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Abstract

We study two ways of summing an infinite family of noncommutative spectral triples.
First, we propose a definition of the integration of spectral triples and give an example using
algebras of Toeplitz operators acting on weighted Bergman spaces over the unit ball of Cn.
Secondly, we construct a spectral triple associated to a general polygonal self-similar set in
C using algebras of Toeplitz operators on Hardy spaces. In this case, we show that we can
recover the Hausdorff dimension of the fractal set.
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1 Introduction and motivation

The main idea of Connes’s noncommutative geometry is to characterize the geometry of a space
in the language of algebras [7]. We know for instance that a compact Hausdorff space can be
equivalently seen as the commutative C∗-algebra of continuous functions living on it. By analogy,
a noncommutative algebra would correspond to a space of quantum nature: a noncommutative
space. More precisely, the algebraic description of a Riemannian manifold is based on the notion
of unital spectral triple, consisting of the data (A,H,D), where A is an involutive unital ∗-algebra
A faithfully represented on a Hilbert space H via a representation π, and D is a selfadjoint
operator acting on H with compact resolvent and such that for any a ∈ A, π(a) maps dom(D)
into itself, and [D, π(a) ] extends to a bounded operator on H. When A is not unital, replace
the compactness of the resolvent by the compactness of π(a)(D − λ)−1 for any a ∈ A and
λ /∈ Spec(D): the induced triple is then called nonunital. Among the various geometric entities
which are encoded in the spectrum of D, we are interested in the so-called spectral dimension,
defined as the quantity

d := inf{s ∈ R ,Tr |D|−s < +∞} .

As easily checked, the direct sum of a finite number of spectral triples is again a spectral triple. We
are interested here in integrations of spectral triples which consist, roughly speaking, of the direct
sum of an infinite number of spectral triples. Such constructions have already been encountered
in [8]: the spectral triple related to the Berezin–Toeplitz quantization over a smoothly bounded
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stricly pseudoconvex domain of Cn can be viewed as the integration of an infinite family of
spectral triples based on algebras generated by Toeplitz operators acting on weighted Bergman
spaces.

The first idea is the following: given a countable family of spectral triples (Am,Hm,Dm)m∈N
(commutative or not), the corresponding infinite direct sum “

⊕
m∈N(Am,Hm,Dm)”, might not

be necessarily a spectral triple again. Indeed, as m tends to infinity, the boundedness of the
representations of Am, the boundedness of the commutator between Am and the operators Dm,
or the compactness of the resolvent of the direct sum of all operators Dm is hard to control in
general and the sum may fail to converge. In order to control the behaviour of the operators
Dm, we multiply them by some coefficients αm ∈ R\{0}.

Surprisingly, a strong link exists between direct summations of spectral triples and fractal sets,
but before describing the second approach, let us recall some previous results on the topic.
Since the works of A. Connes [7, Chapter 4, 3.ε], we know that noncommutative geometry can
detect the topology of fractal sets: it is shown that a commutative spectral triple involving the
C∗-algebra of continuous functions over the Cantor set can be used to recover its Hausdorff
dimension and the Hausdorff measure. Later on, D. Guido and T. Isola proposed a commutative
spectral triple, also based on a discrete approximation of the fractal, and extend Connes’ result
to more general self-similar sets in Rn [10, Chapter 7], [11] (the existence of such spectral triples
was already conjectured in M. Lapidus’ paper [13]). See also [14] for a review of open problems
and questions about the links between analysis and spectral geometry on fractal sets.

In the latter works, each spectral triple is directly built over the fractal set. The approach we
follow in the present paper is a constructive one: decompose the considered fractal set as the
union of an infinite number of subdomains and associate to each of them a spectral triple. The
spectral triple over the whole fractal set is obtained after the direct summation of all these
spectral triples. This construction has already been used in [3, 6, 15] to recover the Hausdorff
dimension and the metric on p-summable infinite trees and the Sierpinski gasket, and also in [4]
to study the Hausdorff dimension of the Sierpinski gasket (and pyramid), its metric and describe
its K-homology group.

For simplicity reasons, we restrict our study to self-similar sets E of the plane C which can be
expressed as

E = E0 ∪
N⋃
k=1

Fk(E0) ∪
N⋃

k,l=1

Fk ◦ Fl(E0) ∪ . . . , (1)

where the overline means taking the closure, E0 is a polygonal Jordan curve in the complex plane
or the unit disk, and (Fk)k=1,...,N is a finite family of contracting similarities.

The paper is organized as follows.
We present in Section 2 some sufficient conditions for the sum to be a spectral triple and we give
an example of such integration using Toeplitz operators over the unit ball of Cn.
We show in Section 3 that is is possible to build a noncommutative spectral triple over such
sets, involving algebras of Toeplitz operators, and whose spectral dimension corresponds to the
Hausdorff dimension of E.
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2 Abstract integration of spectral triples

2.1 Conditions of integrability

Lemma 2.1. Let (Hm)m∈N be a family of Hilbert spaces, (Dm)m∈N be a family of unbounded
selfadjoint operators with corresponding dense domains (dom(Dm) ⊂ Hm)m∈N, and (αm)m∈N ∈
(R\{0})N. Let D⊕ :=

⊕
m∈N αmDm with domain

dom(D⊕) :=
{ N⊕
m=0

vm ∈ H⊕ , N ∈ N , vm ∈ dom(Dm)
}
.

Then D⊕ is essentially selfadjoint, with selfadjoint extension D⊕.

Proof. Let v⊕ :=
⊕

m∈N vm ∈ H⊕. For any m ∈ N, the operator Dm is densely defined so there
is a sequence (vmj)j∈N of elements in dom(Dm) converging to vm as j →∞. Thus for any fixed
(m, j) ∈ N2, there is Mmj ∈ N such that ‖ vm − vm,Mmj+k ‖2Hm < 2−j for any k ∈ N. Define for
any j ∈ N the vector w⊕j :=

⊕j
m=0 vm,Mmj ∈ dom(D⊕). For any j ∈ N, w⊕j ∈ dom(D⊕) and

‖ v⊕ − w⊕j ‖
2
H⊕ =

j∑
m=0

‖ vm − vm,Mmj+k ‖
2
Hm +

∑
m>j

‖ vm ‖2Hm < j2−j +
∑
m>j

‖ vm ‖2Hm −→
j→+∞

0 .

Thus for any ε > 0, there exists N ∈ N such that ‖ v⊕ − w⊕N ‖H⊕ < ε, which shows that D⊕ is
densely defined.
Using the same reasoning and the fact that for anym ∈ N, Ran(αmDm±i) = Hm (since αmDm is
selfadjoint), it can be shown that for any v⊕ ∈ H⊕ and ε > 0, there is N ∈ N and w⊕N ∈ dom(D⊕)
defined as above and such that ‖ v⊕ − (D⊕ ± i)w⊕N ‖H⊕ < ε, thus Ran(D⊕ ± i) is dense in H⊕.
The operator D⊕ is also symmetric since for any v⊕ :=

∑N
m=0 vm and v′⊕ :=

∑N ′

m=0 v
′
m in

dom(D⊕),

〈D⊕v⊕ , v′⊕ 〉H⊕ =

min(N,N ′)∑
m=0

〈αmDmvm , v′m 〉Hm =

min(N,N ′)∑
m=0

〈 vm , αmDmv′m 〉Hm = 〈 v⊕ , D⊕v′⊕ 〉H⊕ ,

which shows that D⊕ is essentially selfadjoint (see [17, Chapter VIII.2, Corollary p.257]).

The following result establishes sufficient conditions on an infinite family of spectral triples
together with a family of weights (αm)m∈N ∈ (R\{0})N so that the corresponding weighted
direct sum is a spectral triple.

Proposition 2.2. Let (Am,Hm,Dm)m∈N be a family of (not necessarily unital) spectral triples,
with corresponding representations (πm)m∈N, and denote ‖ . ‖m the norm on Hm.
Let (αm)m∈N be a sequence of non-zero real numbers such that

‖ (1 + α2
mD2

m)−1/2 ‖m −→
m→+∞

0 . (2)

Define the following objects:

• H⊕ :=
⊕

m∈NHm,
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• D⊕ :=
⊕

m∈N αmDm and D⊕ as above, both acting on H⊕,
• A⊕ :=

{
(am)m∈N ∈

∏
m∈N
Am : sup

m∈N
‖πm(am) ‖m < +∞ , and

sup
m∈N
‖ [αmDm, πm(am) ] ‖m < +∞

}
,

• π⊕(a⊕) :=
⊕

m∈N πm(am), for a⊕ ∈ A⊕.

Then (A⊕,H⊕,D⊕) is a (not necessarily unital) spectral triple.

Proof. For two elements a⊕ = (am)m∈N and b⊕ = (bm)m∈N in A⊕, we have:

sup
m∈N
‖πm(ambm) ‖m ≤ sup

m∈N
‖πm(am) ‖m sup

m∈N
‖πm(bm) ‖m < +∞ , and

sup
m∈N
‖ [αmDm, πm(ambm) ] ‖m ≤ sup

m∈N
‖πm(am) ‖m sup

m∈N
‖ [αmDm, πm(bm) ] ‖m

+ sup
m∈N
‖ [αmDm, πm(am) ] ‖m sup

m∈N
‖πm(bm) ‖m < +∞ ,

hence A⊕ is an algebra with involution ∗ : a⊕ = (am)m∈N 7→ (a⊕)∗ := (a∗m)m∈N.
For a⊕ ∈ A⊕, we have

π⊕(a⊕)
(
1 + (D⊕)2

)−1/2
=
⊕
m∈N

πm(am) (1 + α2
mD2

m)−1/2.

For any m ∈ N, the summand πm(am) (1 + α2
mD2

m)−1/2 is compact. From (2) and the fact that
π⊕ is a bounded representation, ‖πm(am) (1 + α2

mD2
m)−1/2 ‖m tends to 0 as m → +∞. As a

consequence, π⊕(a⊕)
(
1 + (D⊕)2

)−1/2 is compact.
From Lemma 2.1, D⊕ is essentially selfadjoint with selfadjoint extension D⊕.
For a⊕ ∈ A⊕ and v⊕N :=

⊕N
m=0 vN,m ∈ dom(D⊕), for some N ∈ N, we have

π⊕(a⊕)v⊕N =
N⊕
m=0

πm(am)vN,m

and each summand on the right-hand side belongs to dom(Dm) since (Am,Hm,Dm) is a spectral
triple for any m ∈ N. Thus π⊕(a⊕) maps dom(D⊕) into itself for any a⊕ ∈ A⊕.
Moreover, for any a⊕ ∈ A⊕ and v⊕N :=

⊕N
m=0 vN,m ∈ dom(D⊕) of norm 1, we have

‖ [D⊕, π⊕(a⊕) ]v⊕N ‖ = sup
m=0,...,N

‖ [αmDm, πm(am) ]vN,m ‖ ≤ sup
m∈N
‖ [αmDm, πm(am) ] ‖m < +∞ ,

so [D⊕, π⊕(a⊕) ] is bounded on dom(D⊕). Moreover, since

D⊕|dom(D⊕) = D⊕|dom(D⊕) = D⊕ ,

then dom(D⊕) is a core for D⊕. Using [16, Proposition A.1], we conclude that for any a⊕ ∈ A⊕,

π⊕(a⊕)
(
dom(D⊕)

)
⊂ dom(D⊕)

and [D⊕, π⊕(a⊕) ] extends to a bounded operator on H⊕.

Definition 2.3. The spectral triple (A⊕,H⊕,D⊕) as above is called the integration of the five-
tuple (Am,Hm,Dm, πm, αm)m∈N, where (Am,Hm,Dm) is a spectral triple for any m ∈ N, with
corresponding representations πm and weights αm in R\{0}.
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As a consequence of (2), the sequence (Dm)m∈N is such that
∑

m∈N dim (KerDm) < ∞. In
particular, if we take the same Dm = D0 at each level m ∈ N, the latter must be invertible.

The two conditions in the definition of A⊕ correspond to the boundedness of both the represen-
tation π⊕ and the commutator [D⊕, π⊕(A⊕) ] for the norm ‖ . ‖⊕ := supm∈N‖ . ‖m on π⊕(A⊕).
The parameter (αm)m∈N has been introduced in order to control the behaviour of the sequence
(Dm)m∈N as m tends to infinity. This can be avoided by putting some constraints directly on the
operators Dm, but this restricts the set of summable families of spectral triples. For instance,
when D⊕ :=

⊕
m∈ND0, with D0 invertible, then the resolvent of D⊕ is not compact.

We make use of the following notations for the rest of the document. For a multiindex α ∈ Nn and
z ∈ Cn, denote zα := zα1

1 zα2
2 . . . zαnn and |α| := α1 + · · ·+ |αn|. For any set X ⊂ Cn, let Pol(X) be

the set of polynomial functions in z and z̄ over X. We denote Bn := {z ∈ Cn , |z| < 1} the unit
open ball of Cn, Bn its closure, and simply B := B1 the unit open disk in C. The corresponding
boundaries are denoted respectively ∂Bn and ∂B.

2.2 An example of integration over the unit ball

We choose for Bn the following defining function (i.e. a smooth function r over Bn such that
r|Bn < 0, r|∂Bn = 0 and dr|∂Bn 6= 0) and a weight on Bn:

r(z) := |z|2 − 1 , and wm(z) := (−r(z))m , z ∈ Bn , m ∈ (−1,+∞) . (3)

The weighted Bergman space over Bn with weight wm is

A2
m(Bn) := {φ ∈ L2(Bn, wmdµ) , φ holomorphic in Bn} ,

where dµ is the usual normalized Lebesgue measure over Bn. Denote Πm the orthogonal projec-
tion from L2(Bn) onto A2

m(Bn). The Toeplitz operator T
(m)
f : A2

m(Bn) → A2
m(Bn) associated to

the function f ∈ C∞(Bn) is defined as

T
(m)
f : φ 7→ Πm(fφ) .

In particular, Toeplitz operators enjoy the following properties:

f 7→ T
(m)
f is linear , ‖T

(m)
f ‖ ≤ ‖ f ‖∞ , and (T

(m)
f )∗ = T

(m)

f̄
. (4)

Since in general the product of two Toeplitz operators is not a Toeplitz operator anymore, we
will consider the ∗-algebra generated by the Toeplitz operators, the involution being the Hilbert
space adjoint operation (4).

The following result is a corollary of [8, Proposition 5.4]:

Proposition 2.4. For any real number m > −1, let Am be the algebra generated by the Toeplitz
operators T

(m)
f , f ∈ C∞(Bn), with the identity representation on Hm := A2

m(Bn), and also

Dm := (T
(m)
−r )−1.

Then (Am ,Hm ,Dm) is a spectral triple of spectral dimension n = dimC Bn.

In order to get a family of spectral triples, we make m vary in the set of integers, and for the
rest of this section m ∈ N. Let us present a preliminary result which establishes the dependence
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on m of the commutator between a Toeplitz operator with polynomial symbol and the previous
operator Dm := (T

(m)
−r )−1. Denote the operators R :=

∑n
j=1 Rj and R :=

∑n
j=1 Rj with

Rj := zj∂zj and Rj := z̄j ∂z̄j , acting on C∞(Bn).

Proposition 2.5. For any polynomial function p(z) =
∑

|α|≤d,|β|≤d′
pαβ z

α z̄β ∈ Pol(Bn), we have

[ (T
(m)
−r )−1, T(m)

p ] = 1
m+1 T

(m)

(R−R) p
, on A2

m(Bn) .

Proof. We denote briefly Tp = T
(m)
p . An orthonormal basis of A2

m(Bn) is given by (see [19,
(2.9)])

um,α(z) :=
( (|α|+m+n)!

(m+n)!α!

)1/2
zα . (5)

Using the shift operators Sj : um,α 7→ um,α+1j , with α + 1j := (α1, . . . , αj + 1, . . . , αn) and
j = 1, . . . , n, we have the relations

Tzj = Sj (
Rj+1

R+m+n+1)1/2 , [Rj , Sk ] = δ(j = k)Sj , S∗jSj = 1 , for j = 1, . . . , n, and

(6)

T−1
−r = (1−

n∑
j=1

T|zj |2)−1 = (1−
n∑
j=1

(Tzj )
∗Tzj )

−1 = (1−
n∑
j=1

Rj+1
R+m+n+1)−1

= 1
m+1(R +m+ n+ 1) .

Hence we get

[ T−1
−r , Tzj ] = 1

m+1

(
(R +m+ n+ 1)Sj (

Rj+1
R+m+n+1)1/2 − Sj (

Rj+1
R+m+n+1)1/2(R +m+ n+ 1)

)
= 1

m+1 Sj (
Rj+1

R+m+n+1)1/2
(
R +m+ n+ 2− (R +m+ n+ 1)

)
= 1

m+1 Tzj .

From this last equality and the fact that [ Tzj , Tzk ] = 0, for any j, k = 1, . . . , n, we get by
iteration of the formula [A, BC ] = B[A, C ] + [A, B ]C

[ T−1
−r ,

n∏
j=1

T
αj
zj ] = |α|

m+1

n∏
j=1

T
αj
zj and [ T−1

−r ,
n∏
j=1

(T∗zj )
βj ] = − |β|

m+1

n∏
j=1

(T∗zj )
βj , α, β ∈ Nn .

Hence, the relation Tzαz̄β =
(∏n

j=1(T∗zj )
βj
)(∏n

j=1 T
αj
zj

)
yields to

[ T−1
−r , Tp ] =

∑
|α|≤d,|β|≤d′

[ T−1
−r , Tzαz̄β ] =

∑
|α|≤d,|β|≤d′

[ T−1
−r ,

( n∏
j=1

(T∗zj )
βj
)( n∏

j=1

T
αj
zj

)
]

=
∑

|α|≤d,|β|≤d′
pαβ

(( n∏
j=1

(T∗zj )
βj
)
[ T−1
−r ,

n∏
j=1

T
αj
zj ] + [ T−1

−r ,
n∏
j=1

(T∗zj )
βj ]

n∏
j=1

T
αj
zj

)

= 1
m+1

∑
|α|≤d,|β|≤d′

pαβ (|α| − |β|)
( n∏
j=1

(T∗zj )
βj
)( n∏

j=1

T
αj
zj

)
= 1

m+1

∑
|α|≤d,|β|≤d′

pαβ (|α| − |β|) Tzαz̄β

= 1
m+1 T(R−R) p .
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An example of previous integration of noncommutative spectral triples is given here for the unit
ball Bn:

Proposition 2.6. For m ∈ N, let
• Hm := A2

m(Bn),
• Dm := (T

(m)
−r )−1,

• Am be the ∗-algebra generated by Toeplitz operators T
(m)
p on Hm, with p ∈ Pol(Bn),

• πm be the identity representation on Hm,
• ‖ . ‖m be the usual norm of operators,
• αm := m+ 1.

If we let H⊕, D⊕, π⊕ as in Proposition 2.2 and A′⊕ be the algebra generated by elements of the
form (T

(m)
p )m∈N, with p ∈ Pol(Bn) (i.e. keeping the same polynomial at all levels m ∈ N), then

the previous quintuple is integrable and (A′⊕,H⊕,D⊕) is a spectral triple of spectral dimension
n+ 1.

Proof. First, we know from Proposition 2.4 that for any m ∈ N, (Am,Hm,Dm) defines a spectral
triple of dimension n. Moreover,

‖ (1 + α2
mD2

m)−1/2 ‖m = ‖ (1 + α2
m (T−2

−r)
(m))−1/2 ‖m ≤ |αm|−1‖T

(m)
−r ‖m

≤ |αm|−1‖ r ‖∞ −→
m→+∞

0 .

Let us show that A′⊕ is a subalgebra of A⊕ of Proposition 2.2: if (am)m∈N = (T
(m)
p )m∈N of A′⊕,

with p ∈ Pol(Bn), is a generator, the conditions are satisfied since

sup
m∈N
‖πm(am) ‖m ≤ ‖ p ‖∞ < +∞ and from Proposition 2.5,

sup
m∈N
‖ [αmDm, πm(am) ] ‖m = sup

m∈N

m+1
m+1‖T

(m)

(R−R)p
‖ ≤ ‖ (R−R) p ‖∞ < +∞ .

These inequalities remain valid for a general element of A′⊕, which is composed, at each level
m ∈ N, by the same finite sum of finite products of Toeplitz operators acting on A2

m(Bn). Since
A′⊕ form a ∗-algebra, we conclude that it is a ∗-subalgebra of A⊕ and from Proposition 2.2,
(A′⊕,H⊕,D⊕) is a spectral triple.
We now compute its spectral dimension. For s ∈ R, we have

Tr |D⊕|−s =
∑
m∈N

α−sm Tr (T
(m)
−r )s =

∑
m∈N

( αm
m+1)−s Tr (R +m+ n+ 1)−s

=
∑
m∈N

∑
k∈N

(
k+n−1
n−1

)
(k +m+ n+ 1)−s .

For any k ∈ N and s > 1, we have∫ k+m+n+1

k+m+n
x−sdx < (k +m+ n+ 1)−s <

∫ k+m+n+2

k+m+n+1
x−sdx ,

so summing over m ∈ N leads to

1
s−1(k + n)1−s <

∑
m∈N

(k +m+ n+ 1)−s < 1
s−1(k + n+ 1)1−s .
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Since
(
k+n−1
n−1

)
∼

k→+∞
kn−1

(n−1)! , the operator |D⊕|−s if and only if

1
(1−s)(n−1)!

∑
k∈N

(k + 1)n−1(k + n+ 1)1−s < +∞ ⇔
∑
m∈N

kn−s < +∞ ,

i.e. for s > n+ 1.

Remark 2.7. The previous result is restricted to the case of polynomial symbols. Indeed, we
cannot apply the Stone–Weierstrass theorem in order to extend the result for general smooth
functions over Bn since f 7→ [ (T

(m)
−r )−1, Tf ] is not continuous on A2

m(Bn) for the norm ‖ . ‖∞.

A possible extension of Proposition 2.6, in which any (am)m∈N ∈ A′⊕ is defined as the copy of
the same element on each level m ∈ N, consists of replacing a finite number of am by arbitrary
elements of Am.
Thus the representation of an element a⊕ of this new algebra A′′⊕ is of the form

π′′
⊕

(a⊕) =
⊕
m≤N

πm(am)⊕
⊕
m>N

p∑
i=1

qi∏
j=1

T(m)
pij ,

for some integer N , some arbitrary am ∈ Am, m ≤ N , and fixed family of polynomials pij in
Pol(Bn), i = 1, . . . , p, j = 1, . . . , qi.

We can also consider a more general sequence (αm)m∈N such that αm ∼ mδ, asm tends to infinity,
for 0 < δ ≤ 1 (the upper bound comes from the boundedness of the commutator between the
representation of an element of the algebra and D⊕). Then, the conclusions of Proposition 2.2
remain valid but the spectral dimension lies in [n+ 1,+∞).

The “n + 1 phenomenon” also appears in the spectral dimension of the spectral triple built
from the Berezin–Toeplitz quantization [8, Section 6]. For short, the latter spectral triple can
be expressed as a summation of spectral triples on a smoothly bounded strictly pseudoconvex
domain like the ones in Proposition 2.4. This can be equivalently seen as a spectral triple over
the boundary of a disk bundle over the domain, whose spectral dimension is exactly n+ 1, and
which brings a geometric explanation for the “extra dimension”.

Spectral triples with arbitrary real positive spectral dimension have already be encountered in
C. Ivan and E. Christensen’s paper [2]; the construction uses algebras of continuous functions
over the Cantor set.

3 Integration along decomposable self-similar sets in the plane

3.1 Spectral triple on fractal sets generated by a polygonal Jordan curve

Definition 3.1. Let S be the set of families (Fk)k=1,...,N of similarities on C such that

i) for any k = 1, . . . , N , Fk have the same ratio c ∈ (0, 1):

Fk(z) = akz + bk , z ∈ C , with |ak| = c ,

8



ii) there is a non-empty open bounded set V ⊂ C such that
⊔N
k=1 Fk(V ) ⊂ V (open set condi-

tion),
iii) there is a polygonal Jordan curve E0 defined by the points (pj)j=1,...,M , M > 2, such that

the attractor E of (Fk)k=1,...,N can be decomposed as

E =
⋃
m∈N

⋃
ω∈{1,...,N}m

Fω1 ◦ · · · ◦ Fωm(E0) . (7)

The set E0 is called the generator.

The set E is a non-empty closed bounded set in the metric space R2 [12, 3.1.(3)(i)]. Moreover,
since E is defined from similarities of same ratios and verifies the open set condition, its Hausdorff
dimension dimH is given by (see [9, Theorem 9.3])

dimH(E) = log(N)
log(1/c) . (8)

For the rest of this section, (Fk)k=1,...,N denotes an element of S with fixed ratio c ∈ (0, 1), E0

a generator and E the corresponding attractor. Let (Lj)j=1,...,M−1 be the family of closed line
segments between the points pj and pj+1, and LM between pM and p1. If |Lj | is the length of the
segment Lj , we assume that the perimeter

∑M
j=1 |Lj | of E0 is 2π and we denote θj :=

∑j−1
`=1 |L`|

for any j = 2, . . . ,M , and θ1 = 0. For j = 1, . . . ,M−1, let Aj be the closed arc of the unit circle
∂B between eiθj and eiθj+1 , and AM the one between the points eiθM and 1. For any m ∈ N,
ω ∈ {1, . . . , N}m and j = 1, . . . ,M , we use the following notations:

Bm := {z ∈ C , |z| < cm} , Cm := ∂Bm , Fω := Fω1 ◦ · · · ◦ Fωm , Eω := Fω(E0) ,

pωj := Fω(pj) , Lωj := Fω(Lj) , Aωj := cmAj .
(9)

(note that Aωj are the closed arcs whose union over j is Cm.)

Example 3.2. The Sierpinski gasket ESG [18] is the attractor of (F1, F2, F3) ∈ S, where Fk,
k = 1, 2, 3, is the homothety of center the kth vertex pk of an equilateral triangle E0, and of
ratio c = 1/2. It can be expressed as the union between E0 and all of its images by Fω, for any
ω ∈ {1, . . . , N}m and m ∈ N, and its Hausdorff dimension is dimH(ESG) = log(3)

log(2) . On Figure 1,
the sets Fk(E0) and Fk ◦ Fl(E0), k, l = 1, 2, 3, are denoted Ek and Ekl respectively.

p1 p2

p3

E0

Step 0

E1 E2

E3

p1 p2

p3

Step 1

E11

E13

E23 E21

E22

E23

E31 E21

E33

p1 p2

p3

Step 2

E

p1 p2

p3

Step 2

Figure 1

In order to define Toeplitz operators on the polygonal Jordan curves Eω, we define a sufficiently
nice homeomorphism from the circle Cm into Eω based on Möbius transforms that send holo-
morphically each arc Aωj into the line segments [pωj , pωj+1].
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Lemma 3.3. For any m ∈ N, ω ∈ {1, . . . , N}m and j = 1, . . . ,M , let the maps

κωj(z) :=
(pωj−i/(δωjτωj))z+ cmeiθj (pωj+i/(δωjτωj))

z+ cmeiθj
,

from Cm into Eω, where

δωj := (pωj+1 − pωj)−1 , τωj := tan((θj+1 − θj)/2) , if j = 1, . . . ,M − 1 , and

δωM := (pω1 − pωM )−1 , τωM := tan((θ1 − θM )/2) .

Then the map κω defined as κω|Aωj := κωj is an homeomorphism from Cm into Eω.

Proof. Since M > 2, |Lj | = θj+1 − θj < π so τωj < +∞ for any j = 1, . . . ,M . Expressing any
point z in Aωj as

z = z(t) = cmei(θj+t|Lj |) , for t ∈ [0, 1] , (10)

we have for any t ∈ [0, 1]

κωj(z(t)) =
(pωj−i/(δωjτωj))cmei(θj+t|Lj |) + cmeiθj (pωj+i/(δωjτωj))

cmei(θj+t|Lj |) + cmeiθj

=
(pωj−i/(δωjτωj))eit|Lj |+p+i/(δωjτωj)

eit|Lj |+1
= pωj + i

δωjτωj
1−eit|Lj |

1+eit|Lj |

= pωj + (pωj+1 − pωj) tan(t |Lj |/2)
tan(|Lj |/2) . (11)

Thus κωj maps continuously the closed arc Aωj into the line segment [pωj , pωj+1] for any j =
1, . . . ,M − 1, so does κM from AM into the line segment [pωM , pω1].

Let m ∈ N and ω ∈ {1, . . . , N}m. The Hardy space over the circle Cm, denoted H2(Cm), Hω or
Hm, is the space of functions φ that are holomorphic on the corresponding open disk Bm and
such that

‖φ ‖2Hm := sup
0<ρ<cm

∫ 2π

0
|φ(ρeit)|2 dt

2π < +∞ .

The inner product in Hm between φ(z) =
∑

k∈N φkz
k and ψ(z) =

∑
k∈N ψkz

k, z ∈ Bm, is given
by

〈φ , ψ 〉Hm :=

∫ 2π

0
φ(cmeit)ψ(cmeit) dt

2π =
∑
k∈N

φkψk c
2mk .

An orthonormal basis for Hm is given by the vectors vmj(z) := c−mzj and the reproducing kernel
S

(m)
z (w) =

∑
k∈N c

−2mkz̄kwk verifies φ(z) = 〈φ , S(m)
z 〉Hm for any φ ∈ Hm and z ∈ Bm. The

orthogonal projection Πm : L2(Cm)→ Hm is called the Szegö projector. Any bounded function
u on the circle Cm gives rise to the Toeplitz operator Tu : φ 7→ Πm(uφ), φ ∈ Hm. Thus for any
polynomial function p ∈ Pol(Eω), the function p ◦ κω is bounded on Cm, and we can consider
Toeplitz operators of the form

T
(ω)
p◦κω : Hm 3 φ 7→ Πm

(
(p ◦ κω)φ

)
∈ Hm . (12)
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The integral representation of the action of such operators is(
T

(ω)
p◦κωφ

)
(z) = 〈 (p ◦ κω)φ , S(m)

z 〉Hω

=
M∑
j=1

∫ θj+1

θj

dt
2π (p ◦ κωj)(cmeit)φ(cmeit)S

(m)
z (cmeit) , z ∈ Bm .

(13)

As in previous section, define the operators R := z∂z and R := z̄∂z̄ acting on Hω.
Since Spec(R) = N consists of the positive part of the usual Dirac operator on the circle Cm, we
choose for Dω the following expression

Dω := αmR+ βm , (14)

where (αm)m∈N and (βm)m∈N are two sequences of strictly positive real numbers: these sequences
depend only on m since each Dω acts on a Hardy space over the same circle Cm of radius cm.

Lemma 3.4. Let m ∈ N, ω ∈ {1, . . . , N}m and p ∈ Pol(Ew). The operator [Dω, T (ω)
p◦κω |Cω

] is
bounded and

‖ [Dω, T (ω)
p◦κω |Cω

] ‖ ≤ αmKp ,

for some constant Kp > 0 independent on m.

Proof. We fix m ∈ N, ω ∈ {1, . . . , N}m, and denote Tu := T
(w)
u , u ∈ L∞(Cω), for clarity reasons.

If p(z) =
∑

a,b pab z
k z̄l is a polynomial on the set Eω, we have [R, Tp◦κω ] =

∑
a,b pab [R, Tκaωκωb ].

We now show that for any a, b ∈ N,

[R, Tκaωκωb ] = Tπωab , (15)

as operators acting on Hω, where πωab defined by

πωab|Åωj = (R−R)κaωjκωj
b , for any j = 1, . . . ,M ,

where Åωj denotes the interior of the closed arc Aωj , is extendible to a piecewise continuous, hence
bounded, function on Cm. For any j = 1, . . . ,M , the map κaωj is holomorphic in a neighborhood
of Aωj , and we write κaωj(z) =

∑
k∈N κωjak z

k, z ∈ Aωj . For any z ∈ Bm, n ∈ N, and using (13),
we have on one hand

Tκaωκωbz
n =

M∑
j=1

∫ θj+1

θj

dt
2π

∑
k∈N

κωjak c
mkeitk

∑
l∈N

κωjbl cmleitl c
mneitn

∑
s∈N

c−2mszs cmse−its

=
∑
s∈N

cm(n−s)zs
M∑
j=1

∫ θj+1

θj

dt
2π

∑
k,l∈N

κωjakκωjbl c
m(k+l) eit(k−l+n−s)

=
∑
s∈N

cm(n−s)zs
M∑
j=1

∑
k,l∈N

κωjakκωjbl c
m(k+l)

(
eiθj+1(k−l+n−s)−eiθj(k−l+n−s)

i(k−l+n−s) δ(k + n 6= l + s) + (θj+1 − θj) δ(k + n = l + s)
)
.
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On the other hand, since on each Aωj we have (R−R)κaωjκωj
b = (Rκaωj)κωjb − κaωjRκωjb, we

get for any z ∈ Bm and n ∈ N

Tπωabz
n =

M∑
j=1

∫ θj+1

θj

dt
2π

∑
k,l∈N

(k − l)κωjakκωjbl cm(k+l) cmneitn
∑
s∈N

c−2mszs cmse−its

=
∑
s∈N

cm(n−s)zs
M∑
j=1

∑
k,l∈N

κωjakκωjbl c
m(k+l)(k − l)

(
eiθj+1(k−l+n−s)−eiθj(k−l+n−s)

i(k−l+n−s) δ(k + n 6= l + s) + (θj+1 − θj) δ(k + n = l + s)
)
.

Thus, setting B := Tπωab−[R, Tκaωκωb ], we obtain

Bzn =
∑
s∈N

cm(n−s)zs
M∑
j=1

∑
k,l∈N

κωjakκωjbl c
m(k+l)(k − l + n− s)

eiθj+1(k−l+n−s)−eiθj(k−l+n−s)
i(k−l+n−s) δ(k + n 6= l + s)

= −i
∑
s∈N

cm(n−s)zs
M∑
j=1

∑
k,l∈N

κωjakκωjbl c
m(k+l)(eiθj+1(k−l+n−s) − eiθj(k−l+n−s))

= −i
∑
s∈N

cm(n−s)zsei
M∑
j=1

(
κaωj(pωj+1)κωj

b(pωj+1)eiθj+1(n−s) − κaωj(pωj)κωjb(pωj)eiθj(n−s)
)
.

Since κω is continuous on Cm, κωj(pωj+1) = κωj+1(pωj+1) for any j = 1, . . . ,M − 1, and
κωM (pω1) = κω1(pω1), so the summation over j on the right-hand side vanishes and we proved
(15).
By linearity, we have [Dω, Tp◦κω |Cm ] = αm

∑
a,b pab Tπωab , which is a bounded operator on Hω

with

‖ [Dω, Tp◦κω |Cm ] ‖ ≤ αm
∑
a,b

|pab|‖πωab ‖∞ .

We have for any z ∈ Åωj

Rκωj(z) = z∂z
(pωj−i/(δωjτωj))z+ cmeiθj (pωj+i/(δωjτωj))

z+ cmeiθj
=
−2i/(δωjτωj)c

meiθj z

(z+cmeiθj )2
,

so using (10) we get

Rκωj(t) = −2i
δωjτωj

eit |Lj |

(1+eit |Lj |)2
, hence |Rκωj |(t) ≤ 2

τM |pj+1−pj |kj , ∀t ∈ (0, 1) ,

with kj := inft∈(0,1)(1+eit |Lj |)2 > 0. Moreover, since E is a compact set in C, there is a constant
K > 0 such that for any m ∈ N and ω ∈ {1, . . . , N}m, ‖κω ‖∞ ≤ K. Thus

‖πωab ‖∞ ≤ sup
j=1,...,M

‖ a(Rκωj)κa−1
ωj κωj

b|Åωj ‖∞ + ‖ bκaωj(Rκωj)κωjb−1|Åωj ‖∞

≤ sup
j=1,...,M

2(a+b)Ka+b−1

τωj |pωj+1−pωj |kj =: K ′ab .

Finally, we take Kp :=
∑

a,b |pab|K ′ab and the proof is complete.
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Proposition 3.5. Let ω ∈ {1, . . . , N}m, m ∈ N. Let Aω be the algebra generated by Toeplitz
operators of the form (12), Hω := H2(Cm) and Dω as in (14).
Then for any sequences (αm)m∈N, (βm)m∈N of stricly positive real numbers, (Aω,Hω,Dω) is a
spectral triple of spectral dimension 1.

Proof. The circle Cω is the boundary of a strictly pseudoconvex domain with complex dimension
1 and Aω is a subalgebra of the algebra of generalized Toeplitz operators of order 0 (see [1]),
and the operator Dω is a selfadjoint elliptic generalized Toeplitz operator of order 1 on Hω, so
the proof is similar to the one of [8, Proposition 5.2], except that here [Dω, Aω ] /∈ Aω. The
boundedness of the commutator is nonetheless proved by Lemma 3.4.

We assumed that the attractor E is the union of all the components Eω, so we sum the spectral
triples obtained in Proposition 3.5 in order to obtain a noncommutative spectral triple over the
whole set E. It is still possible to adjust the coefficients (αm)m∈N and (βm)m∈N so that the
spectral dimension of the integrated spectral triple corresponds to dimH(E).

Theorem 3.6. Let (Fk)k=1,...,N be an element of S with ratio c ∈ (0, 1) such that 1 < cN . Let

• H⊕ :=
⊕

m∈N
⊕

ω∈{1,...,N}m Hω, with Hω := H2(Cm),
• A⊕ be the algebra generated by Toeplitz operators of the form

T⊕p :=
⊕
m∈N

⊕
ω∈{1,...,N}m

T
(ω)
p◦κω , with p ∈ Pol(E),

• D⊕ :=
⊕

m∈N
⊕

ω∈{1,...,N}m Dω, where Dω := αmRω + βm, for some sequences (αm)m∈N,
(βm)m∈N of strictly positive real numbers and with domain

dom(D⊕) := {v⊕ :=

N⊕
m=0

⊕
ω∈{1,...,N}m

vω , N ∈ N , vω ∈ dom(Dω)} .

Then D⊕ is essentially selfadjoint and one can choose the sequences (αm)m∈N and (βm)m∈N so
that (A⊕,H⊕,D⊕) is a spectral triple of spectral dimension dimH(E).

Proof. The attractor E is compact, so for any p ∈ Pol(E), the norm ‖T⊕p ‖ ≤ ‖ p ‖∞ is finite.
Let

` ∈ ( log(N)
log(cN) ,+∞) , αm := c−`mN−m(`−1) , and βm := c−`m , ∀m ∈ N . (16)

For anym ∈ N and ω ∈ {1, . . . , N}m, Spec(Dω) = {αmj+βm , j ∈ N} ⊂ R+\{0}, so the operator
D−1
ω is compact and

‖D−1
ω ‖ = sup

j∈N
(αmj + βm)−1 = β−1

m = c`m −→
m→+∞

0 ,

hence D⊕ has compact resolvent. Using Lemma 3.4, for any p ∈ Pol(E), we have

‖ [D⊕, T⊕p ] ‖ = sup
m∈N

sup
ω∈{1,...,N}m

‖ [Dω, T (ω)
p◦κω ] ‖ ≤ Kp sup

m∈N
αm ≤ Kp

13



(indeed α0 = 1 and log(N)
log(cN) < `⇔ αm < 1 for any m 6= 0).

From Proposition 3.5, the spectral dimension of (Aω,Hω,Dω) is 1 for any ω ∈ {1, . . . , N}m,
m ∈ N, so we study Tr(|D⊕|−s) for s > 1:

Tr(|D⊕|−s) =
∑
m∈N

Nm
∑
j∈N

(αmj + βm)−s =
∑
m∈N

Nmα−sm
∑
j∈N

(j + βm
αm

)−s .

A similar calculation as in the proof of Proposition 2.6 shows that
∑

j∈N(j + βm
αm

)−s ∼
m→+∞

1
s−1( βmαm )1−s, so Tr(|D⊕|−s) is finite if and only if∑

m∈N
Nmα−sm ( βmαm )1−s =

∑
m∈N

(c`sN `)m < +∞ ⇔ c`sN ` < 1 ,

i.e. for s > log(N)
log(1/c) = dimH(E).

Because of the condition 1 < cN , the previous operator D⊕ encodes the Hausdorff dimension of
E when the latter is strictly greater than 1.

3.2 Spectral triple on fractal sets generated by the unit disk

The integration of Section 2.2 is obtained from a family of spectral triples over a fixed domain
which is the unit disk B, and the dimension is recovered after adjusting the family of weights
and the sequence (αm)m∈N. Here, the considered domain is a union of disks of different sizes,
forming a self-similar set. This approach of integration seems more natural in the sense that the
geometrical structure of the fractal keeps us to put by hand the coefficients αm on the operators
Dω, and the only degree of freedom remains the choice of the weights on each disk.

In this section, we consider a family of similarities (Fk)k=1,...,N on C which verify i) and ii) from
Definition 3.1, whose attractor E can be expressed as

E =
⋃
m∈N

⋃
ω∈{1,...,N}m

Fω(B)

(we keep the same notations as in (9)).

Again, the attractor E is a self-similar set and its Hausdorff dimension is given by (8). The
spectral triple over E is obtained in a similar way as in Section 3.1, except that the algebras
we consider here are the algebras generated by Toeplitz operators on Bergman spaces over the
disks.

For any m ∈ N, we consider for the disk Bm the following defining function and weight

rm(z) := |z|2 − c2m , and w̃m(z) := (−rm(z))N
m
, z ∈ Bm ,

and we denote the corresponding weighted Bergman spaces Ã2
m(Bm). For any m ∈ N and

ω ∈ {1, . . . , N}m, we consider the translation ιω : z 7→ z + qω from Bm into Fω(B), where
qω := Fω(0) is the center of the open disk Fω(B). Of course Proposition 2.4 remains valid when
Hm is replaced by Ã2

m(Bm), and we get

14



Proposition 3.7. Let

• H⊕ :=
⊕

m∈N
⊕m

ω∈{1,...,N}Hm, with Hm := Ã2
m(Bm),

• A⊕ be the ∗-algebra generated by operators on H⊕ of the form

T⊕p :=
⊕
m∈N

⊕
ω∈{1,...,N}m

T
(ω)
p◦ιω |Bm

, with p ∈ Pol(E) ,

• D⊕ :=
⊕

m∈N
⊕

ω∈{1,...,N}m Dω, with Dω := (T
(ω)
−rm)−1.

Then, if 1 < c2N , then (A⊕,H⊕,D⊕) is a spectral triple of spectral dimension dimH(E).

Proof. For any m ∈ N, an orthonormal basis of Ã2
m(Bm) is given by

ũm,j(z) := c−m(Nm+j+1)
( (Nm+j+1)!

Nm! j!π

)1/2
zj , z ∈ Bm ,

and similarly as in (6), we have for any ω ∈ {1, . . . , N}m

T(ω)
zj = cmS

( R+1
R+Nm+2

)1/2
, and Dω = c−2m R+Nm+2

Nm+1 = α′mR + β′m ,

with α′m := c−2m(Nm−1)−1 and βm := c−2mNm+2
Nm+1 . These sequences are equivalent, as m→∞,

to (αm)m∈N and (βm)m∈N of (16) when ` = 2. Since we assumed 1 < c2N , the compactness of
the resolvent of D⊕ and the computation of the spectral dimension are shown similarly as in the
proof of Theorem 3.6. Moreover, as in Proposition 2.5, we have [Dω, T

(ω)
p◦ιω ] = α′mT

(ω)

(R−R)(p◦ιω)

for any m ∈ N and ω ∈ {1, . . . , N}m, so ‖ [D⊕, T⊕p ] ‖ ≤ supm∈N α
′
m‖ p ‖∞ < +∞.
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