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PHASE TRANSITION FOR A NON-ATTRACTIVE INFECTION PROCESS

IN HETEROGENEOUS ENVIRONMENT

MARINUS GOTTSCHAU, MARKUS HEYDENREICH, KILIAN MATZKE, AND CRISTINA TONINELLI

Abstract. We consider a non-attractive three state contact process on Z and prove that there
exists a regime of survival as well as a regime of extinction. In more detail, the process can be
regarded as an infection process in a dynamic environment, where non-infected sites are either
healthy or passive. Infected sites can recover only if they have a healthy site nearby, whereas
non-infected sites may become infected only if there is no healthy and at least one infected
site nearby. The transition probabilities are governed by a global parameter q: for large q, the
infection dies out, and for small enough q, we observe its survival. The result is obtained by a
coupling to a discrete time Markov chain, using its drift properties in the respective regimes.

1. Introduction

1.1. History. The classical contact process, as introduced by Harris in 1974 [10], has been a

central topic of research in interacting particle systems. It is formally defined as {0, 1}Zd
-valued

spin system, where 1’s flip to 0’s at rate 1, and flips from 0 to 1 occur at rate λ times the number
of neighbors in state 1, where λ > 0 is a parameter of the model. Commonly, the lattice sites
are called ‘individuals’, which are either infected (i.e., in state 1) or healthy (i.e., in state 0).
Many fundamental questions have been settled for this model, the results are summarized in
the monographs by Liggett and Durrett in [7, 12, 13].

Among the most important results are the existence of a phase transition for survival of a
single infected particle, the complete convergence theorem, and extinction of the critical contact
process. Much more refined results have appeared in recent years. In view of these successes, it
may seem surprising that results are considerably sparse as soon as multitype contact processes
are considered. Results have only be achieved in very specific situations, examples are the
articles by Cox and Schinazi [4], Durrett and Neuhauser [5], Durrett and Swindle [6], Konno et
al. [11], Neuhauser [14], and Remenik [15] for various models.

Our focus here is on the contact process with three types, and this carries already severe
complications. A fair number of models considered in the literature stems from a biological
context (either evolvement of biological species or vegetation models); typical questions that
have been considered are coexistence versus extinction and phase transitions. Examples are the
work of Broman [3] and Remenik [15].

There are two features that are shared by all of these models: they are monotonic and they
are (self-)dual (we refer to [13] for a definition of these terms). These two properties are crucial
ingredients in the analysis; if they fail, then most of the known tools fail. This might be
illustrated by looking at Model A in [1], which is a certain 3-type contact process. Even though
there are positive rates for transitions between the various states of this model and apparent
monotonicity, the lack of any usable duality relation prevented all efforts in proving convergence
to equilibrium for that model.

For the model considered in the present paper, it appears that there is no duality relation
that we can exploit and monotonicity is restricted to a very particular situation only. Yet we are
able to prove the occurrence of a phase transition by means of coupling to certain discrete-time
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Markov chains and analyzing drift properties of these chains. We believe that the technique
presented here is useful in greater generality. A motivation for studying this process stems
from the connection with the out of equilibrium dynamics of kinetically constrained models, as
we will explain in detail in Section 1.3. We believe that the proof techniques apply in similar
situations.

1.2. The model. Our state space is Ω = {0, 1, 2}Z, equipped with the product topology (which
makes Ω compact). Further, q ∈ [0, 1] is a parameter and (ηt)t≥0 is a Markov process on Ω. We
say that at time t,

site x is


healthy if ηt(x) = 0,

passive if ηt(x) = 1 and

infected if ηt(x) = 2.

Informally, we can describe the process as follows. Each site x independently waits an expo-
nential time with intensity 1 and then updates its state according to the following rules:

• If at least one neighboring site is healthy, then x becomes healthy with probability q
and passive w.p. 1− q.
• If at least one neighbor is infected and none is healthy, then a previously healthy x

becomes infected w.p. 1− q, a previously passive x becomes infected w.p. q and remains
in its state otherwise.

For a more formal description, the process can be characterized by its probability generator,
which is the closure of the operator

Lf(η) =
∑
x∈Z

[
cx(η)q(f(ηx,0)− f(η)) + cx(η)(1− q)(f(ηx,1)− f(η))

+ c̄x(η)
[
q 1{η(x)=1} + (1− q)1{η(x)=0}

]
(f(ηx,2)− f(η))

]
,

f ∈
{
f : Ω→ R cont. : lim

x→∞
sup{|f(η)− f(η′)| : η, η′ ∈ Ω, η(y) = η′(y) for all y 6= x} = 0

}
.

Here, cx(η) = 1{η(x−1)·η(x+1)=0} and c̄x(η) = 1{η(x−1)·η(x+1)≥2}. Furthermore, ηx,i is the config-

uration where ηx,i(y) = η(y) for all y 6= x and ηx,i(x) = i, x, y ∈ Z, i ∈ {0, 1, 2}.
For an initial configuration η ∈ Ω, we denote by Pη the corresponding probability measure.

This superscript will be dropped for the sake of convenience if context permits.
As we wrote earlier, monotonicity is an important tool in the analysis of such processes. One

monotonicity property the (ηt) process exhibits is the following.

Claim 1. For arbitrary η ∈ Ω and x ∈ Z, we have that

Pη
′
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
≥ Pη

′′
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
,

where η′ = ηx,2 and η′′ ∈ {ηx,1, ηx,0}.
In words, additional infected sites cannot decrease the chance of the infection’s survival.

However, the same is not necessarily true anymore for η′ = ηx,1 and η′′ = ηx,0.

Proof. If we couple the two processes with respective initial measures, we claim that, almost
surely, η′t(x) ∈ {η′′t (x), 2} for all t ≥ 0 and x ∈ Z. This is a consequence of the definition of the
dynamics and corresponding transition rates. �

1.3. Results and discussion. Our main result is a phase transition for (ηt) in the parameter
q: if q is very close to 0, then any number of initially infected sites survives with positive
probability, whereas if q is close to 1, then the infection dies out with probability 1.

Theorem 2. There exist values 0 < q0 < q1 < 1 such that

(i) for any initial configuration η /∈ {0, 1}Z, we have

Pη
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
> 0 for all q ≤ q0,

2



(ii) and for any initial configuration η with supx∈Z infy∈Z{|x− y| : η(y) = 0} <∞, we have

Pη
[
ηt ∈ {0, 1}Z

]
t→∞−−−→ 1 a.s. for all q ≥ q1.

We thus prove the existence of different regimes without relying on duality properties. Since
there is no monotonicity that can be exploited here, we can not rule out that there are more
than one transitions between the regimes “the infection dies out” and “the infection survives”.
However, we conjecture the following statement to be true.

Conjecture. The function q 7→ Pη
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
is decreasing in q ∈ (0, 1].

This would imply a critical value qc such that if q < qc the infection survives with positive
probability, while if q > qc the infection dies out with probability 1.

Note that the case q = 0 is degenerate and of little interest, as it admits traps: If there is a
site x ∈ Z and a time t ≥ 0 such that we exhibit (ηt(x), ηt(x + 1), ηt(x + 2)) = (1, 0, 1), then
this triple will remain fixed for all t′ ≥ t.

A very related process to the one just introduced is the simpler version for which, informally,
the second condition is altered to: “If at least one neighbor of x is infected and none is healthy,
then x becomes infected.” It is clear that the set of infected sites in this version dominates
our process. However, the same proof techniques used below yield similar results to Theorem 2
(namely, also a phase transition).

Connections to kinetically constrained models. This model has an indirect connection
with Frederickson-Andersen 1 spin facilitated model (FA1f) [2, 8, 9]. In this case, the configura-
tion space is {0, 1}Z and the dynamics are defined as follows: a site x with occupation variable
0 flips to 1 at rate 1 − q iff at least one among its nearest neighbors is in state zero; a site x
with occupation variable 1 flips to 0 at rate q iff at least one among its nearest neighbors is in
state zero. Note that the constraint for the 0→ 1 and the 1→ 0 updates are the same and the
dynamics satisfies detailed balance w.r.t. the product measure µ with µ(η(x) = 0) = q. Note
also that the dynamics of our contact process coincide with the FA1f dynamics if we start from
a configuration which does not contain infected sites.

A non trivial problem for FA1f dynamics is to determine convergence to the equilibrium
measure µ for some reasonable initial measure, e.g. an initial product measure with density of
healthy sites different from q [2]. We will now explain how our results provide an alternative
approach to prove convergence to equilibrium in a restricted density regime. A possible strategy
to prove convergence to equilibrium for FA1f dynamics started from an initial configuration η0
is to couple it with some η̃0 distributed according to µ. This gives rise to a process with 4
states {0, 1, 2↓, 2↑}. Here, 0 represent sites where both configurations are 0; 1 sites where both
configurations are 1; 2↓ sites where η is 0 and η̃ is 1; and 2↑ sites where η is 1 and η̃ is 0. If we
now denote the union of sites in state 2↓ and 2↑ as ”infected sites”, then if infection dies out,
the original process started in η0 is distributed with the equilibrium measure (since there are no
more discrepancies with the process evolved from η̃ which is at equilibrium at any time). It is
not difficult to verify that the dynamics of the 4 state contact process induced by the standard
coupling among two configurations evolving with FA1f dynamics are such that the union of
sites in state 2↓ and 2↑ is dominated by the infected sites of our 3-state contact process. Thus
when infection dies out for our process it also dies out for the 4-state contact process and from
our Theorem 2 (ii) we get convergence to equilibrium for q ≥ q1 for the FA1f dynamics. This
result was already proven by a completely different technique in Blondel et al. [2] for parameter
q > 1/2. Notice that convergence to equilibrium is expected to hold for FA1f dynamics at all
q > 0 starting from η satisfying the hypothesis of our Theorem 2 (ii), namely infection should
always disappear in the 4 state contact process. This is certainly not the case for our 3 state
contact process which has a survival extinction transition, as proved by Theorem 2 (i).
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2. The small q regime

In this section, we prove assertion (i) of Theorem 2. First, We define

Ω∗ = {η ∈ Ω : ∃ a ≤ b ∈ Z : {x : η(x) = 2} = [a, b] ∩ Z},
the set of configurations where infected sites form a finite, nonempty interval.

Proposition 3. Consider some η ∈ Ω∗. Then there exists 0 < q0 such that

Pη
[
ηt /∈ {0, 1}Z for all t ≥ 0

]
> 0 for all q ≤ q0,

For the proof, we observe first that the set of sites in state 2, which we call the infected
cluster, is always connected. We would like to focus on the behavior of the infected boundary
sites and so, due to symmetry, on

I(t) := sup{x ∈ Z : ηt(x) = 2},
the position of the rightmost infected site. If there is only one infected site (thus, leftmost
and rightmost infected site coincide), both with positive probability the next change in number
of infected sites might result in zero (extinction of the infection) or two infected sites. If the
number of infected sites is at least two, only the status on the sites to the right of the rightmost
infected site have direct influence on the ‘movement’ of I(t).

In (an informal) summary, if the infection shrinks to size one, it recovers with positive proba-
bility to size at least two. If we show that from there, infection spreads with positive probability,
we obtain our result. Therefore, we focus on this latter regime in the following.

With this in mind, we now introduce a Markov chain, which can be interpreted as a simplified
model of the rightmost infected site and its local right neighborhood, and prove a drift property
for it. This shall turn out to be useful when coupling this auxiliary Markov chain to our original
process in section 2.2.

2.1. An auxiliary Markov chain. We define a Markov chain (Yi)i≥0 living in the (countable)
state space S = Z×{0, 1}3. We denote its first coordinate as the chain’s level or state and thus
can partition S into its n-states

Sn := {(ω1, ω2, ω3, ω4) ∈ S : ω1 = n}
for any integer n. The Markov chain is defined by its transition graph shown in Figure 1.
The subgraphs induced by Sn are isomorphic, and furthermore, two states from Sn and Sm for
|m− n| ≥ 2 have transition probability zero. Hence, for simplicity, we can restrict ourselves to
depicting the transition graph induced by Sn, with additional states in Sn±1 along with their
respective transition probabilities. We denote the probability measure of this Markov chain by
P (we trust that this causes no confusion with the measure of the interacting particle system).

We define the stopping time τ to be the first time the Markov chain changes its level:

τ := min{i ∈ N : ∃n ∈ Z : Y0 ∈ Sn, Yi ∈ Sn±1}.
Using Y m

i (for 0 ≤ m ≤ 3) to access the mth component of the state which Y is in at time i,
say that Yi is a progressive step (progress) if Y 1

i = Y 1
i−1 + 1 and similarly call Yi a regressive

step (regress) if Y 1
i = Y 1

i−1 − 1. We say that a natural number i is a step time (step) if Yi is
either a progressive or a regressive step.

Lemma 4. Let n ∈ Z and ε > 0. Then there exists 0 < q0 < 1 such that

1

2
− ε < P[Yτ ∈ Sn+1 | Y0 = (n, 1, 0, 1)] <

4

7
+ ε,

2

3
− ε < P[Yτ ∈ Sn+1 | Y0 = (n, 1, 0, 0)]

for all q < q0.
4
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Figure 1. Transition subgraph of Y induced by Sn and its neighboring states.

Proof. The proof proceeds by counting paths in the transition graph. We define

θ1 := P[Yτ ∈ Sn+1 | Y0 = (n, 1, 1, 0)],

θ2 := P[Yτ ∈ Sn+1 | Y0 = (n, 1, 0, 0)],

θ3 := P[Yτ ∈ Sn+1 | Y0 = (n, 1, 0, 1)].

We also set a := 1−q
2(3−q) to be the weight of the 2-cycle between states (n, 1, 0, 1) and (n, 0, 0, 1).

The weight of a cycle is the probability that the Markov chain transitions along this cycle in
the transition graph. As a path may use this cycle arbitrarily often, we have

θ1 =
1

2
(1 + θ2) ,

θ2 ≥
1− q
2− q θ1 +

1− q
2− q θ3,

θ3 ≥
(

1

2
θ2 +

1− q
2

a

)∑
k≥0

ak =
1

1− a

(
1

2
θ2 +

1− q
2

a

)
,

using the strong Markov property. This leads to the explicit lower bounds

θ1 ≥
15− 9q + 3q2 − q3

18− 2q2
,

θ2 ≥
6− 9q + 4q2 − q3

9− q2 ,

θ3 ≥
3− 4q + q2

6 + 2q
.

For small q, all of these values are strictly larger than 1
2 , except for θ3, where we have θ3 ↗ 1

2

as q → 0. Finally set b := 1−q
2(2−q) to be the weight of a 2-cycle between states (n, 1, 0, 1) and

(n, 1, 0, 0) and observe that, by counting paths ending in Sn−1, we have

1− θ3 ≥
(

1

2(3− q) +
1− q

4(3− q)

)∑
n≥0

n∑
k=0

(
n

k

)
akbn−k

 =
6− 5q + q2

14− 6q
.
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In the first parenthesis, the first term comes from paths ending in (n−1, 0, 0, 0) and (n−1, 1, 0, 0),
whereas the second terms comes from paths ending in (n − 1, 0, 0, 1) as well as (n − 1, 1, 0, 1).
The lemma follows for q sufficiently small.

�

Lemma 5. There exists 0 < q0 < 1 such that for all 0 < q < q0, we have

E
[
Y 1
τ − Y 1

0

]
> 0.

Proof. We start by defining

τ2 := min{i > τ : ∃n ∈ Z : Yτ ∈ Sn, Yi ∈ Sn±1}

to be the first level change after τ and actually prove E
[
Y 1
τ2 − Y 1

0

]
> 0. Noting that after two

level changes, Y 1 will either have increased or decreased by 2 or not changed at all, the lemma
follows from proving

P [Yτ2 ∈ Sn+2 | Y0 ∈ Sn] > P [Yτ2 ∈ Sn−2 | Y0 ∈ Sn] .(1)

for any integer n. To this end, we make the following observation, which is an immediate
consequence of the definition of the Markov chain dynamics.

Observation 1. Let Y0 ∈ Sn. Then from Yτ ∈ Sn+1, it follows that Yτ = (n+1, 1, 0, 1). On the
other hand, if Yτ ∈ Sn−1, then Yτ , with probability q, is one of the two states {(n−1, 0, 0, 1), (n−
1, 0, 0, 0)} and, with probability 1− q, is one of the two states {(n− 1, 1, 0, 1), (n− 1, 1, 0, 0)}.

We can thus restrict ourselves to proving (1) for Y0 being one of the two ‘good ’ n-states
Gn := {(n, 1, 0, 1), (n, 1, 0, 0)}, as we are allowed to choose q0 sufficiently small. Combining
Observation 1 with Lemma 4, we have

α̃ := P [Yτ2 ∈ Sn+2 | Y0 ∈ Gn] ≥ min
ω∈Gn

(P [Yτ ∈ Gn+1 | Y0 = ω])2 >

(
1

2
− ε
)2

for some ε > 0 and q appropriately small. Recalling that a := 1−q
2(3−q) was the weight of a

2-cycle between states (n, 1, 0, 1) and (n, 0, 0, 1) and b := 1−q
2(2−q) the value of a 2-cycle between

states (n, 1, 0, 1) and (n, 1, 0, 0), and setting ω = (n, 1, 0, 1), ω′ = (n, 0, 0, 1) as well as ω′′ =
(n− 1, 1, 0, 0), we have

κ := P
[
Yτ ∈ Gn−1, Yτ−1 = ω′ | Y0 = ω

]
≥ 1− q

2(3− q)

∑
m≥0

m∑
k=0

(
m

k

)
akbm−k

 =
1− q

2(3− q) ·
1

1− a− b

=
2− 3q + q2

7− 3q
,

with the bound obtained simply by counting paths from ω to ω′′ which pass through ω′ in
their second to last step. With ε small enough (ε < 1/100 say), we are now able to bound
α := P [Yτ2 ∈ Sn−2 | Y0 = ω], the probability of double regress from ω, as follows:

α = P [{Yτ2 ∈ Sn−2} ∩ {Yτ ∈ Sn−1} | Y0 = ω]

≤ q + (1− q) · P
[
{Yτ2 ∈ Sn−2} ∩ {Yτ ∈ Gn−1} ∩ {Yτ−1 = ω′} | Y0 = ω

]
+ q + (1− q) · P

[
{Yτ2 ∈ Sn−2} ∩ {Yτ ∈ Gn−1} ∩ {Yτ−1 6= ω′} | Y0 = ω

]
.
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Rearranging by defining B = {Yτ ∈ Gn−1} ∩ {Yτ−1 = ω′} and B′ = {Yτ ∈ Gn−1} ∩ {Yτ−1 6= ω′}
and observing that the event B implies that Yτ = ω′′, we continue to find that

α ≤ 2q + (1− q)
∑

A∈{B,B′}

P [Yτ2 ∈ Sn−2 | A] · P [A | Y0 = ω]

≤ 2q + (1− q) · P
[
Yτ2 ∈ Sn−2 | Yτ = ω′′

]
· κ

+ (1− q) · P [Yτ2 ∈ Sn−2 | Yτ = ω] · (P [Yτ ∈ Gn−1 | Y0 = ω]− κ)

≤ 2q + (1− q) (κ(1− θ2) + (1− q)(1− θ3)(1− θ3 − κ))

< 2q + (1− θ3)2 + κ(θ3 − θ2)

< 2q +

(
1

2
+ ε

)2

+

(
2

7
− ε
)(

4

7
− 2

3

)
< 2q + α̃− 4

21

(
1

7
− 11ε

)
< α̃

for our chosen ε and q sufficiently small, where θi have been defined in the proof of Lemma 4.
Note that again we make heavy use of the strong Markov property as well as the bounds from
Lemma 4. �

2.2. The coupling. We are now ready to return to our process. Recall that Y should be
thought of as a model of the right neighborhood of the rightmost infected site in the original
process. Intuitively speaking, we want to find a coupling such that Y 0 ≤ I(t) at any given
time—this, however, is ill-defined. To make it more precise, let us first formally build towards
the discrete version of the segment of the process that is of interest (i.e., the right neighborhood
of the rightmost infected site). For (ηt)t≥0 a realization of the process in Ω∗, we define the map
Φ : Ω∗ → Z× {0, 1}4 as

Φ(ηt) =
(
I(t), (ηt(I(t) + i))4i=1

)
.

Hence, (Φt)t≥0 = (Φ(ηt))t≥0 is the segment of the process we are interested in. Let S(x) =
(si(x))i∈N be the sequence of clock rings for site x. That is, s1 ∼ Exp(1) and (si+1(x)− si(x)) ∼
Exp(1) for all i ∈ N. This allows us to define (Ri)i∈N0 , the sequence of times of clock rings of

the process restricted to (ηt(I(t) + i))4i=0, as R0 = 0 and

Ri+1 = inf {sj(x) : sj(x) > Ri, x ∈ {I(Ri) + l : 0 ≤ l ≤ 4}, j ∈ N}
for all i ≥ 0. We are interested in the process (Xi)i∈N0 , a subset of (X)i∈N0 , where X0 = X0 =
Φ(ηR0) and

Xi = Φ(ηRi),

Xi = Φ(ηRl
), l = inf{k ≥ i : Φ(ηRk

) 6= Φ(ηRi−1)}
for all i ≥ 1. In words, (X)i is the embedded discrete time chain of (Φ)t, and X is the chain
obtained from X by removing all of the self-loops. Process X is the one which, in certain time
windows, behaves very much like Y . To make this precise, we define (R′i)i∈N0 with R′0 = 0 and

R′i+1 = inf
{{
t > R′i : I(R′i) 6= I(t)

}
∪ {sj(I(R′i) + 4) : sj(I(R′i) + 4) > R′i, j ∈ N}

}
to be the times when either the position of the rightmost infected particle changes or the clock
at the site determining the boundary condition, I( · ) + 4, rings. We call Wi := [R′i, R

′
i+1) the

stable windows for all i ≥ 0. A stable window closes whenever the boundary site rings or the
infected site moves. We can now proceed to describe the behavior of X in a stable window. As
we did for Y , we can partition the state space of X into its levels and, as no confusion arises
this way, call them Sn as well. The dynamics within Wi depend only on Φ(ηR′i), namely the
initial state also encoding the boundary conditions, and are therefore Markovian. Given this
initial state for W0, we can depict the transition graph in a very similar way as the one for Y ,
as the subgraphs induced by the levels are again isomorphic, the states in neighboring levels
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Figure 3. Transition subgraph of X in window W0 induced by Sn for healthy
initial boundary conditions.

are terminal as they ‘close’ the window W0. Conditional on the boundary conditions, the two
transition graphs are shown in Figures 2 and 3.

Lemma 6. We have that for any i ≥ 1

P
[
XR′1

∈ Sn+1 | XR′0
∈ Sn, XR′1

/∈ Sn
]
≥ P [Yτ ∈ Sn+1 | Y0 ∈ Sn]

for any integer n. In words, conditioned on W0 closing due to a level change, the probability of
progress in X is bounded from below by the probability of progress in Y .
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Proof. Knowing that X does not change its fifth coordinate (its boundary conditions as a clock
ring would close the window) within W0 allows us to couple the first four coordinates of X with
Y while considering both cases of X’s boundary conditions and aim for the desired domination.
It is not hard to see that X1 dominates Y 1 under passive boundary conditions: Note that the
transition probabilities as well as the states one ends up in after regress are the same except for
state (n, 1, 1, 1), which only slows the progress of Y .

Let us justify why the same holds for healthy boundary conditions by showing that for any
path leading to progress in Y , we can find a union of heavier paths in X (with those unions being
disjoint). It is clear that for all q < 1/2 and any progressive path in Y last visiting (n, 1, 1, 0),
we can find a heavier one in X using the edges between states (n, 1, 1, 0) and (n, 1, 1, 1).

Next, observe that for X with healthy boundary conditions, we have additional edges between
states (n, 0, 1, 1) and (n, 0, 1, 0). So any path in Y leading to progress and last visiting either one

of these two states may make use of these edges and then progress in X. Defining c := q(1−q)
(2+q)(3−q)

to be the weight of a 2-cycle between these states we have that, starting from state (n, 0, 1, 1),(
1− q
2 + q

+ c

)∑
k≥0

ck =
1− q

2
,

so these extra paths add up precisely to the weight of the edges from (n, 0, 1, 1) to Sn+1. An
analogous computation gives the same result when starting from state (n, 0, 1, 0). �

Proof of Proposition 3. Lemma 6 is valid regardless of the boundary condition, so we can glue
together stable windows until the event XR′1

/∈ Sn is satisfied—that is, until a window ends

with a level change. In this case, there are two possibilities, namely XR′1
∈ Sn+1 (progress) or

XR′1
∈ Sn−1 (regress).

In the canonical coupling of the first four coordinates of X and Y within W0, we obtain
that after regress, X and Y end up in the same state (w.r.t. to the first four coordinates of X),
whereas after progress, X is in one of the states (n+1, 1, 0, 1, z), (n+1, 1, 0, 0, z), (n+1, 1, 1, 0, z)
or (n+ 1, 1, 1, 1, z) (with z ∈ {0, 1} determining the new boundary condition), while Y will find
itself in (n+ 1, 1, 0, 1). So in any case, Y is in a state from which progress in less likely.

In summary, Lemma 5 shows that Y 0 dominates a random walk on Z with positive drift and
so Y 0 has a positive drift. Due to the coupling obtained from Lemma 6, this drift carries over to
X. Hence, the law or large number for a random walk with drift yields the claimed statement.
Finally, Theorem 2 (i) follows from Proposition 3 via Claim 1. �

3. Extinction for large q

We import some notation from Section 2. Namely, let (Xi)i∈N ⊂ Z× {0, 1}4 be the discrete
time process describing the rightmost infected site and its neighbors and let Sn denote all n-
levels of its state space. Similar to how τ and τ2 were defined for the Markov chain Y in that
section, we define τi for i ≥ 1 as

τi+1 = inf{j ≥ τi : ∃n ∈ Z : Xτi ∈ Sn, Xj ∈ Sn±1},
where we set τ0 = 0, to be the sequence of level changes of X. We abbreviate τ = τ1 when it is
convenient. We next define two stopping times describing the length of consecutive progressive
and regressive steps, respectively. That is, we set

⇀
τ := sup{i ∈ N0 : ∃n ∈ Z : X0 ∈ Sn, Xτi ∈ Sn+i},
↼
τ := sup{i ∈ N0 : ∃n ∈ Z : X0 ∈ Sn, Xτi ∈ Sn−i}

and call
⇀
τ a progressive and

↼
τ a regressive interval, respectively. It is clear that we can partition

X into alternating progressive and regressive intervals. Our aim is to prove that the length of
a progressive interval is, in expectation, less than the length of a regressive one. Note that if τ
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is a regressive step, then Xτ ∈ Gn for some integer n, where

Gn = {(n, z2, 0, z4, z5) : zi ∈ {0, 1} for i = 2, 4, 5}.
Similarly, if τ is a progressive step, then Xτ ∈ Bn for some n, with

Bn = {(n, 1, z3, z4, z5) : zi ∈ {0, 1} for i = 3, 4, 5}.
The following lemma is the main step in the proof of Theorem 2 (ii).

Lemma 7. In the above notation, we have that

E[
⇀
τ | X0 ∈ Gn] < E[

↼
τ | X0 ∈ Bn]

for n ∈ Z und q sufficiently large.

Proof of Theorem 2 (ii). As observed above, starting at τ , any progressive interval must start
from a G state, whereas any regressive interval must start from a B state. Hence, the conditioning
in Lemma 7 is not a restriction and the rightmost infected site is dominated by a Z-valued
random walk with negative drift, which yields the claimed result.

�

Turning towards the proof of Lemma 7, a key observation is the fact that, when q is sufficiently
large, healthy sites drift towards each other. More precisely, given a connected set of passive
sites with healthy boundary conditions, we expect the size of this set to decrease with time.
With this in mind we define

ξx(η) = inf{|y − x| : y ∈ Z, η(y) = 0},
for some η ∈ Ω and x ∈ Z, i.e. the distance of x to the next healthy site in η.

Lemma 8. Let q > 1/2. Given any initial distribution ν taking values in {0, 1}Z. Assume that
κ := E[ξx(ν)] <∞ for some site x ∈ Z. Then for the process (ηt) with η0 ∼ ν, we have

Eν [ξx(ηt)] ≤ max{1, κ+ t(1− 2q)} ∀t ≥ 0.

Proof. Let η = η0 be state of the process at time 0. Due to translation invariance and symmetry,
we shall consider site x = 0 and assume the closest healthy site is located at ξt = ξ0(ηt)� 1 for
all times t. Since we are only interested in an upper bound, we always assume that η(ξt+1) = 0.
In doing this, we obtain a process whose ξt-value dominates the original one. We thus end up
with the following simplification:

• If site ξt updates, then with probability 1− q, it becomes passive and ξt+ = ξt + 1,
• if site ξt − 1 updates, then with probability q, it becomes healthy and ξt+ = ξt − 1,

and those are the only updates changing the position of ξt. Hence, the expected change of ηt
after an update is 1− 2q < 0. The number of updates in [0, t] of these two sites is 2 Poisson(t)-
distributed, and with probability 1/2, an update yields a change of position, so Nt, the number
of position changes in [0, t], is Poisson(t)-distributed. Hence, as all of this remains true for
ξt ≥ 1, the statement follows by Wald’s lemma. �

Note that Lemma 8 is very much in the spirit of Proposition 4.1 in [2], even though we need
a much weaker statement to prove Lemma 7, namely that Eν [ξx(ηt)] is not increasing.

Proof of Lemma 7. We begin by considering
↼
τ and noting that, no matter the boundary con-

ditions,

P[Xτ2 ∈ Sn−1 | Xτ1 ∈ Sn, X0 ∈ Sn+1] = P[Xτ ∈ Sn−1 | X0 ∈ Gn] ≥ α(q)

= min

{
q

2− q ·
1

4− 3q
,

1

3− q (1 +
q

4− 3q
)

}
q→1−−−→ 1.

In words, following a regressive step, we witness another regressive step with probability at least
α → 1. That is because from Gn, X ends up in another regressive step within three steps or
less, regardless of a change of boundary conditions during that time. As a direct consequence,
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E[
↼
τ | X0 ∈ Gn] ≥ (1 − α(q))−1 gets arbitrarily large for q → 1. On the other hand, we have

that there exists β < 1 such that

P[Xτ ∈ Sn+1 | X0 ∈ Bn\{(n, 1, 1, 1, 1)}] ≤ β

for all q not too small (q > 1/2 say), and thus

E
[
⇀
τ | X0 ∈ Bn\{(n, 1, 1, 1, 1)}

]
≤ β

(
1 + E

[
⇀
τ | X0 ∈ Bn

])
≤ β

(
1 + E

[
⇀
τ | X0 = (n, 1, 1, 1, 1)

])
.

So if we can bound the last quantity by some constant, we are done. This is where Lemma 8
comes in. We bound this expectation by “jumping” to the closest healthy site, infecting all
passive sites on the way. More precisely, we progress the infection by force until reaching a
state in Gn.

E
[
⇀
τ | X0 = (n, 1, 1, 1, 1)

]
≤
∞∑
i=0

(
E
[
⇀
τ | X0 ∈ Gn, ξI(0)(η0) = i+ 2

]
+ i
)
P
[
ξI(0)(η0) = i+ 2

]
≤
∞∑
i=0

iP
[
ξI(0)(η0) = i

]
+ E

[
⇀
τ | X0 ∈ Gn

] ∞∑
i=0

P
[
ξI(0)(η0) = i+ 2

]
≤ E

[
ξI(0)(η0)

]
+ E

[
⇀
τ | X0 ∈ Gn

]
,

which is bounded by a constant, combining Lemma 8 with the fact that the second term goes
to 0 as q → 1. �

References

[1] J. van den Berg, J.E. Björnberg, and M. Heydenreich, Sharpness versus robustness of the percolation tran-
sition in 2d contact processes., Stochastic Process. Appl. 125 (2015), no. 2, 513–537.

[2] O. Blondel, N. Cancrini, F. Martinelli, C. Roberto, and C. Toninelli, Fredrickson-Andersen one spin facili-
tated model out of equilibrium, Markov Process. Related Fields 19 (2013), no. 3, 383–406. MR 3156958

[3] E. I. Broman, Stochastic domination for a hidden Markov chain with applications to the contact process in
a randomly evolving environment, Ann. Probab. 35 (2007), no. 6, 2263–2293. MR 2353388 (2009a:60118)

[4] J. T. Cox and R. B Schinazi, Survival and coexistence for a multitype contact process, Ann. Probab. 37
(2009), no. 3, 853–876.

[5] R. Durrett and C. Neuhauser, Coexistence results for some competition models, Ann. Appl. Probab. 7 (1997),
no. 1, 10–45. MR 1428748 (98g:60178)

[6] R. Durrett and G. Swindle, Are there bushes in a forest?, Stochastic Process. Appl. 37 (1991), no. 1, 19–31.
[7] Richard Durrett, Lecture notes on particle systems and percolation, The Wadsworth & Brooks/Cole Statis-

tics/Probability Series, Wadsworth & Brooks/Cole Advanced Books & Software, Pacific Grove, CA, 1988.
MR 940469

[8] Glenn H. Fredrickson and Hans C. Andersen, Kinetic Ising model of the glass transition, Phys. Rev. Lett.
53 (1984), 1244–1247.

[9] , Facilitated kinetic Ising models and the glass transition, J. Chem. Phys. 83 (1985), no. 11, 5822–5831.
[10] T. E. Harris, Contact interactions on a lattice, Ann. Probab. 2 (1974), 969–988. MR 0356292
[11] N. Konno, R. B. Schinazi, and H. Tanemura, Coexistence results for a spatial stochastic epidemic model,

Markov Process. Related Fields 10 (2004), no. 2, 367–376. MR 2082579 (2005h:60298)
[12] Thomas M. Liggett, Interacting particle systems, Grundlehren der Mathematischen Wissenschaften [Funda-

mental Principles of Mathematical Sciences], vol. 276, Springer-Verlag, New York, 1985. MR 776231
[13] , Stochastic interacting systems: contact, voter and exclusion processes, Grundlehren der Mathema-

tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 324, Springer-Verlag, Berlin,
1999. MR 1717346

[14] C. Neuhauser, Ergodic theorems for the multitype contact process, Probab. Theory Related Fields 91 (1992),
no. 3-4, 467–506. MR 1151806 (93c:60162)

[15] D. Remenik, The contact process in a dynamic random environment, Ann. Appl. Probab. 18 (2008), no. 6,
2392–2420. MR 2474541 (2010d:60224)

11



(Marinus Gottschau) TUM School of Management and Department of Mathematics, Technische
Universität München, Arcisstraße 21, 80333 München, Germany

E-mail address: marinus.gottschau@tum.de

(Kilian Matzke, Markus Heydenreich) Mathematisches Institut, Ludwig-Maximilians-Universität München,
Theresienstraße 39, 80333 München, Germany

E-mail address: matzke@math.lmu.de, m.heydenreich@lmu.de

(Cristina Toninelli) CNRS, Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris VI et
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