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Abstract

In this talk, we show that if the non Gaußian part of the cumulants of a
random matrix model obey some scaling bounds in the size of the matrix,
then Wigner’s semicircle law holds. This result is derived using the replica
technique and an analogue of the renormalisation group equation for the
replica effective action.

1 Introduction
Random matrix theory (see the classical text [1]) first appeared in physics
in Wigner’s work on the level spacing in large nuclei. Since then, it has
proved to have multiple applications to physics and other branches of
science, see for instance [2]. Most of these applications rely on the uni-
versal behaviour of some of the observables for matrices of large size. A
simple example is Wigner’s semicircle law for the eigenvalue density that
holds in the large N limit for matrices whose entries are independent and
identically distributed.

Understanding the universal behaviour of eigenvalue distributions and
correlations ranks among the major problems in random matrix theory.
In this respect, the renormalisation group turns out to be a powerful
technique. Introduced in the context of critical phenomena in statistical
mechanics by K. Wilson to account for the universality of critical expo-
nents, the latter has also proved to be useful in understanding probability
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theory. For instance it leads to an insightful proof of the central limit
theorem, see the review by G. Jona-Lasinio [3] and references therein.

The renormalisation group has been used to derive the semicircle law
for random matrices in the pioneering work of E. Brézin and A. Zee [4].
In the latter approach, the renormalisation group transformation consists
in integrating over the last line and column of a matrix of size N + 1 to
reduce it to a size N matrix. This leads to a differential equation for the
resolvent G(z) = 1/N〈Tr (z −M)−1〉 in the large N limit whose solution
yields the semicircle law.

In this talk, we follow a different route: We first express the resolvent
as an integral over replicas and introduce a differential equation for the
replica effective action. This differential equation is a very simple analogue
of Polchinski’s exact renormalisation group equation [5]. It is used to
derive inductive bounds on the various terms, ensuring that the semicircle
law is obeyed provided the cumulants of the original matrix model fulfil
some simple scaling bounds in the large N limit.

This talk is based on some work in collaboration with A. Tanasa and
D.L. Vu in which we extend Wigner’s law to random matrices whose
entries fail to be independent [6], to which we refer for further details.
There have been other works on such an extension, see [7], [8] and [9].

2 What are random matrices ?
A random matrix is a probability law on a space of matrices, usually given
by the joint probability density on its entries,

ρ(M) = ρ(M11,M12, . . . ) (1)

Thus a random matrix of size N is defined as a collection of N2 random
variables. However, there is a much richer structure than this, relying
notably on the spectral properties of the matrices.

Here we restrict our attention to a single random matrix. Note that
it is also possible to consider several random matrices, in which case the
non commutative nature of matrix multiplication plays a fundamental
role, leading to the theory of non commutative probabilities.

There are two important classes of probability laws on matrices.

• Wigner ensemble: The entries are all independent variables,

ρ(M) =
∏
i,j

ρij(Mij), (2)

up to the Hermitian condition M ij =Mji.

• Unitary ensemble: The probability law is invariant under unitary
transformations

ρ(UMU†) = ρ(M), (3)

for any unitary matrix U ∈ U(N).
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The only probability laws that belong to both classes are the Gaußian
ones

ρ(M) ∝ exp− 1
2σ2Tr(M)2, (4)

up to a shift of M by a fixed scalar matrix.
The main objects of interest are the expectation values of observables,

defined as

〈O〉 =
∫
dMρ(M)O(M). (5)

Among the observables, the spectral observables defined as symmetric
functions of the eigenvalues of M , play a crucial role in many applica-
tions. This is essentially due to their universal behaviour: In the large N
limit, for some matrix ensembles and in particular regimes, the expecta-
tion values of specific spectral observables do not depend on the details
of the probability law ρ(M).

Universality is at the root of the numerous applications to physics and
other sciences, since the results we obtain are largely model independent.
Among the applications to physics, let us quote the statistics of energy lev-
els in heavy nuclei, disordered mesocopic systems, quantum chaos, chiral
Dirac operators, ...

3 Wigner’s semicircle law
In this talk, we focus on the eigenvalue density, defined as

ρ(λ) =
1

N

〈 ∑
1≤i≤N

δ

[
λ− λi

(
M√
N

)]〉
. (6)

In particular, a universal behaviour is expected in the large N limit for
some ensembles.

For a Gaußian random Hermitian matrix ρ(M) ∝ exp− 1
2σ2Tr(M

2),
the eigenvalue density obeys Wigner semicircle law,

lim
N→∞

∫
R
dλλkρ(λ) =

{
1

2πσk+2

∫ 2σ

−2σ
dλλk

√
4σ2 − λ2 if k is even,

0 if k is odd.
(7)

Empirically, ρ(λ) may be determined by plotting the histogram of eigen-
value of a matrix taken at random with a given probability law, see figure
1.

The derivation of Wigner’s semicircle in the large N limit is based on
the resolvent (also known as the Green function)

G(z) = lim
N→+∞

1

N

〈
Tr
(
z − M√

N

)−1
〉

=
z

2σ2

(
1−

√
1− 4σ2

z2

)
. (8)

Then, the density of eigenvalues is recovered as

ρ(λ) =
G(λ− i0+)−G(λ+ i0+)

2iπ
, (9)
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with G the Green’s function of the matrix ensemble a.k.a average of the resolvent

GN(z) =
1

N

NX

i=1

⌧
1

z � �i

�
=

1

N

⌧
Tr

✓
1

z � M

◆�
. (2.4)

In the context of field theory, the function GN(z+i✏) and GN(z�i✏) are called retarded and advanced
Green’s function.
From probabilistic point of view, Green’s function can also be regarded as the generating function of
moments of the matrix ensemble

GN(z) ⌘ 1

N

⌧
Tr

✓
1

z � M

◆�
=

1

Nz

⌧
Tr

✓
1

1 � M
z

◆�
=

1X

k=0

1

Nzk+1
hTr(Mk)i. (2.5)

Therefore, we could expect that our computation of the average value of the trace and its function
in the previous section would be very helpful.
As an example, let us calculate the average density of state for the Gaussian Unitary Ensemble GUE
1.11 in the limit in the large N limit
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Figure 2.1: Eigenvalue histogram
of a 1000⇥1000 normalized Gaus-
sian matrix

Equations (2.5) and (1.25) mean that in the large N limit, the
Green’s function will converge to

lim
N!1

GN(z) =
X

k�0

(2k)!

k!(k + 1)!z2k+1

=
z

2

✓
1 �

r
1 � 4

z2

◆
(2.6)

With the help of identity (2.3) , we obtain

lim
N!1

h⇢N(z)i =

(
1
2⇡

p
4 � z2 if z 2 [�2, 2]

0 otherwise
(2.7)

This result, known as semicircular law holds in fact for a much
broader class of matrices than the GUE. Chapter 3 is devoted to
this subject.
As seen in this example, in the large N limit, the distribution of eigenvalues might become continuous.
In the probability theory, for a continuous probability measure ⇢ on the real line, instead of Green’s
function (2.4) we usually speak of Stieltjes transform which is defined by

S⇢(z) =

Z

R
d�

⇢(�)

z � �
. (2.8)

The Stieltjes transform is well-defined and analytic for z outside the support of ⇢, in particular in
the upper and lower half-planes of the complex plane. If the support of the probability measure ⇢ is
a real segment or a set of real segments then ⇢ can be obtained from its Stieltjes transform through
the following equality

⇢(z) =
i

2⇡
[S⇢(z + i✏) � S⇢(z � i✏)]. (2.9)

Like Green’s function, the Stieltjes transform of a probability measure can also be regarded as the
generating function of its moments

S⇢ ⌘
Z

R
d�

1

z

1

1 � �
z

⇢(�) =

Z

R
d�

1

z
(1 +

�

z
+

�2

z2
+ ...)⇢(�) =

1X

k=0

1

zk+1
Ek. (2.10)

15

Figure 1: Spectrum of a large (N = 1000) Hermitian matrix with a Gaußian
distribution (σ = 1)

where we have used the relation
1

x± i0+
= p.v.

1

x
∓ 2iπδ(x). (10)

In the large N limit, for the Gaußian model, the resolvent obeys the self
consistency equation (also known as the Schwinger-Dyson equation), see
for instance [10], section VII.4,

G(z) =

∞∑
k=0

σkGk(z)

zk+1
=

1

z − σG(z)
. (11)

Its solution that behave as 1/z for large z is

G(z) =
z

2σ2

(
1−

√
1− 4σ2

z2

)
. (12)

Taking the cut of the square root on the negative real axis, we obtain the
Wigner semicircle law (7) in the large N limit.

The semicircle law is not limited to the Gaußian case, it also holds for
Wigner matrices in the large N limit. A random Hermitian N×N matrix
is a Wigner matrix if

• real and imaginary parts of upper diagonal elements are independent
and identically distributed (i.i.d.) with mean 0 and variance σ;

• diagonal elements are i.i.d. with finite mean and variance and inde-
pendent of the off diagonal ones.

Then, in the limit N → +∞, the eigenvalue distribution of M√
N

is the
semicircle law (7).

The original proof is of combinatorial nature and involves the expec-
tation of the moments

lim
N→+∞

1

Nk/2+1

〈
Tr(Mk)

〉
=

{
(2l)!

(l!)2(l+1)
for k = 2l even

0 for k odd.
(13)
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To derive this result, the idea is to first factorise ρ for a Wigner ensemble
as

ρ(M) =
∏
i

ρ′(Mii)
∏
i<j

ρ′′(Re Mij)ρ
′′(Im Mij), (14)

where ρ′ is the common probability density of the real diagonal terms and
ρ′′ the common probability density of the real and imaginary parts of the
off diagonal terms.

Then, we expand the trace and integrate over the independent real
variables Mii, ReMij and ImMij . The power of N in the expectation
of a given moment arises from the denominator 1

Nk/2+1 and from the
number of independent indices in the summations. In the large N limit,
the only configurations that survive are counted by Catalan numbers, Cl =

(2l)!

(l!)2(l+1)
. Since the latter also appear in the following Taylor expansion

z

2σ2

(
1−

√
1− 4σ2

z2

)
=
∑
l≥0

(2l)!

(l!)2(l + 1)

σ2l

z2l+1
, (15)

we conclude that

G(z) = lim
N→+∞

1

N

〈
Tr
(
z − M√

N

)−1〉
(16)

= lim
N→+∞

∞∑
k=0

1

zk+1

1

Nk/2+1

〈
Tr(Mk)

〉
(17)

=
z

2σ2

(
1−

√
1− 4σ2

z2

)
. (18)

This is the form of the resolvent that leads to Wigner’s semicircle law.
Here, we see universality at work: In the large N limit, the eigenvalue
density is given by the semicircle law, whatever the probability densities
ρ′ and ρ′′ are. However, this result relies on the independence of the
matrix elements. In the next section, we will extend it to matrices whose
entries are not necessary independent.

4 Wigner’s law beyond Wigner ensembles
Let us introduce the cumulants, defined through their generating function

〈Mi1j1 · · ·Mikjk 〉c =
∂

∂Jj1i1
. . .

∂

∂Jjkik
log
〈
expTr(MJ)

〉∣∣∣
J=0

. (19)

In the physics terminology, these are the connected correlation functions.
In particular, the Gaußian cumulants vanish beyond the quadratic term

ρ(M) ∝ exp− 1
2σ2Tr(M

2)⇒

{
〈MijMkl〉c = σ2δilδjk

vanish otherwise
. (20)

Therefore, cumulants of degree higher than 2 are a measure of the devia-
tion from the Gaußian case.

Turning back to the general case, for each cumulant we construct an
oriented graph as follows (see figure 2 for some examples):
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• vertices are distinct matrix indices in the cumulant,
• there is an edge from i to j for every Mij .

i
j

k

l i j

〈(Mij)
2MjkMll〉c 〈MijMji〉c

Figure 2: Examples of graph associated to cumulants

Since non quadratic cumulants measure deviations from the Gaußian
case, if the perturbation is small it is reasonable to expect that the semi-
circle law is still obeyed.

To state this result, recall that an oriented graph is Eulerian if every
vertex has an equal number of incoming and outgoing edges. Equivalently,
it means that every connected component admits an Eulerian cycle, i.e.
an oriented cycle that passes through all edges, respecting the orientation.
Furthermore, let us denote v(G), e(G), c(G) the number of vertices, edges
and connected components of G.
Theorem 1 (Wigner’s law for matrices with dependent entries). Let ρN
be a probability law on the space of Hermitian N×N matricesM such that
its cumulants can be decomposed as CG = C

′
G +C

′′
G, with C

′
G a Gaussian

cumulant and C
′′
G a perturbation such that, uniformly in the vertex indices

i1, ..., iv(G) (i.e. all constants involved should not depend on these indices),

• lim
N→∞

Nv(G)−c(G)−e(G)/2C′′G(i1, ..., iv(G)) = 0 if G is Eulerian,

• Nv(G)−c(G)−e(G)/2C′′G(i1, ..., iv(G)) bounded if G is not Eulerian.

Then, the moments of the eigenvalue distribution of the matrix M√
N

con-
verge towards the moments of the semicircle law, with σ given by the
Gaussian cumulant 〈MijMkl〉c = σ2δilδjk,

lim
N→∞

∫
R
dλλkρN (λ) =

{
1

2πσk+2

∫ 2σ

−2σ
dλλk

√
4σ2 − λ2 if k is even,

0 if k is odd.
(21)

For instance, for the graph i
j

k

l which is not Eulerian, with

v = 3, e = 4 and c = 2, the cumulant should obey
1

N

∣∣〈(Mij)
2MjkMll〉c

∣∣ ≤ K, (22)

with K a constant that does not depend on the indices i, j, k and l. On

the other hand, for the graph i j , which is Eulerian, with v = 2,

e = 4 and c = 1, we impose

lim
N→+∞

1

N

∣∣〈(Mij)
2(Mji)

2〉c
∣∣ = 0, (23)

6



uniformly in i and j.
As an illustration, we recover the case of Wigner matrices (with finite

moments). Indeed,

• there is no graph with v ≥ 3 (independence of off diagonal matrix
elements);

• for v = 1 and v = 2, e ≥ 3, bounds are satisfied because of 1/Ne/2

and all moments are assumed to be finite;

• C i j (i, j) = 〈Mij〉c = 〈Mij〉 = 0 (off diagonal elements have
mean value 0);

• C
i j

(i, j) = 〈MiiMjj〉c = 〈MiiMjj〉− 〈Mii〉〈Mjj〉 = 0 (indepen-
dence of diagonal elements);

• C
i j

(i, j) = 〈MijMjj〉c = 〈MijMjj〉 − 〈Mij〉〈Mjj〉 = 0 (inde-

pendence of diagonal and off diagonal elements);

• C
i j

(i, j) = 〈MijMij〉c = 〈MijMij〉 − 〈Mij〉〈Mij〉

= 〈(ReMij)
2 − (ImMij)

2〉+ 2i〈ReMijImMij〉 = 0
(independence of real and imaginary parts and equality of their dis-
tributions with mean value 0);

• C
i j

= σ2 is the Gaußian cumulant leading to the semicircle

law.

The case of unitarily invariant matrices is critical since the bounds are
saturated, see [6]. This is consistent since we known the semicircle law is
not obeyed by unitary non Gaußian ensembles [13].

It is possible to give a combinatorial proof of this result based on the
relation between moments and cumulants,

〈Mi1j1 · · ·Mikjk 〉 =
∑

I1,...,Ip partition of
{(i1,j1),··· ,(ik,jk)}

〈 ∏
ij∈I1

Mij

〉
c · · ·

〈 ∏
ij∈Ip

Mij

〉
c (24)

In the moment method, we have to estimate

1

Nk/2+1

〈
Tr(Mk)

〉
=

1

Nk/2+1

∑
1≤i1,...,ik≤N

〈Mi1i2 · · ·Miki1〉. (25)

Then, we express the moments in (25) in terms of cumulants using (24)
and represent each cumulant as a graph. Because of the trace, one has
to draw Eulerian cycles on the graphs after some vertex identifications.
Then, the scaling bounds on the cumulants can be used to show that only
Gaussian terms survive.

5 Proof based on the replica effective ac-
tion
Let us give a renormalisation group proof of this result based on the replica
effective action. The use of replicas in random matrix theory is a classical
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subject, see for instance [11] or [12]. To begin with, let us note that

Tr
(
z − M√

N

)−1

=
∂

∂z
log det

(
z − M√

N

)
. (26)

It is convenient to express the logarithm using the replica method. First
observe that

log(A) = lim
n→0

An − 1

n
. (27)

Then, we express the nth power of the determinant as a Gaußian integral
over n replicas of a complex vector of size N (with a factor of πnN included
in the measure),

1

detn(z −M)
=

∫
dX exp−Tr

(
X†(z −M)X

)
, (28)

which fit into a N × n complex matrix X = (Xi,a) 1≤i≤N
1≤a≤n

.

The limit n→ 0 may be worrisome, its meaning is as follows. Because
of U(n) invariance, any perturbative result in powers of 1/z is a polynomial
in n, from which we retain only the linear term. Of course, this may not
hold beyond perturbation theory, where replica symmetry breaking can
occur.

After averaging over M with the random matrix density ρ(M), we
obtain the following expression for the resolvent,

G(z) = − 1

N

∂

∂z

[∫
dX exp

{
−Tr(X†X) + V0(X)

}]
order 1
in n

, (29)

where the replica potential is

V0(X) = log
〈
expTr

(
X†

M√
N
X
)〉
. (30)

Because of the logarithm, the potential involves the cumulants and can
be expanded over graphs as

V0(X) =∑
G

oriented graph

1

|Aut(G)|Ne(G)/2

∑
1≤i1,...,iv(G)≤N

all different

CG(i1, . . . , iv(G))
∏
e edge

(XX†)is(e)it(e) ,

(31)

where s(e) is the source of edge e and t(e) its target.
Let us introduce a replica effective action, obtained by a partial inte-

gration

V (t,X) = log

∫
dY exp

{
−Tr(Y †Y )

t
+ V0(X + Y )

}
−Nn log t. (32)

The parameter t ranges between 0 (where we have no integration, V (t =
0, X) = V0(X)) and t = 1/z.

8



The effective potential obeys a semi-group property that follows from
Gaußian convolution (see for instance [14], section A10.1),

V (t+ s,X) = log

∫
dY exp

{
−Tr(Y †Y )

s
+ V (t,X + Y )

}
−Nn log s.

(33)
For small s = dt, it translates into the following renormalisation group
equation, which is a simple version of Polchinski’s exact renormalisation
group equation [5],

∂V (t,X)

∂t
=
∑
i,a

(
∂2V (t,X)

∂Xi,a∂Xi,a

+
∂V (t,X)

∂Xi,a

∂V (t,X)

∂Xi,a

)
. (34)

The first term on the RHS is referred to a the loop term, since it creates
a new loop in the Feynman graph expansion of the effective action while
the second inserts a one particle reducible line and is referred as the tree
term, see figure 3.

∂

∂t
= +

Figure 3: Graphical interpretation of the renormalisation group equation

Taking into account the boundary condition V (t = 0, X) = V0(X), it
is convenient to write (34) in integral form

V (t,X) = V0(X)+

∫ t

0

ds
∑
i,a

(
∂2V (s,X)

∂Xi,a∂Xi,a

+
∂V (s,X)

∂Xi,a

∂V (s,X)

∂Xi,a

)
. (35)

This allows us to derive inductive bounds in powers of t = 1/z.
From a physical point of view, we evaluate the effective potential by

a large succession of small partial integrations, with a total weight given
by t. Let us stress that in our context this differential equation is merely
a tool to control the t dependence of the effective action after integrating
with a t dependent propagator.

The effective potential also admits an expansion over graphs,

V (t,X) =∑
G

oriented graph

1

|Aut(G)|Ne(G)/2

∑
1≤i1,...,iv(G)≤N

all different

CG(t; i1, . . . , iv(G))
∏
e edge

(XX†)is(e)it(e) .

(36)

This leads to a graphical interpretation of the action of the two differen-
tial operators in the renormalisation group equation, see figure 4. Indeed,
in the expansion (36), an edge joining a vertex carrying label i to a ver-
tex carrying j is equipped with a factor

∑
aXi,aXj,a, with a a replica

9



index. Then, the differential operator ∂
∂Xi,a

(resp. ∂

∂Xj,a
) removes the

outgoing (resp. incoming) half edge. Finally, the remaining half edges are
reattached and the vertices identified to yield a new graph on the RHS
of (35), with one less edge. These operations are performed on the same
graph for the loop term and on distinct ones for the tree term.

∂2V

∂Xi,a∂Xi,a

(loop term)
:

v

G

→ v

G̃

∂V

∂Xi,a

∂V

∂Xi,a

(tree term)
:

v1

G1

v2

G2

→
v1 = v2

G̃

Figure 4: Action of the differential operators on the vertices of the effective
action

Let us decompose the effective cumulants appearing in (36) into Gaußian
ones and perturbations, and expand both in a power series in t = 1/z,

CG(t) =

∞∑
k=0

tk
[
C
′(k)
G︸ ︷︷ ︸

Gaußian

+ C
′′(k)
G︸ ︷︷ ︸

perturbation

]
. (37)

The Gaußian terms are those that are constructed using only the Gaußian
term in the initial potential V0(X). Even is V0(X) is quartic in X, this
does not hold for the Gaußian part of Vt(X), that contains terms of all
orders. The perturbation collects all the remaining terms, they contain
at least one non Gaußian perturbation from V0(X).

The renormalisation group equation (35) allows us to prove inductively
on k that the perturbations C

′′(k)
G obey the same scaling bound imposed

on C
′′(0)
G = C

′′
G(0) and that the purely Gaußian terms do not grow to fast,

• lim
N→∞

Nv(G)−c(G)−e(G)/2[C′′(k)G

]
order 0
in n

= 0 for G Eulerian,

• Nv(G)−c(G)−e(G)/2[C′′(k)G

]
order 0
in n

bounded for G not Eulerian,

• Nv(G)−c(G)−e(G)/2[C′(k)G

]
order 0
in n

bounded for any G.

This involves a combinatorial discussion based on the graphical inter-
pretation of figure 4 that can be found in [6]. Let us simply mention that
the terms that may violate the bounds are of higher order in n. Thus,
they are harmless when taking the limit n→ 0 before the limit N → +∞.
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Finally, using (29) and the renormalisation group equation (35), the
resolvent can be expressed as

G(z) =
1

z
+

1

N3/2z2

∑
1≤i≤N

[
C

i
(1/z; i)

]
order 0 in n. (38)

The scaling bounds for the non Gaußian cumulants impose, perturbatively
in 1/z,

lim
N→∞

1√
N

[
C′′

i
(1/z; i)

]
order 0 in n = 0. (39)

Therefore, only the Gaußian cumulants contribute and we recover Wigner’s
semicircle law.

6 Conclusion and outlook
In this talk, we have argued that Wigner’s semicircle law remains valid
for matrices with dependent entries. The deviation from the independent
case is measured by the joint cumulants of the entries, which are assumed
to fulfil some scaling bound for large N . To establish this result, we have
introduced an effective action for the replicas. This effective action obeys
a renormalisation group equation that allowed us to prove perturbative
bounds on the effective cumulants. As a consequence of these bounds,
only the Gaußian terms contribute in the large N limit, thus establishing
the validity of Wigner’s semicircle law.

It may also be of interest to investigate the case of the sum of a random
matrix M and a deterministic one A, see for instance [12] where such a
model is discussed. In this case, the resolvent is expressed as

G(z) = − 1

N

∂

∂z

[∫
dX exp

{
−Tr(X†(A+ z)X) + V0(X)

}]
order 1
in n

. (40)

In our context, the deterministic matrix A induces a non trivial kinetic
for the replicas. In particular, if A is a discrete Laplacian, it yields a non
trivial renormalisation group flow that bears some similarities with the
QFT renormalisation group. In this case, we expect to exploit the true
power of the renormalisation group equation, with a discussion of fixed
points and scaling dimensions.
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