (Kampschreur et al., 2011) provides the molecule that,

FIG. 1. Simplified reaction steps of the putative denitrifying methanotrophic acetogenesis model based on Nitschke and
Russell (2013, figures 3–5). Methane is produced by hydrothermal leaching of cracked carbon material previously residing
in the crust. Hydrogen and formate are generated through the reduction of water during serpentinization. Hydrogen provides
electrons for the reduction of HCO3

- to HCOO-. Formate disproportionates to CO and water as pH drops (Keene, 1993).
The reduction of nitrate to NO (Kampschreur et al., 2011) drives the putative oxidation of methane to methanol and the
hydrogenation of methylene to a methyl group. The methyl group reacts with the CO to produce activated acetate
(Chistoserdova et al., 2009). Although this denitrifying methanotrophic (right hand) path to acetate looks complicated, the
high electron mobilities (tunneling and bifurcations) within semiconducting GR allow improvization toward the best, if
intricate, pathways and thereby long-range charge transport (Marcus, 1964; Wander et al., 2007; Nitschke and Russell,
2009, 2011, 2013; Ruby et al., 2010; Génin et al., 2012). Water and heat are among the waste products. The active sulfidic
centers of metalloenzymes CODH (carbon dioxide dehydrogenase) and ACS (acetyl coenzyme synthase) are affine with the
structure of nickeliferous greigite (Russell and Hall, 2006; Cao et al., 2009; Nitschke and Russell, 2013; Bassegoda et al.,
2014; Roldan et al., 2015), whereas sMMO (soluble methane monooxygenase) is a di-iron enzyme with similarities to the
structure of the more reduced form of GR, fougerite (FeII

4FeIII
2(OH)12CO3�3H2O) (Nitschke et al. 2013). GR, green rust.
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in extant life, is known to serve as oxygen donor in the
oxidative formation of methanol (Ettwig et al., 2010).
Counter-intuitively, the oxidation of the notoriously un-
reactive methane to methanol in biology requires a prior
overreduction of the catalytic center binding both the
methane and the oxygen donating molecule (O2 or NO). The
redox potentials of the involved reactions are such that this
prereduction can be performed either by electrons released
from the subsequent oxidation steps (fed back as methanol is
oxidized to formaldehyde and formaldehyde to methylene)
or from hydrogen oxidation (Nitschke and Russell, 2013).

The reaction scheme both in biology and in our proposed
scenario, therefore, is highly networked and contains nu-
merous (autocatalytic) feedback loops (Fig. 1). We address
the pertinence of this networking hereunder. The ultimately
generated activated methyl is proposed to react with CO
produced by the branch shown on the left-hand side of
Figure 1. If, as we have proposed previously, during the
emergence of life, this branch resembled that of extant or-
ganisms, then the electron donor to CO2 would be molecular
hydrogen. However, the reduction of CO2 to CO by H2 is
highly endergonic and involves the phenomenon of electron
bifurcation in the respective organisms (Buckel and Thauer,
2013). Consequently, we have presumed that electron bi-
furcation may have played a corresponding role during life’s
emergence and that the two-electron redox metals molyb-
denum and tungsten might have been the primordial electron
bifurcating agents (Nitschke and Russell, 2013). Recent re-

sults on the electrochemical properties of molybdopterin en-
zymes corroborate the possibility of such scenarios (Duval
et al., 2016).

However, that carbon monoxide can also disproportionate
from formate—known to be present in the alkaline vent
fluids—under the slightly acidic conditions met with on the
ocean side of the mound, adds a further (alternative or
concomitant) source of CO to the system (Lang et al., 2010).
Formate-derived CO possibly provides the kick-starting
for the two-pronged reaction scheme inherent in the Wood–
Ljungdahl reactions common to methanotrophy, methano-
genesis, and acetogenesis. The prize would be the provision
of the ammonium ion for amination reactions within the
reactor pile and associated chimneys through the concomitant
reduction of the nitrate and/or nitrite (Fig. 2) (cf. Mancinelli
and McKay, 1988; Haroon et al., 2013; Arshad et al., 2015).

3. The Pertinent Disequilibria (Free Energies)
and Their Conversion

Baross and Hoffman (1985) foresaw that ‘‘a multiplicity
of physical and chemical gradients’’ was to be expected ‘‘as
a direct result of interactions between extensive hydrother-
mal activity in the Earth’s crust and the overlying oceanic
and atmospheric environments.’’ However, these gradients,
especially pH and redox, would have been much more
pronounced at putative submarine alkaline springs (Russell
and Hall, 1997). There are two autotrophic free energy

FIG. 2. Model of GR as a ready-made difunctional enzyme precursor set in the inorganic membrane wherein it reduces
nitrate to aminogen or ammonium between the ‘‘brucite’’ galleries (Trolard and Bourrié, 2012). At the same time, methane
would be converted to a methyl group by NO (Kampschreur et al., 2011)—a yet-to-be-tested hypothesis. Flores et al. (2016)
showed that in these same circumstances, pyruvate can be aminated to alanine. The inorganic membrane or barrier,
represented in this case by GR, separates the alkaline hydrothermal solution on the right, from ocean water on the left. Green
rust was precipitated from the vast amounts of metastable iron precursors in the early oceans on meeting alkaline solutions
such as those issuing from the vent (Arrhenius, 2003; Mielke et al., 2010; Tosca et al., 2016; Halevy et al., 2017).
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conversion mechanisms recognized as fundamental to
driving life’s endergonic operations, the proton motive force
(pmf)/chemiosmosis to generate free energy for the cell
(Mitchell, 1961, 1976; Boyer, 1975; Harold, 2001), and
redox bifurcation whereby two electrons of the same ener-
gies may be released to single electron acceptors—one to a
high potential acceptor and the other, ‘‘hot’’ electron, to
reduce an otherwise well-defended low-potential acceptor
(Baum et al., 1967; Wikström and Berden, 1972; Mitchell,
1975, 1976; Kovacs, 1989; Iwata et al., 1999; Thauer et al.,
2008; Nitschke and Russell, 2009, 2011, 2013; Kaster et al.,
2011; Chowdhury et al., 2016; Peters et al., 2016).

In the AVT, the emergence of the metabolic system was
relieved of the necessity to pump protons out of the first
compartments or protocells to generate the pmf, because a
pre-existing steep proton gradient would have been imposed
in the barriers from the acidulous Hadean ocean across to the
alkaline interiors. Such a gradient is assumed, following the
works of Baltscheffsky (1971), Baltscheffsky and Persson
(2014), and Baltscheffsky et al. (1999), to have driven a
pyrophosphatase, a primary ion pump with structure recently
revealed by Kellosalo et al. (2012) and Tsai et al. (2014). We
have appealed to GR as the flexible mineral precursor PPase
to produce ‘‘the energy currency’’ of the cell (Lane, 2010;
Branscomb and Russell, 2013; Russell et al., 2013, fig. 5).
Could the same mineral have played some part in the putative
DMAP by oxidizing the methane to a methyl group in these
hydrothermal conditions?

For the GR mineral, ‘‘fougerite,’’ to engineer the exer-
gonic oxidation of methane to methanol—a kinetically
highly challenging reaction given the stability of the meth-

ane molecule—requires an oxygen activated by adjacent
ferrous irons within the double layers. Activated nitric ox-
ide, formed as an intermediate in the reduction of nitrate or
nitrite to ammonium within the galleries of GR, is the likely
candidate (Hansen et al., 2001; Ducluzeau et al., 2009;
Kampschreur et al., 2011; Wu et al., 2015; Wong et al.,
2017a). Further indications that GR could act as a potential
mediator of such a reaction are (1) because of its structural
similarity to the metal cofactor of soluble methane mono-
oxygenase and (2) for its variable valence (Nitschke and
Russell, 2013; Nitschke et al., 2013; Banerjee et al., 2015).
Moreover, the two oxygen atoms forming the diamond
center are both derived from O2 (Banerjee et al., 2015).
However, as nitric oxide is isoelectric with dioxygen and,
moreover, is slightly asymmetric, and has similar interaction
properties as O2 (Pilet et al., 2004), it is potentially as strong
a candidate as oxygen to activate the methane bound to the
metal site for oxidation.

Although GR itself has never been shown to oxidize
methane to methanol, a bent mono(m-oxo)di-nickel an-
chored within a synthetic zeolite does promote such an
oxidation at 150�C (Shan et al., 2014; and see Starokon,
et al., 2013). Clearly, a demonstration of methane oxidation
by nitric oxide intercalated within GR or other iron-rich
double layer hydroxide (DLH) in hydrothermal conditions
must be demonstrated for the denitrifying methanotrophic
acetogenesis hypothesis to survive (Figs. 2 and 3).

As mentioned, furnishing CO from CO2 in the left-hand
branch of Figure 1 is highly endergonic and thus requires
redox bifurcation to occur. For this to happen, a molybde-
num atom (or atoms) would then need to be hosted in the

FIG. 3. Schematic representation of alkaline hydrothermal vent model for the early emergence of life on Earth through a
putative denitrifying methanotrophic acetogenic pathway fed from H2 generated through serpentinization while methane is
leached from ambient reduced carbon molecules residing in the crust (Russell and Hall, 1997; Proskurowski et al., 2008;
Nitschke and Russell, 2013).
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DLH (Nitschke and Russell, 2009, 2013). We have specu-
lated that a molybdenum sulfide complex [FeO(OH)
(MoS4)2]3- (Helz et al., 2014), sequestered in the interlayers
of GR or other DLH, would be secured through hydrogen
bonding, much as an H-bond network surrounding the pyr-
anopterins in the molybdenum site modulates two-electron
redox properties in arsenite oxidase (Itaya et al., 1987;
Russell et al., 2014; Duval et al., 2016).

4. Astrobiological Implications

That methane concentrations at alkaline vents and volcanic
eruptions are so low on Earth is because of the surprisingly
high oxidation state of Earth’s mantle throughout geological
history; this is surprising because the planetesimals and me-
teorites from which it accumulated are generally buffered
below iron-wustite and contain reduced organic compounds
(Shock, 1992; McSween and Huss, 2010; Dale et al., 2012;
Mousis et al., 2015). Wood et al. (2006) explained this rel-
atively high state by recognizing the tendency of ferrous iron
(mainly in olivine) to disproportionate in the presence of pe-
rovskite which is stable at depths below the 660-km discon-
tinuity, that is, at 24 GPa and 1900 K (McCammon, 1997;
Wood, 2000; Chudinovskikh and Boehler, 2001; Frost et al.,
2004). The mantles of smaller bodies would be at much lower
pressure and, therefore, more reduced (Wadhwa, 2008; Dale
et al., 2012; Gaillard et al., 2015). The resultant low-oxygen
fugacities would explain the preponderance of methane on
some of the moons of Saturn (Waite et al., 2009; Bouquet
et al., 2015; Glein et al., 2015; Dorofeeva, 2016), possibly
Europa (Goodman et al., 2004; Hand et al., 2007; Zolotov and
Kargel, 2009) and, perhaps, even early Mars (Wadhwa, 2001;
Hirschmann and Withers, 2008; McSween et al., 2009; Blamey
et al., 2015; Edwards and Ehlmann, 2015; Hu et al., 2015).

As with the early Earth, the icy moons would, while
producing copious reductants, soon face an oxidant crisis.
Denitrifying methanotrophic acetogenesis might well be the
emergent metabolism on such worlds, with nitrate/nitrite
produced in the ice shell through the oxidation of ammonia
with hydrogen peroxide entrained from the surface as
electron acceptors (Loeffler and Hudson, 2015; Russell
et al., 2017).

5. Discussion and Issues Raised

Our main aim of this work is to reconsider our previous
expectations of a relationship between the geochemistry of
moderate temperature serpentinization with that of early
biochemical pathways, namely, was biochemical methano-
genesis derived from a rapid and facile geochemical re-
duction of CO2 to CH4, that is, from abiotic methanogenesis
(Martin and Russell, 2007)? It was reasoned that such a
reaction had to be rapid enough compared with the product
dissipation rate to maintain a self-organizing protometabolic
pathway and support continued growth. In other words, it
would need to happen within minutes to hours if it were to
be the harbinger of enzyme-catalyzed reactions that are
generally measured in milli- to microseconds or less (Garrett
and Grisham, 2012, page 17).

It follows that the results reported from various labora-
tories and field sites, which we accept, militate against the
idea that biochemical methanogenesis emerged partly
through a quickening of geochemical reactions. Moreover,

the thermodynamic calculations of Shibuya et al. (2016)
estimate the delivery of formaldehyde and acetate from
hydrothermal systems generated by serpentinization to be
9.7 · 10-27 and 8.6 · 10-24 molal, respectively. Formaldehyde,
which anyway can be difficult to analyze and is a significant
contaminant, has not been registered in serpentinization
experiments (Borowska and Mauzerall, 1991; Barro et al.,
2009). And Lang et al. (2010), analyzing acetate at Lost
City, found concentrations between 1 and 35 mmol/kg for
which they tentatively assumed a microbial derivation.

Another point at issue is whether hydrogen was the main
fuel as we and others have claimed, or whether hydrother-
mal formate fulfilled that role as suggested by Windman
et al. (2007). As mentioned, formate will disproportionate to
CO and water on being driven through the inorganic hy-
drothermal mound toward the acidulous ocean. CO is then
available to react with the methyl group produced through
the supposed oxidation of methane as already alluded. An
alternative, or early derivation, of this tributary to the DMAP
would be a reverse of the formate hydrogenlyase (FHL) re-
action (Andrews, 1997), whereby the proton gradient (acid-
ulous ocean juxtaposed to the alkaline, hydrogen-bearing
interior) would drive the generation of formate from CO2

with the two electrons supplied from H2 or HCOO- through
a molybdenum-dosed nickel-rich mackinawite (FeNiS2)n or
greigite ([FeNi]3S4)n nanocluster that acts as a hydrogen
store and protohydrogenase (Cao et al., 2009; Nitschke and
Russell, 2009, 2013; Bassegoda et al., 2014; Yamaguchi
et al., 2014; Wang et al., 2015; White et al., 2015; Wilkin and
Beak, 2017). Pinske and Sargent (2016) demonstrated un-
ambiguously that FHL enzyme is bidirectional, so giving
some strength to this hypothesis (and see Roger et al., 2017).

A theoretical assessment of whether molybdenum-
bearing GR can act as the engine to drive the DMAP would
require ab initio molecular dynamic simulations to indicate
how redox changes in GR involving electron and proton
transport compare with methane monooxygenase. From our
ideas about the quickening of abiotic serpentinization re-
ductions, it seems imaginable that such a rapid and facile
reduction of CO2 to HCOO- could be taken over by
emerging life as one step in carbon fixation. Nevertheless,
these results also threaten the facile view that hydrogen was
the very first fuel for life, that is, the electron donor in a
redox chain that can then drive other chemistry (Windman
et al., 2007). Contrarily, it is extremely unlikely that CO2

was hydrogenated directly to methane. 12CH4 is presumably
distilled, or cracked, from organic molecules previously
lodged in crystalline and sulfidic source rocks (Strauss,
1989). So, although it had been commonly considered that
archaeal methanogens—exploiting or even discovering the
reductive acetyl-coA pathway—occupied the very lowest
branches of the evolutionary tree, recent experiments show
that this idea can no longer be entertained (cf., Koonin and
Martin, 2005; Russell et al., 2005; Martin and Russell, 2007;
Wolfe, 2014; Shock and Boyd, 2015).

At lower redox and pH, there is a transition from HCOO-

to CO (Keene, 1993). Huber and Wächtershäuser (1997)
showed how, given a methane thiol, acetate can be gener-
ated by the comparable Monsanto reaction (Crabtree, 1977).
Huber and Wächtershäuser (1997) called upon a mechanism
proposed in an article by Heinen and Lauwers (1996) to
supply the methyl group, supposedly generated through the
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reduction of CO2 in water in the presence of H2S and FeS at
low pH. However, the yields are *0.1% or less of the
available H2S (as HS-), which itself is only one millimole
(and see Schoonen et al., 1999 for a critique). So even
supposing all the hydrogen sulfide is converted to methyl
sulfide, this would provide <1 nmol/L—hardly enough to sat-
isfy the *50 mmol/L of formate to produce activated acetate.

The only way for some form of the acetyl-coA pathway
to survive as the first carbon fixation hypothesis is for the
methyl group to be provided from a different origin. Alert to
this dilemma, it has been speculated that the necessary
methyl group was provided by the oxidation of the juvenile
methane by Fe3+-rich GR at the alkaline hydrothermal
mound (Nitschke and Russell, 2013; Russell et al., 2014; cf.,
Scheller et al., 2016). This explanation is amenable to ex-
perimental falsification (cf., Diaz-Campos et al., 2009). Wu
et al. (2013) demonstrated the direct synthesis of acetate
from CO2 and methane on a zinc-modified aluminosilicate
zeolite, and the idea gleans some further support in that
methane can be oxidized to methanol at 160�C on a syn-
thetic iron-bearing zeolite previously calcined in the pres-
ence of nitrous oxide at 200–250�C (Starokon et al., 2013).

As we have seen, the initially assumed hydrogenation of
CO2 to methane by H2, proposed to then segue into me-
thanogenic metabolism, probably does not occur at signifi-
cant velocities and yields. Moreover, it is also comparatively
poorly suited for rationalizing life’s emergence in the
framework of the laws of the physical world. As pointed out
half a century ago (Schrödinger, 1944), the second law of
thermodynamics imposes the requirement that life, and a
fortiori its emergence, is possible only as a subset of a larger
system featuring strong thermodynamic disequilibria. The
formidable entropy decrease inherent in living things can
thus be fueled by low-entropy sources from their environ-
ment. The entropy of the entire system will then increase
despite a local decrease in the living subset.

Although the second law (Boltzmann’s entropy law)
specifies under which conditions life is, or is not, possible, it
does not provide a mechanism to rationalize its emergence.
However, recent developments achieved, and the insights
gained, within the field of far-from-equilibrium thermo-
dynamics do indicate the kind of mechanism required to
bring about the onset of life (Branscomb and Russell, 2013;
Branscomb et al., 2017). Systems far from thermodynamic
equilibrium have indeed been shown to frequently generate
substantially ordered and self-organizing states as they relax
toward equilibrium, that is, while dissipating free energy
(Prigogine and Nicolis, 1967, 1989).

The fields of rheology, atmospheric sciences, or net-
worked chemical reactions are abound with examples of
such ‘‘dissipative structures.’’ These feature many of the
defining properties of living systems, and the emergence of
a dissipative structure, ‘‘life,’’ under appropriate conditions
of high disequilibria appears as a quasi-necessity in the
theoretical framework of far-from-equilibrium thermody-
namics. In addition to strong free energy gradients charac-
terizing the system, far-from-equilibrium thermodynamics
has worked out further important parameters that favor the
emergence of dissipative structures: (a) nonlinear equations
of motion in reaction phase space and (b) reaction feedback
loops (note that mathematically (a) and (b) are often inti-
mately correlated with the high DG criterion).

How do the two alternative hypothetical founding meta-
bolic reactions in which methane appears either as an ex-
haust (methanogenesis) or as a fuel (methanotrophy) fare
against the test of the already listed criteria? The reaction
hydrogenating CO2 to methane certainly features a sub-
stantial negative DG under most conditions (i.e., concen-
trations of reactants and pH values) likely encountered in
alkaline hydrothermal vents of the Hadean (Amend et al.,
2013). However, this is the total DG of the bulk solution,
and its high value stems from the significant concentrations
of reactants in the reaction mixture.

The individual redox reaction (4H2 + CO2 4 CH4 +
2H2O), by contrast, is, under standard conditions, among the
least exergonic (DEm of about 150 mV, N.B.: DGo–nFDEm)
free energy converting reactions exploited by life (Schoepp-
Cothenet et al., 2013). That this reaction actually is close to
equilibrium is nicely illustrated by the fact that the sequence
of redox transitions operating in methanogens in the pres-
ence of H2 and CO2, but at low concentrations of CH4, is
readily reversed in methanotrophic Archaea when CH4

concentrations become significant (Haroon et al., 2013).
More importantly, both the biological and the posited

abiotic reduction of CO2 to methane (Martin and Russell,
2007) proceed through sequential and mutually independent
electron donations, in the latter case to, for example, the
reduced carbonaceous chondrites (the C1-stony meteorites).
From the point of view of far-from-equilibrium thermody-
namics, the absence of feedback loops necessary for in-
ducing autocatalysis and hence self-amplification during the
approach to equilibrium of a system that was not far from
equilibrium to begin with, a priori, does not look favorable
for generating a dissipative structure.

The proposed natural pH of alkaline hydrothermal vents
(Russell et al., 1989) as well as the recently discovered
(Thauer et al., 2008; Chowdhury et al., 2016) flavin-based
electron bifurcation reaction, however, is quintessential to
entropy-decreasing engines (Cottrell, 1979; Branscomb and
Russell, 2013) and, therefore, adds some of the ingredients
required for the emergence of self-organizing systems to the
reaction scheme advocated by Lane and Martin (2012 and
see e.g., Weiss et al., 2016).

Methane-oxidizing reactions, such as, for example, that
which is pulled by nitrogen oxides and oxyanions, yield a
completely different picture (Fig. 1). The drop in free energy
pertaining to their individual redox reactions (DEm) exceeds
1 V (Schoepp-Cothenet et al., 2013). Furthermore, they are
replete with feedback loops, both at the level of substrates
(the nitrogen compounds) and of reducing equivalents
(Fig. 1). Since subsequent one-electron oxidation states of
methane feature increasingly reducing electrochemical po-
tentials, these can feed back into the initial reactions of
methane activation and of the reduction of nitrogen oxy-
anions. Obviously, the already mentioned entropy-lowering
engines employing the pH gradient and of electron bifur-
cation are expected to also play crucial roles in the scenario
of denitrifying methanotrophy (Nitschke and Russell, 2013).

From the already described observations, we conclude that
a reaction producing methane as an exhaust does not only
appear geochemically compromised but also comparatively
poorly suited (although not excluded) for kick-starting life’s
emergence in the form of a dissipative structure. By con-
trast, the oxidation of the ‘‘fuel’’ methane by high potential
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electron acceptors, such as, for example, nitrogen oxides and
oxyanions, fulfills several of the criteria laid out by far-from-
equilibrium thermodynamics for the emergence of self-organizing
systems. A major task for future research into the details of
a putative emergence of life driven by denitrifying methano-
trophic acetogenesis will be to work out the behavior of reac-
tants and products under different ranges of initial conditions.

6. Résumé and Conclusions

As CO2 may be rapidly hydrogenated to formate, it seems
plausible that this reduction was taken over by emerging life as
one step in carbon fixation (Seewald et al., 2006; Lang et al.,
2010, 2012; Nitschke and Russell, 2013). However, a rapid and
total hydrogenation of CO2 to methane is slow and does not
produce the necessary metastable intermediates (McCollom
and Seewald, 2003). Most of the CH4 at Lost City and other
alkaline springs is presumably distilled, or cracked, from or-
ganic molecules previously lodged in crystalline and sulfidic
source rocks (Strauss, 1989; Proskurowski et al., 2008). This
finding is a stumbling block to the acetyl-coA pathway being
the first metabolic pathway as negotiated by the methanogens.
We, and others, had hitherto considered these archaea to oc-
cupy the lowest branches of the evolutionary tree (Koonin and
Martin, 2005; Russell et al., 2005; Martin and Russell, 2007;
Wolfe, 2014; Shock and Boyd, 2015).

So the serpentinization reaction appears limited to the
direct delivery of the fuels H2 and, perhaps, HCOO-/CO—
reduced from CO2—to emergent life, whereas the provision
of CH4 is through the processing of pre-existing carbona-
ceous components or by entrainment of the volatile residing,
or produced in, the oceanic lithosphere (Watanabe et al.,
1983; Pineau and Mathez, 1990; Seewald et al., 2006;
Proskurowski et al., 2008; Lazar et al., 2012, 2015; Paukert
et al., 2012; McCollom and Seewald, 2013; Lollar et al.,
2014; Suda et al., 2014; McDermott et al., 2015; Seyfried
et al., 2015; McCollom and Donaldson, 2016).

In detail, we conclude from our critical review:
1. The serpentinization reaction—sometimes alluded to as

the ‘‘sister’’ of early metabolism—does not reduce carbon
dioxide to methane, nor to methane thiol, at least not rapidly
enough for it to be thought of as a precursor to a metabolic
reaction (Fig. 3) (Reeves et al., 2014; McCollom and Do-
naldson, 2016). As we have tried to convey in this article,
serpentinization likely was the ‘‘mother engine’’ of life—
not its sister (Russell et al., 2013)! Although the serpenti-
nization reaction reduces some of the interacting circulating
aqueous fluid to hydrogen, perhaps over a period of hun-
dreds to thousands of years, that reduction too is neither
facile nor rapid (McCollom and Donaldson, 2016).

These experimental findings contradict expectations that
biochemistry first emerged as parallels to serpentinization
reactions, that is, directly from geochemistry (cf., Russell
and Hall., 1997; Martin and Russell, 2007; Nitschke
and Russell, 2009). Lang et al. (2010) also cast very con-
siderable doubt on the view that acetate may have been
an immediate product of serpentinization. These authors
found acetate at Lost City to vary nonsystematically with
hydrothermal-to-ocean fluid chemistry from 1 to 35 mmol/kg
for which they tentatively assumed a microbial derivation.
We note also that the calculations of Shibuya et al. (2016)
put acetate in Hadean hydrothermal springs at *10-23 molal.

In contrast, reduction of CO2 to formate is rapid during
serpentinization (timescale of minutes or tens of minutes
according to White (2013) and Herschy et al. (2014)). Also,
Lang et al. (2010) recorded *150 mmol/kg of formate in the
end-member hydrothermal fluids issuing from Lost City
(and see McCollom and Seewald, 2001, 2003; McDermott
et al., 2015). The serpentinization reaction thus appears
limited to the direct delivery of HCOO- (reduced from CO2)
to emergent life. These results force a rethink of the idea
that the classic acetyl coenzyme pathway was the harbinger
of life (Russell and Hall, 1997; Russell and Martin, 2004).
In this regard, we note that Windman et al. (2007) suggested
formate as an alternative source of fuel and reduced carbon,
in place of H2 and CO2.

2. In our view, a modified (oxidative) version of the acetyl-
coA pathway survives as the first pathway to life, although
requiring nitrate and/or nitrite in early oceans as an electron
acceptor to oxidize iron in GR as well as hydrothermal
methane (Fig. 1). This hypothesized earliest metabolism has
been termed ‘‘denitrifying methanotrophic acetogenesis’’
(Nitschke and Russell, 2013; Stern et al., 2015; Wong et al.,
2017a). Although there has been some tenuous experimental
support for this hypothesis (Russell et al. 2014 and references
therein), the conclusion is again forced that an inorganic
membrane is required to provide the vectorial redox and pH
gradients (chemiosmotic disequilibrium) to drive life’s emer-
gence (Russell et al., 1989, 1994) in line with the works of
Herschy et al. (2014) and Sojo et al. (2015) (and see Batista
and Steinbock, 2015 for future experimental approaches).

In particular, Herschy et al. (2014) demonstrated that a
proton gradient acting across thin nickel-doped mackinawite
([Fe>>Ni]S) membranes separating hot (70�C) alkaline (pH
11) solution from an ancient ocean simulant *pH 5 and
*20�C appears also to drive the reduction of CO2 to for-
mate (*50 mmol/L), although not to acetate. We conclude
that dispositive experimentation must demonstrate that nitric
oxide, produced from nitrite/nitrate and activated in the
interlayers of an Fe2+-rich GR, is called for as oxidant be-
fore the DMAP hypothesis could be acceptable (McGlynn
et al., 2009; Nitschke and Russell, 2013). To carry out such
tests, we envision juxtaposing a cool carbonate/nitrate/nitrite-
bearing early acidulous ocean simulant, across the precipitate
membrane, to an alkaline solution of hydrogen and methane
in a high-pressure hydrothermal reaction chamber.

3. Our general conclusion is that what drove life’s emer-
gence was not merely speeding up of chemistry or geochem-
istry (toward biochemistry) as sometimes assumed. Key to the
emergence and the maintenance of all life are specific en-
zymes, many of which are effectively disequilibria-converting
engines (Branscomb and Russell, 2013; Branscomb et al.,
2017). These are turnstile-like engines, often housed in mem-
branes that, for example, couple strong redox and pH gradients
to drive endergonic reactions (Branscomb and Russell, 2013;
Branscomb et al., 2017). Reaction–diffusion systems are an-
other mechanism for driving disequilibria conversions at the
submarine alkaline vent (Epstein and Xu, 2016).

Comprising portions of the membrane and the exhalative
pile, GR offers a chemically active, and confining, matrix
that is not that different from the construct of a cell in which
the several potential reactants could compete between dif-
fusion distances and reaction rates, resulting in the self-
organization of products as indicated in Figure 2 (Russell
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et al., 2003; Russell and Beckett, 2017; and see Johnson
et al., 2015; Forticaux et al., 2015; Johannessen et al.,
2016). A vital requirement for emergence-of-life research is
to discover and demonstrate the power of minerals to act as
such drivers and facilitators through flexuring, chemical
waves, and changes of conformation, effected through re-
dox, acid–base, and hydrolysis reactions (Arrhenius, 2003;
Coveney et al., 2012; Hoffmann, 2012; Russell et al., 2013;
Branscomb et al., 2016; Epstein and Xu, 2016).

4. With the proviso that ‘‘(E)xothermic serpentinization
of ocean crust is life’s mother engine’’ (Russell et al., 2013),
we entertain the view that, far from being one of the first
waste products of metabolism, abiotic methane was likely a
fuel of methanotrophy (Evans et al., 2015 and supplemen-
tary information). On reflection, it is certainly more logical
to see methane as a reductant, one, along with hydrogen—
for it to be partially oxidized—thereby providing another
portion of the carbon to the first biotic organic molecules
(Ducluzeau et al., 2009, 2014; Nitschke and Russell, 2013).

5. An astrobiological implication: That the wet and rocky
bodies in the solar system smaller than Earth probably have
little or no bridgmanite (perovskite) and, therefore, have
more reduced mantles may explain the preponderance of
methane on some of the moons of Saturn (Wood et al.,
2006; Bouquet et al., 2015; Dorofeeva, 2016; Girard et al.,
2016; Gu et al., 2016), possibly Europa (Zolotov and Kar-
gel, 2009) and even early Mars (Wadhwa, 2001; Edwards
and Ehlmann, 2015; Hu et al., 2015; Wong et al., 2017b).
The challenge then is to consider the availability of electron
acceptors on these other worlds (e.g., Nealson, 1997; Rus-
sell et al., 2017).
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(2015). Polycrystallinity of green rust minerals and their
synthetic analogs: implications for particle formation and
reactivity in complex systems. Am Miner 100:2091–2105.

Kampschreur, M.J., Kleerebezem, R., de Vet, W.W., and van
Loosdrecht, M.C. (2011) Reduced iron induced nitric oxide
and nitrous oxide emission. Water Res 45:5945–5952.

Kaster, A.-K., Moll, J., Parey, K., and Thauer, R.K. (2011)
Coupling of ferredoxin and heterodisulfide reduction via
electron bifurcation in hydrogenotrophic methanogenic Ar-
chaea. Proc Natl Acad Sci USA 108:2981–2986.

Keene, F.R. (1993) Thermodynamic, kinetic, and product con-
siderations in carbon dioxide reactivity. In Electrochemical
and Electrocatalytic Reactions of Carbon Dioxide, edited by

B.P. Sullivan, K. Krist, and H.E. Guard, Elsevier, Am-
sterdam, pp 118–144.

Kelley, D.S. and Früh-Green, G.L. (1999) Abiogenic methane
in deep-seated mid-ocean ridge environments: insights from
stable isotope analyses. J Geophys Res 104:10439–10460.

Kellosalo, J., Kajander, T., Kogan, K., Pokharel, K., and
Goldman, A. (2012) The structure and catalytic cycle of a
sodium-pumping pyrophosphatase. Science 337:473–476.

Konn, C., Charlou, J.L., Holm, N.G., and Mousis, O. (2015)
The production of methane, hydrogen, and organic com-
pounds in ultramafic-hosted hydrothermal vents of the Mid-
Atlantic Ridge. Astrobiology 15:81–399.

Koonin, E.V. and Martin, W. (2005) On the origin of genomes and
cells within inorganic compartments. Trends Genet 21:647–654.

Kovacs, A.L. (1989) Degeneracy and asymmetry in biology.
Nonlinear Structures in Physical Systems: Pattern Forma-
tion, Chaos, and Waves. Proceedings of the Second Wood-
ward Conference San Jose State University November 17–18,
1989. Springer Science & Business Media, p 325.

Lane, N. (2010) Why are cells powered by proton gradients. Nat
Ed 3:18.

Lane, N. and Martin, W.F. (2012) The origin of membrane
bioenergetics. Cell 151:1406–1416.

Lane, N., Allen, J.F., and Martin, W. (2010) How did LUCA
make a living? Chemiosmosis in the origin of life. Bioessays
32:271–280.

Lang, S.Q., Butterfield, D.A., Schulte, M., Kelley, D.S., and
Lilley, M.D. (2010) Elevated concentrations of formate, ac-
etate and dissolved organic carbon found at the Lost City
hydrothermal field. Geochim Cosmochim Acta 74:941–952.

Lang, S.Q., Früh-Green, G.L., Bernasconi, S.M., Lilley, M.D.,
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AVT¼ alkaline vent theory
DLH¼ double layer hydroxide

DMAP¼ denitrifying methanotrophic acetogenic pathway
FHL¼ formate hydrogenlyase

GR¼ green rust
pmf¼ proton motive force
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