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Allee optimal control of a system in ecology

Emmanuel Trélat ∗ Jiamin Zhu † Enrique Zuazua ‡§¶‖

Abstract

The Allee threshold of an ecological system distinguishes the sign of population growth
either towards extinction or to carrying capacity. In practice human interventions can tune the
Allee threshold for instance thanks to the sterile male technique and the mating disruption. In
this paper we address various control objectives for a system described by a diffusion-reaction
equation regulating the Allee threshold, viewed as a real parameter determining the unstable
equilibrium of the bistable nonlinear reaction term.

We prove that this system is the mean field limit of an interacting system of particles
in which individual behaviours are driven by stochastic laws. Numerical simulations of the
stochastic process show that population propagations are governed by wave-like solutions
corresponding to traveling solutions of the macroscopic reaction-diffusion system.

An optimal control problem for the macroscopic model is then introduced with the ob-
jective of steering the system to a target traveling wave. The relevance of this problem is
motivated by the fact that traveling wave solutions model the fact that bounded space do-
mains reach asymptotically an equilibrium configuration. Using well known analytical results
and stability properties of traveling waves, we show that well-chosen piecewise constant con-
trols allow to reach the target approximately in sufficiently long time. We then develop a
direct computational method and show its efficiency for computing such controls in various
numerical simulations. Finally we show the efficiency of the obtained macroscopic optimal
controls in the microscopic system of interacting particles and we discuss their advantage
when addressing situations that are out of reach for the analytical methods.

We conclude the article with some open problems and directions for future research.

Keywords: diffusion-reaction equation, interacting particle system, stochastic process, trav-
eling wave, optimal control, ecological system, Allee effect, piecewise control strategy, direct com-
putational method.

1 Introduction, motivation and problem formulation

Macroscopic model and Allee effect. We consider the reaction-diffusion equation

∂ty(t, x)− ∂xxy(t, x) = f(y(t, x), θ), x ∈ R, t ∈ [0,+∞) (1)

where
f(y, θ) = ry(1− y)(y − θ)
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CAGE, F-75005 Paris (emmanuel.trelat@sorbonne-universite.fr)
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is the classical bistable reaction term describing the population change from birth and death and
y : [0,+∞)× R→ R is the local population density.

System (1) is a typical model in ecology modelling the propagation of a population of organisms
(see [44, 50]). The growth of the population, in addition to migration, which is described by the
diffusion term ∂xxy, is subject to an Allee effect that is modelled through the nonlinearity.

The parameter r > 0, assumed to be fixed in our analysis, represents the reproduction rate
and can be normalised to r = 1 through a change of scale in space and time. The parameter
θ ∈ (0, 1) is the local critical density and is called Allee threshold ; it determines the sign (positive
or negative) of the population growth (see Fig. 1(left)). The Allee effect, modelled by this reaction
term, expresses the fact that the population growth is negative when the density of the population
is lower than the Allee threshold θ, while, otherwise, when the density of the population is higher
than this threshold, the population tends to reach the carrying capacity.

Steady-states and traveling waves. System (1) has three constant (independent of the space
variable x) solutions: y ≡ 0 (stable, extinction), y ≡ θ (unstable), and y ≡ 1 (stable, carrying
capacity). When y tends to 0, we say that the population extinguishes, and when y tends to 1, we
way that population invades.

Of course the set of steady-state solutions is much richer as can be seen by a phase plane
analysis. But our analysis here will be mainly devoted to these constant steady-states since they
represent the simplest stable configurations in which all population reaches the same value, uni-
formly, independent of the space-variable x.

The system exhibits also traveling wave solutions of the form

y(t, x) = Y (x− ct)

linking two steady-states (most often the stable ones 0 and 1) with an invariant wave profile Y
and a constant wave speed c (see Fig. 1(right)). Of course, these solutions, depending only on one
space variable s = x− ct, can also be viewed as planar wave solutions in multi-D.

Figure 1: Reaction term f(y) (left); traveling wave (right).

Motivation of the model. This kind of model appears in many applications in chemistry,
mathematical biology and social sciences. It has been used to describe the propagation of an allele
in a population (see [4, 34]), to simulate the propagation of a voltage pulse through an animal
nerve axon (see [41, 55]) and to describe the propagation of chemical steady-states in chemical
reactions in a continuous stirred tank reactor (see [30, 49]). We refer to [54, 59] for applications
to biology. The model is also relevant in many applications in social behaviour studies. It may
be viewed as a diffusive version of the game theoretical and ODE models introduced in [42] for
minority languages.

Traveling wave solutions linking the two stable equilibria play an essential role in the dynamical
behaviour of these systems since they describe how, as time evolves, space domains that are
occupied by the configuration y ∼ 1 tend towards the other stable value y ∼ 0 or vice-versa.
Complementing [42] this phenomenon provides a simple explanation of how the interplay between
diffusion and nonlinearity contributes to the contraction of minority languages.
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System (1) is a macroscopic (or phenomenological) model for a group of living individuals,
in contrast to microscopic models for individual behaviours. In Section 2 we prove that (1) is
the mean field limit of a stochastic system of interacting particles in which the individuals of
the population are considered as active particles that behave according to some probabilistic laws.
Numerical simulations of this stochastic system show a wave-like propagation pattern corresponding
to traveling wave solutions of (1).

The Allee threshold as a control. The latter fact provides a second motivation to consider
optimal control problems for system (1) with the objective of driving it to an expected traveling
wave, the Allee threshold parameter θ being the control parameter. The choice of the parameter θ
as a control, making it time-dependent, is a natural one as a mean to use the Allee effect in order
to realize control objectives.

In order to understand the role that θ may play as an actuator, it is useful to exploit the
stability and asymptotic properties of the system for a given fixed value of θ. For example, when
the value of 0 < θ < 1 is time-independent, it is well known that extinction of population occurs if
the initial density is (uniformly in x) smaller than θ (it may even be larger than θ but only on a
small enough domain). It is also well known that population invasion occurs if the initial density
is larger than θ on a sufficiently large domain (see [4, 32]). Therefore, for a fixed initial datum,
choosing the appropriate value of a time-independent θ, one may change an invasion (or extinction)
dynamics into an extinction (or invasion) one. Of course, the time needed for these phenomena to
occur also depends on the specific value of the parameter θ. This is the first manifestation of the
role that θ may play as a control parameter.

The use of the dynamically changing value of the Allee parameter θ = θ(t) as a control or
actuator to modify the dynamics of the system is fully justified from a practical and applied
viewpoint as well. For instance, in [51], the authors refer to several ecological measures to control
the spread of the population by taking advantage of the Allee effect. On the one hand, the
sterile male technique and the mating disruption can be used to increase the Allee threshold θ.
The former has been successfully used to control the spread of the invading insect species such
as the Mediterranean fruit fly, the melon fly (Bactrocera cucurbitae), and the Mexican fruit fly
(Anastrepha ludens) (see [47]), and the latter has been used in the gypsy moth containment
program. On the other hand, the Allee threshold can be decreased by providing protection (like
efficient feeding, suppressing natural enemies) to the population.

Another method that has shown efficiency in the control of mosquito populations is the addition
of clusters of mosquitoes infected by Wolbachia, modeled with the aid of the Allee effect (see [8, 67]).
In [16] a scalar bistable reaction-diffusion model is derived and stabilised by means of a distributed
additive feedback law with compact support. This paper describes how the added and localised
population of infected mosquitoes may invade the whole space by taking advantage of the Allee
threshold effect. The control we employ in the present paper is however more subtle since it enters
through the Allee parameter and not as an additive source perturbing the dynamics.

The role that the Allee parameter plays as an actuator can also be justified from a micro-
perspective. In Section 2.3 we describe how the value of θ can be tuned by a more complex
interacting particle system describing the population evolution under the action of an applied
sterile male technique.

Driving the system to a traveling wave. Our goal is to mathematically and computationally
analyse these evidences that the dynamical shaping of the time-dependent Allee threshold θ = θ(t)
can lead to satisfactory control performances. We formulate the problem from the point of view
of optimal control, aiming to design the optimal actuator strategy θ = θ(t) in such a way that the
evolution of the state tracks an a priori given target trajectory. We focus on the particular case
where the target is a traveling wave solution. This is motivated by the fact that traveling waves
describe a dynamics in which the asymptotic behaviour in long time is known a priori. Being
able to drive the state close to some traveling wave solutions, thanks to their well known stability
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properties, we therefore guarantee that, locally in space, the state is driven close to the asymptotic
value of the traveling wave and more precisely to the stable steady-states attracting locally its
dynamics.

We prove a result of approximate controllability in large time showing that the solutions (for
a wide class of initial data) can be driven arbitrarily close to the traveling wave target if time is
large enough. This result is established using well known stability properties of traveling waves.
It is not addressed by means of the classical tools of controllability theory for parabolic equations
for two main reasons: the first one is that the control θ enters on the system as a coefficient in
the nonlinearity; the second one is that the control is only a scalar function θ(t) depending on
time and is not an applied force distributed in space as in most of the existing literature (see
[74]). However the precise understanding of the dynamical behaviour of the system allows building
piecewise constant control strategies ensuring approximate controllability in large time.

To be more precise, the optimal control problem that we address consists of designing a control
law θ(t), t ∈ [0, T ], such that the population density y approaches a desired distribution yd(x)
(corresponding to a traveling wave profile) at a given time T in a bounded domain Ω ⊂ R. Our
analytical results, however, need a control time T = T (ε) depending on the admissible distance ε
to the target.

One of the main differences of our work with respect to classical boundary or distributed
control (external forcing) problems (see [7, 24, 25, 65, 70]) is that we control the system by the
Allee parameter. The literature on control of PDEs when the control is a scalar parameter entering
in the system in a nonlinear way is rather limited. Significant results on this topic concern bilinear
controllability problems for Schrödinger, heat, and more general parabolic equations and can be
found in [9, 19, 23, 31] (see also references therein).

The approximate controllability result in large time above is limited in scope since, in practical
applications, the time horizon T for control is given a priori. It is therefore natural to consider the
problem from the point of view of optimisation. We also formulate the problem with this viewpoint
and we propose a direct computational method consisting of performing a minimisation procedure
on a discrete version of the problem where the state equation and the cost functional have been
discretised. The resulting minimisation problem is not convex and the minimiser fails to be unique
in general. The numerical controls that we find thus depend on the initialisation. As we shall see,
interestingly this method is however capable of recovering the piecewise control strategy that we
developed analytically.

Once the optimal control strategy has been found for the macroscopic model, either analytically
or computationally, the question arises of whether these controls are also efficient to control the
microscopic model and observe the desired “mean” behaviour of all individuals in the population.
Our numerical simulations confirm the adequacy of the control strategies at this level too.

Organization of the paper. The paper is structured as follows:

• In Section 2, we model and construct a system of particles interacting with probabilistic laws
and we show that its mean field limit is the macroscopic model (1). We provide numerical
evidence that the propagation of population for this microscopic system is naturally described
by wave-like solutions such as traveling waves. We introduce a more complex interacting
particle system (modelling population dynamics under sterile male techniques) to show that
the control parameter θ can indeed be tuned and manipulated.

• In Section 3, after having recalled some classical results on traveling wave solutions, we
formulate two optimal control problems. The first one, denoted by (P)opt, concerns system
(1) and consists of minimising the distance between the state of the system and an expected
“target” traveling solution. The second one, denoted by (P)SIRM , concerns the extended
system with sterile male techniques, aiming at eliminating the pest population by using the
least possible amount of sterile insects. This extended problem justifies the feasibility of
controlling the system by means of tuning adequately in time the Allee threshold.
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• In Section 4, we establish approximate controllability results in large time for (P)opt.

• In Section 5, we present numerical simulations for (P)opt and (P)SIRM .

• In Section 6 we provide numerical evidence that the deterministic control strategies obtained
for the macroscopic model still work when applied to the microscopic system of interacting
particles constructed in Section 2.

• In Section 7, we give some concluding remarks and propose some open problems.

2 The microscopic model

We show in this section that the macroscopic system (1) represents in some sense the dynamics of
a microscopic system for individual behaviors.

2.1 System of interacting particles

A system of interacting particles is a stochastic process with state space EZd

, where E is some
finite or countably infinite set and Zd is the integer space of dimension d. We call x ∈ Zd a
site, allowed to take values in the set of states E. By properly choosing the stochastic process,
the reaction-diffusion limit is obtained by scaling space and introducing fast stirring so that Zd is
scaled to εZd and the exchange between neighbouring sites occurs at rate 1/ε2.

As shown in [53], the macroscopic density viewed on a spatial scale of order ε−1 evolves ac-
cording to an autonomous nonlinear diffusion-reaction equation (1) with the reaction term f(y)
depending on the chosen process. For example the logistic reaction f(y) = y− y2 follows from the
so-called contact process (see [27, 28, 56, 57]). This process essentially assumes that individuals
die at a rate that is independent of the state of their neighbours, while births at vacant sites occur
at a rate proportional to the number of occupied neighbours. More complicated models such as
the classical prey-predator model and the chemotaxis model can also be derived in this way from
stochastic models (see [27, 64, 73]).

Intuitively a site x is like a “house” and a particle can be seen as an animal individual. A
house is either occupied or vacant meaning that there may be an animal living inside or not. The
stochastic process describes how these animals reproduce and die according to their environment
and exchanges occurring at a fast rate (of the order of 1/ε2 with ε small) between neighbouring
sites. This expresses that the motion of the animal individuals (visiting their neighbours) is more
frequent than their reproduction or dead rate.

Let us next construct this stochastic process in more detail in order to ultimately obtain the
model (1) by mean field limit.

We proceed as in [27]. Let ε > 0 be the scale parameter, let εZd be the set of spatial locations
and let E = {0, 1} be the set of states. Each site of εZ can be either vacant (i.e., at state 0), or

occupied (i.e., at state 1). The system is then described at time t by the configuration ζt ∈ {0, 1}εZ
d

.
We say that x1 and x2 ∈ εZd are neighbors if ‖x1−x2‖ = ε. Here and in the sequel ‖ · ‖ stands

for the Euclidean norm. We denote by ni(x, ζ) the number of neighbours of site x at state i ∈ E.
We assume that with the given configuration ζ, the site x ∈ εZ flips to state i at rate ci(x, ζ), with

c1(x, ζ) = r
n1(n1 − 1)

N(N − 1)
, if ζ(x) = 0, n1(x, ζ) > 2,

c0(x, ζ) = r
θ

N
n0(x, ζ), if ζ(x) = 1,

(2)

where N is the number of neighbors of a site. For example, when d = 2 (resp., d = 1), each site
has four neighbors, i.e., N = 4 (resp., N = 2). In this stochastic process :

5



• c1, the birth rate of an individual, is proportional to the number of neighbours occupied. For
a new birth to occur there must be at least two neighbors occupied. When the neighbors are
all occupied then at a maximum rate r there will be a new birth to occupy the site x.

• c0, the death rate, is proportional to n0(x, ζ). The more empty neighbours x has, the higher
the rate of death is (becoming 0) at the site x. When the neighbours are all empty then at
a maximum rate rθ the individual at site x will die.

These rules are consistent with the macroscopic Allee phenomenon: when an individual lives with
enough other individuals it has more chances to reproduce; otherwise it has more chances to die.
This actually happens to certain (especially social) animals.

Taking into account that the exchange between neighbouring sites is at rate of the order of
1/ε2 (fast stirring) and according to [27, Theorem 8.1] (based on the mean field limit theorem of
[53]), we obtain that the limiting equation is (1).

Theorem 1. Assume that the processes ζε0(x) (x ∈ Zd) are independent. Let yε(t, x) = P (ζt(x) =
1) be the probability for ζt to be of state 1 at site x. Assume that g(x) = limε→0 y

ε(0, x) is
continuous. Then yε(t, x) converges as ε → 0 to the bounded solution y(t, x) of (1) with initial
datum y(0, x) = g(x).

Another important approach to derive complex macroscopic models with diffusion from micro-
scopic ones is to start from the kinetic transport (Boltzmann-type) equations (see [10, 13, 15, 18,
40, 58]). In biology, this approach is especially useful for describing the motion of numerous indi-
viduals in chemotaxis (see [22, 33]), crowd dynamics (see [11, 26]), opinion modeling (see [1, 6]). In
our model (1), we do not consider crowd motions and thus we will not discuss further this method.
However, the kinetic transport approach can surely help when one expects to deal with populations
who can make decisions on their moving behaviour depending on environmental factors. This is a
subject that would deserves further study in the context of modelling multilingualism (see [42]).

2.2 Numerical simulations

We use a Markov method (see [73]) to simulate the evolution of the population distribution ac-
cording to the stochastic process (2). We observe that wave-like solutions emerge: traveling waves
in 1D and radial waves in 2D.

x
1

x
2

 

 

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
1

x
2

 

 

−15 −10 −5 0 5 10 15

−15

−10

−5

0

5

10

15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Evolution of the number of the population individuals: initial configuration (left); con-
figuration at time t = 15 (right).

When d = 2 (i.e., x ∈ Z2), the obtained population distribution is given in Fig. 2. Here we
have set r = 1, θ = 0.1, with initial configuration on a subset [−200, 200]2 of Z2 as shown in Fig.
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2 (left) with ε = 0.08. Note that [−200, 200]2 means that there are 4002 “houses” and thus the
same maximum number of individuals. We can see in Fig. 2 (right) that the number of individuals
increases with time and the observed propagation is somehow symmetric and wave-like.

The stochastic model is closer to the intrinsic complexity of the population dynamics but a
high computational effort is required, difficult to be parallelised (see [27, 26]). Thus a macroscopic
model (also referred to as phenomenological) describing the behavior of the average density of
the population is generally preferable to address analytical and optimization or control issues (see
[12, 20, 38, 72]).

In the next example, we show that the macroscopic model provides a good approximation of the
complex stochastic dynamics. Let d = 1 (i.e., x ∈ Z), Z = [−500, 500], and ε = 0.05 and we run the

simulation M = 100 times. We take the “mean” population distribution ȳ(T, x) = 1
M

∑M
1 yi(T, x),

where yi is the distribution obtained during the i-th simulation. A comparison between this mean
solution and the solution of the macroscopic model (1) is given in Fig. 3. The red and green lines
represent mean population distributions of model (2) at initial time 0 and at final time T , while the
green and blue lines are computed according to the explicit traveling wave solution (6) and (7) for
the macroscopic model (1) (see next section). This simulation shows that the averaged behaviour
of living individuals (particles) is consistent with the solution of the deterministic model (see Fig.
2).
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Figure 3: Comparison of solutions obtained from macroscopic and stochastic (microscopic) models.

2.3 Extension: a stochastic sterile male model

We briefly present in this section a stochastic sterile male model showing that the Allee threshold
parameter θ can be modified and tuned to play the role of a control/actuator.

As mentioned in the introduction, the Allee threshold θ can be modified by human interaction,
such as sterile insect release method (SIRM). This justifies to consider it as a control parameter.
The SIRM is known to be non-pulling and effective in many situations but rather expensive due to
the need of feeding numerous sterile males (see [51, 43, 48, 68] for other models and applications
of SIRM). In this section we construct a more complex microscopic model that describes the
population evolution while considering the effect of the SIRM. We will see that the Allee threshold
θ can actually be modified by a second equation.

Let us first introduce the corresponding averaged macroscopic model. We do it in 2D although
a similar construction can be done in 1D as well. Let y1(t,x) ∈ R and y2(t,x) ∈ R be respectively
densities of normal and sterile couples (a female and a male) at time t ∈ R+ at position x =
(x1, x2)> ∈ R2, r > 0 be the birth rate of y1, let θ ∈ (0, 1) be the Allee threshold of y1, and
let u > 0 is the transformation rate from y1 to y2. Note that the released sterile males “steal”
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the females in normal couples and thus transforms a normal couple into a sterile one. Denoting
y = (y1, y2)>, the macroscopic model is

∂

∂t
y −4y = F (y) (3)

with reaction term F = (f1, f2)> with f1 = ry1(1 − y)(y − θ) − uy1 and f2 = uy1 − rθy2(1 − y)
where y = y1 +y2 is the total population density. Note that the total population density y satisfies

∂

∂t
y −∆y = ry(1− y)(y − (θ + y2)) (4)

which indicates that the density of sterile population y2 can increase the Allee threshold (θ + y2)
for the total insect density y.

Using the method explained in Section 2.1, a microscopic model leading to (1) can be built as
well as follows. Let εZd be the set of spatial locations and {0, 1, 2} be the set of states: 0 means
that the site is vacant; 1 means that the site is occupied by a normal couple; 2 means that the
site is occupied by a sterile couple. Each site of εZd can be at these three possible states, 0, or 1,

or 2. The system is described at time t by the configuration ζt ∈ {0, 1, 2}εZ
d

. Recall that x1 and
x2 ∈ εZd are neighbours if ‖x1 − x2‖ = ε, and ni(x, ζ) is the number of neighbours of site x at
state i ∈ {0, 1, 2}. We assume that with the given configuration ζ, site x ∈ εZd flips to state i at
rate ci(x, ζ) with

c1(x, ζ) = r
n1(n1 − 1) + n1n2

N(N − 1)
, if ζ(x) = 0, n1(x, ζ) > 1, n1(x, ζ) + n2(x, ζ) > 2,

c2(x, ζ) = u, if ζ(x) = 1,

c0(x, ζ) =

{
r θN n0(x, ζ) + u if ζ(x) = 1,

r θN n0(x, ζ) if ζ(x) = 2,

(5)

where N is the number of neighbours of a site. The diffusion term comes from the fast exchange
between neighbouring sites and the reaction one from the reproduction and death given by (5). In
the stochastic model (5):

• c1, the birth rate of the normal couple, is proportional to the number of neighbors occupied.
For having a new birth there must be at least two neighbours occupied (normal or sterile)
and there must be at least one normal couple in the neighbours. When the neighbours are all
occupied by normal individuals, there will be a new birth to occupy the site x at a maximum
rate r.

• c2 is the “birth” rate of the sterile couple: at rate u, a normal couple transforms to a sterile
one. When sterile males are related in the field they would be able to “steal” with some
probability the females of normal couples and thus transform normal couples to sterile ones.
Moreover, c2 also indicates that the sterile males are introduced only when there are still
normal ones.

• c0 is the death rate of the insects. Note that the death rates of normal and sterile couples
are the same except for the additive term u. The term proportional to n0(x, ζ) means that
the more empty neighbours x has, the higher is the rate of death.

The rules describing (2) are consistent with the Allee effect: when a normal couple lives there
with sufficient other ones, it has more chances to reproduce, otherwise, it has more chances to die.
When the neighbours are all empty, then at a maximum rate rθ, the insect at site x will die.

According to [27, Theorem 8.1] the limiting equation is (3).
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Theorem 2. Assume that the processes ζε0(x) (x ∈ Zd) are independent. Let yεi (t, x) = P (ζt(x) =
i) for i = 1, 2 be the probability for ζt to be of state i at site x. Assume that gi(x) = limε→0 y

ε
i (0, x)

is continuous. Then yεi (t, x) converges as ε → 0 to the bounded solution yi(t, x) of (3) such that
yi(0, x) = gi(x), i = 1, 2.

System (4) is an example in which the Allee threshold θ (the control parameter for the macro-
scopic model (1)) can be tuned. As in Section 2.2, we observe on numerical simulations the
occurrence of wave solutions (radial waves in 2D and traveling waves in 1D).

The rest of this paper is devoted to the control of the macroscopic model (1) in 1D. We will
then apply the controls obtained in the macroscopic model (1) to the stochastic process to show its
good performance. Although the techniques of this paper could also be applied in multi-D, the 1D
case allows for a more precise comparison between microscopic and macroscopic models. Before
addressing the control problems, in the next section we recall some basic results on traveling waves.

3 Macroscopic optimal control problems

3.1 Several reminders on traveling waves

There is an extensive literature on well-posedness and asymptotic behaviour of traveling waves
(see [3, 4, 32]). Concerning the well-posedness of (1), it is well known that if the initial data y0 is
piecewise continuous and if 0 6 y0(x) 6 1 for all x ∈ R then there exists a unique bounded classical
solution y(t, x) of (1), satisfying 0 6 y(t, x) 6 1 for all (t, x) ∈ [0,+∞) × R. For the system (1)
with r > 0 and θ ∈ (0, 1), the steady-states y = 0 and y = 1 are stable while the steady-state y = θ
is unstable. Any traveling wave solution of (1) takes the form y(t, x) = Y (x − ct) where c (wave
speed) is a real number and Y is the wave profile. We denote by s = x− ct the moving coordinate.
Without loss of generality, we focus on waves satisfying the auxiliary conditions Y (s) ∈ [0, 1],
Y (s) 6≡ 0, and

Y (s)
s→−∞−−−−−→ y−, Y (s)

s→+∞−−−−−→ y+,

where y− and y+ are finite limits taking values in three constant solutions of (1), i.e., 0, θ and 1
that are the three roots of the reaction term f . To fix ideas we set y− = 0 and y+ = 1. Similarly,
replacing x by −x, one could also consider the reverse situation y− = 1 and y+ = 0.

The unstable steady-state θ is not considered here as one of the possible asymptotic state of
the traveling wave profiles since the system behaviour of a stochastic model around an unstable
point is not reproduced by the macroscopic model. Explicit traveling wave solutions of system (1)
are known (see [46, pp. 270–274]) and are given by the profile

y(x− ct) = Y (s) =
e−
√
r/2(s−s0)

1 + e−
√
r/2(s−s0)

(6)

where s0 is the constant determining the initial position (at t = 0) of the traveling wave. It is
important to observe that the profile Y of the traveling wave is independent of the value of θ while
its velocity of propagation is given by

c(θ) =
√
r/2(1− 2θ). (7)

The sign of c(θ) and, accordingly, the direction of propagation of the traveling front, depends on
whether θ < 1/2 (resp. θ > 1/2), in which case c > 0 (resp., c < 0). When θ → 1/2 the velocity
c(θ)→ 0 and |c(θ)| converges to its maximal value =

√
r/2 when θ → 0 or 1.

Remark 1 (Sign of the wave speed). The sign of the velocity of propagation depends on whether

θ < 1/2 or θ > 1/2. In general the sign of c is determined by F (1) =
∫ 1

0
f(z) dz where f is the

reaction term in (1). Indeed the profile Y of a traveling wave is solution of −Y ′′ − cY ′ = f(Y ).
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Multiplying it by the derivative of the profile Y ′(s) (where Y is assumed to satisfy Y− = 0 and
Y+ = 1) and integrating by parts over R, we obtain −c

∫∞
−∞ |Y

′(s)|2ds = F (1), hence the wave

speed c has an opposite sign with respect to F (1) =
∫ 1

0
f(z)dz, in agreement with the previous

observation. This fact allows one to determine the asymptotic value of the solutions in compact
sets of x as t→∞: we obtain 0 when c > 0 and 1 when c < 0. This observation has been used to
develop the asymptotic behaviour of the solutions and the numerical methods in [5].

3.2 Control to a traveling wave profile

The birth rate r (positive) of the system is assumed to be known. Without loss of generality, we
assume that r = 1 (up to scaling). We now formulate a control problem for (1). Taking a traveling
wave solution as a target, i.e., defining the desired target yd(x) as the value at same time t = τ
of one of the traveling wave solutions above, and given the initial datum y0 of the system, our
goal is to determine a control law θ(t) over some time horizon [0, T ] (with T < +∞) such that
the solution y of (1) approaches the target yd at time T . Recall that traveling waves are chosen
as a target because they describe the dynamics of the interaction particle system (see Section 2)
and that they eventually lead to one of the stable steady-states in compact sets as time tends to
infinity. The problem can be formulated in various ways:

1. Exact controllability: find T > 0 and a control strategy θ(·) over [0, T ] such that the corre-
sponding solution satisfies y(T ) ≡ yd.

2. Approximate controllability: given any ε > 0, find T (ε) (possibly large) and a control strategy
θ(·) over [0, T (ε)] such that the corresponding solution y(T (ε)) at final time is to an ε distance
of the target yd in L∞(R) norm. This question can also be addressed by trying to keep the
time horizon T (ε) uniform, independent of ε.

3. Optimal control: a minimisation problem penalising the distance between the state and
target.

Exact controllability is an open problem. Here we will establish a result of approximate con-
trollability in large time ensuring that the property above holds for a wide class of initial data.
This is anyway at the price that T (ε) tends to infinity as ε → 0. The problem of approximate
controllability with a uniform time independent of ε is also open. Consequently we shall mainly
consider the problem within an optimal control perspective.

3.3 Optimal control problem (P)opt

We fix a control time horizon T and an open subset Ω of R. The region Q = [0, T ]× Ω is the one
in which we aim at controlling the system. We consider as a target the traveling wave profile yd
corresponding to some of the traveling waves above, i. e., corresponding to some specific choice
of the velocity parameter c and t = τ (yd(x) = Y (x − cτ)). For computational purposes the
computational domain needs to be finite. We restrict the PDE to Q and we complement it with
homogeneous Neumann conditions. We aim to design optimal controls θ(t) ∈ [0, 1] over t ∈ [0, T ]
such that the solution of (1) (with (t, x) ∈ Q and homogeneous Neumann boundary conditions)
starting at a prescribed initial state y(0, x) = y0(x), y0(x) ∈ [0, 1], x ∈ Ω, is at final time as close
as possible to the target state yd(·). The approximate controllability result we will establish shows
that this can be done if T is large enough. For practical purposes we are interested in assuring
an optimal choice of the control even when T is not large enough. This is why an optimal control
strategy is suitable. We consider the optimal control problem (P)opt consisting of minimising the
functional

J (θ) = ‖y(T, ·; θ)− yd‖2L2(Ω) =

∫
Ω

|y(T, x; θ)− yd(x)|2 dx
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over the set Uad of admissible controls θ ∈ L∞(0, T ) satisfying 0 6 θ(t) 6 1 for almost every
t ∈ [0, T ]. The extremal value θ = 0 means that there is no Allee effect and θ = 1 means that the
population decreases for every y ∈ [0, 1]. When θ = 0 (resp., θ = 1), the so-called Hair trigger
effect occurs (see [3, 4]), meaning that the state y = 0 (resp., y = 1) is unstable with respect to any
positive perturbation, something that may occur under strong human interventions, for instance.

Existence of an optimal control is obvious because of the continuous dependence of solutions of
the PDE in C([0, T ], L2(Ω)) with respect to L∞(0, T ) weak-star convergence of controls. Unique-
ness cannot be guaranteed because of the lack of convexity of the functional, due to the nonlinear
nature of the PDE under consideration.

Remark 2. As a variant, we could consider the minimisation of J = ‖y−yd‖2Q, aiming to “track”
a traveling wave solution yd(t, x) = Y (x − ct) on Q over the time interval [0, T ]. However, we
formulate here the problem from a controllability point of view, aiming to drive the state to the
expected traveling wave at time T without taking care of the values of the state y(t, x) for t 6 T .

Computational methods. Several methods can be implemented to compute an optimal so-
lution (ȳ, θ̄) of (P)opt, including direct or indirect methods. Direct approaches consist of dis-
cretizing the optimal control problem to reduce it to a nonlinear programming (NP) problem
and then of solving the resulting NP problem by choosing an adequate minimization method (see
[14, 36, 62, 69]). The advantage of direct methods is that they are easy to implement and they
allow to easily include several additional restrictions (such as piecewise constant controls with
a given number of pieces, as we shall do here). Direct methods are however computationally
expensive and, although they actually suffice to handle 1D problems, gradient-like methods are
preferable in multi-D. In the indirect formulation, we start from the fact that the optimal control
θ̄ is characterised by the following variational inequality (in weak formulation, see [52, 70])

J ′(θ̄) · (v − θ̄) =

∫ ∫
Q

p̄(t, x)∂θf(ȳ, θ̄) · (v − θ̄) dx dt > 0, v ∈ Uad, (8)

and the gradient of the cost functional can be computed with the adjoint system

∂tp(t, x) + ∂xxp+ p ∂yf(ȳ, θ̄) = 0, (t, x) ∈ Q,
∂xp(·, x) = 0, x ∈ ∂Ω,

p(T, x) = 2(ȳ(T, x)− yd), x ∈ Ω.

(9)

The optimality system consists of the state equation (1), of the adjoint equation (9) and of the
optimality condition (8). It can alternatively be obtained by applying the Pontryagin Maximum
Principle (see [61]). To solve numerically the optimality system explicitly one may use iterative
descent (gradient-type) methods (see [17]). The descent direction dk at step k is chosen such that
J ′(θk) · dk 6 0 and θk ∈ Uad.

3.4 Extended optimal control problem (P)SIRM

As mentioned in Section 2.3, it is interesting to consider the optimal control problem for (3) in
which the Allee threshold is controlled indirectly by a second equation. We consider u to be the
control of the system, the value of θ and r being fixed. Even if θ is fixed in (2.3), the effective
value of the Allee threshold for the total population y = y1 + y2 in (4) is θ+ y2, so that the action
of the control u on (3) affects the Allee threshold similarly as the control θ for the scalar system
considered in the previous section does. According to the stochastic model (5), u is the “birth”
rate of the sterile couple: at rate u, a normal couple transforms to a sterile one. Moreover, it is
natural to assume that u = u(t) is time-dependent because it can be tuned by human interactions
(such as changing the release rate of sterile males).
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Fix a final time T and a bounded open subset Ω of R2. Let Q = Ω × [0, T ]. We consider the
following optimal problem (P)SIRM consisting of minimizing the functional

J (u) =
1

2

∫∫
Q

y(t,x)2 dx dt+
1

2
K

∫ T

0

|u(t)|2 dt (10)

where K > 0 is a positive number and y stands for the solution of (3) satisfying a given the initial
condition y(0,x) = y0 = (y10, y20)>, x ∈ Ω, and homogeneous Neumann-boundary conditions,
over the class Uad of all possible controls satisfying 0 6 u(t) 6 umax for almost every t ∈ [0, T ], for
some umax > 0. Recall that y = y1 + y2 represents the total density of the population. The cost
functional (10) is motivated by the fact that we aim at using the sterile male release method to
eradicate the pest population. By doing so, we search for attaining the objective by releasing as
less sterile males as possible (since it is very expensive to rise numerous sterile males). Both terms
in the functional aim at minimising the total population density and the total number of sterile
males released.

The existence of an optimal control for this problem is as well obvious but uniqueness may fail
because of the lack of convexity of the functional (see [7, 63]). The optimal control ū must satisfy
(see [21, 63, 70])

ū(t) = min

(
max

(
0,− 1

K

∫
Ω

p>
∂F (y, u)

∂u
dx

)
, umax

)
(11)

where p = (p1, p2)> is the adjoint state which solves the adjoint system

∂

∂t
p +4p +

(
∂F

∂y

)>
p + y = 0 (12)

with homogeneous Neumann-boundary conditions and terminal condition p(T,x) = (0, 0)> for
every x ∈ ∂Ω. These key facts play a role when implementing descent algorithms for the numerical
approximation of the minimisers of (P)SIRM , requiring in particular to solve (1) forward and
(12) backward in time but keeping (11). Several acceleration methods can also be implemented,
combining numerical grids, first solving the problem with a less precise time-space discretization,
to later do it in a finer time-space mesh while using the obtained less precise solution. The

term 1
2K

∫ T
0
|u(t)|2 dt in (10) of the cost functional in (P)SIRM can be viewed as a Tikhonov

regularisation term (see [60]), enhancing (but not guaranteeing) convexity of the cost functional
and, in view of the possible non-uniqueness of the critical points, it may help at varying the local
minimum achieved by means of the descent algorithm (see [29]).

4 Approximate controllability in large time

This section is devoted to establish approximate controllability properties in large time, exploiting
the well known asymptotic stability properties of the reaction-diffusion system under consideration.
We first do it when the target is a traveling wave to later consider the case where the target is the
superposition of two traveling fronts propagation in opposite directions.

4.1 Control to a traveling wave target

Let r > 0 be arbitrarily fixed.

Proposition 1. Let the target yd of the control problem be the profile Y of the traveling wave
solution (6) with center at s0 = xd. Assume that the initial data y0 satisfies

lim
x→−∞

sup y0(x) < lim
x→+∞

inf y0(x). (13)
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Then, for every ε > 0 there exist T (ε) > 0 (large enough) and infinitely many piecewise constant
control strategies steering the system (1) from y0 to a ε- neighborhood (in L∞(R) norm) of yd
in time T (ε) (approximate controllability in large time). Moreover, if y0 is a translation of the
traveling wave profile (6) then the target yd can be reached exactly (exact controllability in large
time).

Proof. We proceed in several steps.

Step 1. Asymptotic behaviour with constant control u(t) ≡ θ.
The following uniform convergence result, which is a consequence of [32, Theorem 3.1] (which
applies to a wider class of nonlinearities than the cubic bistable one considered here) will be useful.

Lemma 1. ([32]) If the initial datum y0 satisfies y0(x) ∈ [0, 1] for every x ∈ R and satisfies the
condition (13) and thus

lim inf
x→+∞

y0(x) > θ, lim sup
x→−∞

y0(x) < θ (14)

for some 0 < θ < 1, then, for some x1 ∈ R, the solution of

yt − yxx = ry(1− y)(θ − y), x ∈ R, t > 0,

y(0, ·) = y0

(15)

approaches a unique traveling wave Y (x − ct − x1) uniformly in x and exponentially in time for
c = c(θ) as in (7), i.e., for some positive constants K and γ, the solution y of (1) satisfies

‖y(t, x)− Y (x− ct− x1)‖L∞(R) < Ke−γt.

This result shows that by taking the constant control u(t) ≡ θ,with θ satisfying (14), the state
converges as t → ∞ to a translation of the traveling wave profile and thus is close to it within a
large enough horizon of time: whatever ε > 0 is, for T (ε) large enough, the solution is at ε-distance
of a translation of the traveling wave profile. Note however that the actual location cT (ε) + x1 of
the center of the target profile and, in particular, the translation factor x1 depends on the nature of
the initial datum. Observe also that the time needed in this first step T (ε) depends logarithmically
on ε:

T (ε) ∼ log(ε/K). (16)

Step 2. Adjustment of the center of the traveling wave profile.
Once at time t = T (ε) at which the solution y is at ε-distance of the traveling wave profile translated
to s = cT (ε) + x1, noting that the target is the same profile but translated to s = xd, and in view
of the fact that the profiles of the traveling waves are all the same for all values of θ and that
only their velocity of propagation changes as a function of θ, it is natural to control the system
by “pushing” the profile from the center s = cT (ε) + x1 to s = xd. Of course, in the unlikely
case where cT (ε) + x1 = xd this second step is not necessary. But otherwise, by taking a constant
control u(t) ≡ θ′ with a convenient choice of the sign of θ′ − 1/2, depending on whether xd is to
the left or to the right of cT (ε) +x1, in view of the velocity of propagation formula (7), in the time
interval t ∈ [T (ε), T (ε) + τ(θ′)] with τ(θ′) = |cT (ε) +x1−xd|/c(θ′), the traveling wave with center
at s = cT (ε) + x1 at time T (ε) and with control u ≡ θ′ moves to the one with center in s = xd in
time T (ε) + τ(θ′).

This very simple argument shows that the traveling wave that at time T (ε) was close to the
actual solution and gets exactly to the target traveling wave profile. But we need however to
analyze what is the evolution of the actual solution of the state departing from y(T (ε), x) in time
t = T (ε) and with control u ≡ θ′ in time t ∈ [T (ε), T (ε) + τ(θ′)].

At this point it is convenient to observe how the velocity of propagation of the traveling wave
depends on the value of the parameter θ. When θ → 1/2 the velocity tends to zero. At the
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contrary, when θ tends to the extremal values 0 or 1, the velocity is maximised wit absolute value
c =
√
r/2. It is then convenient choose θ′ near these extremal velocities so that the length of the

second time interval is kept as small as possible. Note however that, in view of (16), the length of
this second time interval is of the order of τ(θ′) ∼ log(ε/K)/γ as well.

The control in this second step has been chosen to ensure the exact transport of the center
of gravity of the traveling wave. Let us now explain how it affects the actual solution. Using a
Gronwall type estimate and taking into account that the nonlinearity of the system with u ≡ θ′

is globally Lipschitz, it is not difficult to see that the distance between the actual state and the
traveling wave profile at time t = T (ε), which is ∼ ε, is amplified by a factor of the order of
C1 exp(C2τ(θ′)) ∼ C1 exp(C2 log(ε/K)/γ) ∼ C ′ independent of ε. In other words we have

‖y(T (ε) + τ(θ′))− yd‖L∞(R) 6 C ′ε. (17)

Step 3. Conclusion.
This argument applied with ε′ = ε/C ′ completes the proof, ensuring that the final distance (17)
is less than ε. Of course when the initial datum y0 coincides with a translation of the traveling
wave profile the first step of the proof is not needed and the second one ensures that the solution
reaches exactly the target in finite time.

Remark 3. We have established approximate controllability in large time with piecewise constant
controls consisting of two pieces. As shown above the choice of controls of this form is not unique
since the values of θ and θ′ are not uniquely determined. But in the second step we could choose
a more complex control made of several constant pieces, for different values of θ′, the essential
criterion being to move the center of the traveling wave profile from cT (ε) + x1 to xd.

4.2 Control to a pair of opposing traveling fronts

Control objectives can be addressed for more general targets yd that are for instance the superpo-
sition of a pair of opposing traveling waves:

yd(x) =
e
√
r/2(x−x−d )

1 + e
√
r/2(x−x−d )

+
e
√
r/2(−x−x+

d )

1 + e
√
r/2(−x−x+

d )
− 1 (18)

with prescribed values of x−d and x+
d . In this case the target function is not the trace at some

given time t of a solution since the superposition of two traveling waves is not solution of (1). The
following result is a consequence of [32, Theorem 3.2].

Lemma 2. ([32]) Assume that θ < 1/2 and that the initial datum y0 satisfies 0 6 y0(x) 6 1 for
every x ∈ R and

lim inf
|x|→+∞

y0(x) < θ, y0(x) > θ + η for |x| < M,

for some positive real numbers η and M . If M (which depends on η and θ) is large enough then
there exist x− ∈ R, x+ ∈ R, K > 0 and β > 0 such that the solution of (15) develops (uniformly
in x) into a pair of diverging traveling fronts Y (x− c(θ)t− x−) + Y (−x− c(θ)t− x+)− 1, i.e.,

|y(t, x)− Y (x− c(θ)t− x−)| < Ke−βt, x < 0,

|y(t, x)− Y (−x− c(θ)t− x+)| < Ke−βt, x > 0.

This result means that the x-interval on which the solution is close to 1 is elongating in both
directions with speed c(θ). This guarantees in particular that when y0 is the characteristic function
of a large enough interval the solution develops the structure of two propagating fronts so that
eventually the solution tends to the steady-state y = 1 as t → +∞. When θ > 1/2 a similar
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phenomenon occurs by exchanging the roles of the two stable equilibria 0 and 1. When y0 is even
with respect to some x0 the solution y(t, ·) is even as well with respect to x0 for every t > 0.

It is anyway not as simple as in the previous section to regulate the actual location of the
two fronts by means of piecewise constant controls to achieve approximate controllability in large
time. This problem is open from an analytical viewpoint. For this reason the use of computational
methods is particularly suitable in this context.

5 Numerical simulations

In this section we solve numerically the optimal control problems introduced previously. We have
seen that traveling wave solutions play an important role in the dynamics of the models and that,
in some particular cases, piecewise constant controls may suffice to control the system arbitrarily
close to such profiles in large time. We are going to perform numerical simulations for given time
horizons that are not necessarily large.

5.1 The one-dimensional case

Recall that direct methods of optimal control consist of first discretising the problem to reduce
it to a finite-dimensional nonlinear programming (NP) problem, to be then solved by some nu-
merical optimisation technique. We discretise the dynamics with spatial finite differences and a
second-order implicit Crank-Nicolson scheme in time, which is unconditionally stable (see [66]).
The control could be discretised according to the same time-grid but this would increase in an
unnecessary way the computational cost in the implementation of the optimisation method, taking
into account that, in practice, we seek controls that are piecewise constant with only a few pieces.

There are many available methods for solving NP problems. We use here the modeling language
and automatic differentiation software AMPL (see [37]) combined with the interior point optimisation
routine IpOpt (see [69, 71]).

Our objective is to minimize the functional

J (θ̄) = ‖y(T, ·)− yd‖2L2(Ω)

with Ω = (−L,L) for some L > 0. Numerical results are provided in two different cases. In Case
A we investigate problems where the initial data y0 is a characteristic function and the expected
target yd is a pair of diverging traveling waves and the time-horizon is large enough. In Case B we
analyse the same problem when the time horizon T is not too large, in which case the analytical
results of the previous section, based on the asymptotic stability properties of the system may not
apply. Note that the time being short or large depends actually on the nature the initial datum
as compared to that of the target since, as our analysis above shows, the effect of the control
parameter θ allows only to enhance propagation properties up to an upper limit.

Case A: large time. We set T = 30. Assume that the expected wave yd is the pair of traveling
waves given by (18) with r = 1, x−d = −x+

d = −14.2426 and L = 30. We take

y0(x) =

{
θ0 − 0.01, x ∈ [−5, 5],

0, otherwise,
(19)

with θ0 = 0.7 (see the shape of y0 on Fig. 4, in the middle, with black dotted solid line).
Applying our numerical method with N = 1 (so that the control is a constant function) and

initialising the problem with the control 0.275, we obtain the constant control

θ̄ ≡ 0.2513, (20)

with the corresponding cost J (θ̄) = 2.3587× 10−4.
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When N = 2, i.e., allowing the control to be made of two constant pieces, we obtain

θ̄(t) = 0.2177, for t ∈ [0, t1), θ̄(t) = 0.2813, for t ∈ [t1, T ], (21)

with t1 = 14.6999 and the corresponding cost J (θ̄) = 2.3573× 10−4. The solutions corresponding
to N = 2 of the controlled and the uncontrolled system can be observed on Fig. 4. The sub-figure
in the middle shows that the final state y(T, x) is very close to the expected wave yd in Ω. The state
y develops first to y(t1, x), x ∈ Ω (green line), which takes the form of a pair of diverging traveling
waves, to later move to the expected yd. As the simulation of the solution of the problem with
θ = θ0 shows (see the right sub-figure of Fig. 4), extinction occurs if the system is not controlled
due to the threshold effect. The computed control, accordingly, allows avoiding efficiently the
extinction phenomenon and to control the system towards the chosen target. Even if the time
horizon is not large enough to apply the approximate controllability results in large time of the
previous section, the computational results show the feasibility of the piecewise constant strategy.

Figure 4: Left and middle: state evolution of the controlled (N = 2) system. Right: state evolution
of the uncontrolled system.

Case B: short time. We set again T = 30 but we adjust x0, x+
d , and x−d so that the expected

wave yd is far enough from the initial data y0. We observe two different situations.
The first situation is shown on Fig. 5. Here we have set x−d = −x+

d = −24.2426, which makes
yd (red solid line) “far” from the initial data y0 (black dashed line). The problem is solved on
Ω = (−50, 50). The optimal controls obtained by setting N = 1 and N = 2 are the same : θ̄ ≡ 0.
The corresponding cost is J (θ̄) = 0.1369.

Recall that when θ = 0 (or θ = 1), the wave has its maximal speed according to (7). This means
that the optimal control strategy consists of pushing the system solution towards the expected wave
yd with a maximal speed.

The second situation is shown on Fig. 6. Here we have changed the initial data to be y(x) =
θ0 − 0.01 for |x| 6 40 and y(x) = 0 for the rest. Applying the numerical method with N = 2, we
obtain

θ̄(t) = 0.6925, for t ∈ [0, t1), θ̄(t) = 0.6171, for t ∈ [t1, T ],

with t1 = 15 and the corresponding cost J (θ̄) = 0.1386. In contrast to the solution on Fig. 5, the
final state y(T, x) on Fig. 6 is not a translation of the expected wave yd.

We see on Fig. 5 that the state converges first to a translation of the expected wave and then
moves as rapidly as possible towards the expected wave. This is consistent with our intuition and
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Figure 5: Left and middle: state evolution of the controlled system. Right: state evolution of the
uncontrolled system.

Figure 6: Left and middle: state evolution of the controlled system (the green line in the middle
sub-figure represents a final state y(T, x) associated to a non-optimal control θ). Right: state y of
uncontrolled system.

with the controls that we have constructed (when the final time T is large enough): first “wait”
that the state has developed into a translation of the traveling wave and then “push” it towards
the expected wave. However, the solution we observe on Fig. 6 is rather against this intuition:
it has made a compromise between “shape” and “position”. Actually if we apply our intuitive
control strategy to the system (letting θ(t) = 0 for t ∈ [0, 5] and θ(t) = 1 for t ∈ (5, tf ]), we get
the final state y(T, x) (plotted by the green dashed line in the middle sub-figure of Fig. 6) which
is quite far from yd (plotted by red line). The corresponding cost is J (θ) = 1.6140, which shows
clearly that this strategy is not better than the one derived by the algorithm.

Note that it is the propagation direction that makes these two situations different. In fact,
the value θ = 0, which helps the state y to converge to a translation of the expected wave, makes
the state 1 to invade the space. In the first situation (Fig. 5), the state y develops into a pair of
diverging traveling waves quickly and then continues to propagate outwardly with θ = 0. However,
in the second situation (Fig. 6), the state has to change the propagation direction after converging
to a pair of diverging traveling waves, because to get closer to yd, it is the state 0 instead of the
state 1 that should propagate. Therefore, the intuitive control strategy actually makes the state y
to firstly get further to yd, and hence it may be not better than a control strategy that makes a
compromise between loss of shape and loss of position.
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5.2 Two-dimensional case

Now let us solve numerically the extension problem (P)SIRM formulated in Section 3.4. We do
it using a gradient algorithms who is more suitable in 2D when dealing with more complicated
dynamics and patterns. We show by a numerical example that the Allee threshold θ can be
controlled concretely in practice and that the Allee effect can indeed be used to reach our control
objective.

Uncontrolled system solution. We set Ω = [−15, 15]2 ⊂ R2. We take the birth rate r = 1
and the Allee effect θ = 0.1, and

y0(x) = (1, 0)>, if |xi| 6 2, i = 1, 2

and y0(x) = (0, 0)> for other points x in Ω. Then, by numerically integrating the uncontrolled
system, we obtain the solution shown on Fig 7. Without control, i.e., u ≡ 0, the density y1

converges to 1 in the whole domain by means of a radial wave solution. It is therefore natural to
analyse the control problem aiming to eliminate the pest population.

IsoValue
-0.0530548
0.0257874
0.0783488
0.13091
0.183472
0.236033
0.288595
0.341156
0.393717
0.446279
0.49884
0.551402
0.603963
0.656525
0.709086
0.761647
0.814209
0.86677
0.919332
1.05074

IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

Figure 7: State y1(t,x) with u ≡ 0 at time 0 (left) and at time 60 (right).

Optimal control solution. We take T = 70, K = 10 and umax = 0.2. Initializing the numerical
method with u ≡ 0.15, we obtain the optimal solution control shown on Fig. 8 and the associated
final state y(T, x) on Fig. 9. Here we have used the BFGS method (see [17]) to approximate the
inverse of the Hessian matrix and the software Freefem++ (see [39]) to solve (3) and (12).

Control with Allee Effect. In the above example, at time t = 42, the maximal value of
y1 = 0.097 is already smaller than θ = 0.1. According to the Allee threshold effect, we know that
y1 will tend to zero even without y2. This means that for t > 42 the sterile population is no longer
needed to reach our objective of getting rid of the pest population. In fact, at some point, the
Allee effect becomes strong enough to perform alone the elimination mission. For example when
applying the truncated optimal control (see right sub-figure on Fig. 8) u(t) = u∗(t) for t 6 25 and
u(t) = 0 for t > 25 the solution y at the same final time T = 70 (see Fig. 10) is still nearly zero.
Comparing the cost, when using the optimal control ū shown on Fig. 8, the two terms in the cost

functional (10) are 1
2

∫∫
Q
y2 dx dt = 3.78 and 1

2

∫ T
0
|ū(t)|2 dt = 3.56. When using the truncated

control u shown on Fig. 10, we have 1
2

∫∫
Q
y2 dx dt = 3.94 and 1

2

∫ T
0
|ũ(t)|2 dt = 3.53. The cost
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Figure 8: Left: optimal control ū(t). Right: truncated optimal control ũ(t).

IsoValue
-0.000216838
0.000108419
0.000325257
0.000542096
0.000758934
0.000975772
0.00119261
0.00140945
0.00162629
0.00184313
0.00205996
0.0022768
0.00249364
0.00271048
0.00292732
0.00314416
0.00336099
0.00357783
0.00379467
0.00433677

IsoValue
-4.2766e-05
2.13833e-05
6.41495e-05
0.000106916
0.000149682
0.000192448
0.000235214
0.00027798
0.000320747
0.000363513
0.000406279
0.000449045
0.000491811
0.000534578
0.000577344
0.00062011
0.000662876
0.000705642
0.000748409
0.000855324

Figure 9: Optimal final state y1(T, x) (left) and y2(T, x) (right).

(10) with ū is smaller but more sterile pests are required. More precisely, when applying ū we have∫∫
Q
y2(t, x) dx dt = 19.9 while

∫∫
Q
y2(t, x) dx dt = 17.35 when using ũ.

6 Deterministic control of the stochastic systems

In this section we numerically investigate how the stochastic systems (2) and (5) behave when
applying the optimal controls obtained for the macroscopic PDE models (1) and (3) (which are the
mean field limits of the microscopic models). Numerical simulations show that the optimal controls
of (P)opt and of (P)SIRM , when applied to the corresponding interactive particle systems, give
satisfactory results. It would be interesting to analyse this question from a theoretical viewpoint
too.

We first apply the optimal control obtained for Case A in Section 5 to the interacting particle
system (2). We take Z = [−600, 600] and ε = 0.05. The “mean” population distributions of 100
times of simulations (see Section 2.2) are shown on Fig. 11. The green and blue lines represent
the initial data (19) and the expected wave pair yd shown on Fig. 4 and the black and red lines
represent the simulation results of the stochastic model (2).

We next apply the optimal control obtained in Section 5.2 to the stochastic model (5). If θ ≡ 0
and y2(0, ·) = 0 (meaning that no sterile males are added to the system) then the equation for y1 is
the same than (1) in dimension two. In the example of Fig. 2, the pest population y1 will increase
with time and thus controls must be used to eliminate the pest population. Applying the optimal
control θ∗(t) shown on Fig. 8 to the system (5), we see on Fig. 12 the evolution of the number of
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IsoValue
-0.00105162
0.000525812
0.00157744
0.00262906
0.00368069
0.00473231
0.00578394
0.00683556
0.00788718
0.00893881
0.00999043
0.0110421
0.0120937
0.0131453
0.0141969
0.0152486
0.0163002
0.0173518
0.0184034
0.0210325

IsoValue
-3.45305e-05
1.72655e-05
5.17962e-05
8.63269e-05
0.000120858
0.000155388
0.000189919
0.00022445
0.00025898
0.000293511
0.000328042
0.000362572
0.000397103
0.000431634
0.000466164
0.000500695
0.000535226
0.000569756
0.000604287
0.000690614

Figure 10: Final state y1(T, x) (left) and y2(T, x) (right) with truncated optimal control.
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Figure 11: Comparison of solutions obtained from macroscopic and stochastic controlled models.
Left: obtained by applying control (20). Right: obtained by applying control (21)

normal and sterile populations and the target population is eliminated with this control.
Recall that a solution of the deterministic model represents a “mean” behaviour of the stochastic

model. Hence for having a better matching’ with a radial wave solution of (3) we need to simulate
a large number of times (5) and calculate an expectation of these solutions.

Conversely the question would be interesting to determine optimal controls for the microscopic
models and to see if they withstand a passage to the limit, tending to controls for the macroscopic
models (see [2, 35, 45]).

7 Conclusion, open problems and perspectives

In this paper we have considered an optimal control problem for a 1D reaction-diffusion model
arising in ecology. Inspired by control methods implemented in ecology practice such as sterile
male and mating disruption techniques, taking advantage of the threshold effect, we have shown
that the Allee threshold θ can be used as a control to act on the population distribution. The models
we considered and results we obtained are also relevant in other applications, such as mathematical
biology, chemistry, social sciences, etc. The PDE macroscopic model we considered has been derived
as a mean field limit of a stochastic model for individual behaviour. The suitability of this link has
been illustrated by numerical simulations. A richer system of reaction-diffusion equations has also
been introduced to show that actuating through the threshold parameter is analytically realistic.
We have constructed piecewise constant controls driving solutions to traveling wave profiles in large
time, using known asymptotic and stability properties of traveling waves. A direct computational
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Figure 12: Evolution of the number of normal and sterile populations.

method has been developed to numerically compute such optimal controls. This method provides
also satisfactory solutions for shorter time intervals for which the control theoretical results based
on the asymptotic properties of solutions do not apply. The methods developed in this paper
can also be applied in the multi-dimensional case where the dynamics exhibit added geometric
complexity.

We end the paper by listing hereafter a number of open problems arising in this context.

Controllability issues. We have established approximate controllability in large time to a trav-
eling wave profile. Can approximate controllability be proved within a time that is independent of
the distance ε? Can the target be reached exactly? In contrast to classical controllability results
for parabolic equations by means of additive controls, in the present context controllability is not
expected to occur within arbitrarily small time since, roughly, the choice of the θ parameter only
affects the velocity of propagation of traveling fronts, which is uniformly limited. In this context
the methods developed in [19] could be useful. Approximate controllability in large time could be
investigated when the target is a pair of opposing traveling fronts.

Sparse controls. In this paper the control has been applied through the threshold parameter.
By means of analytical and computational results we have shown that a piecewise constant strategy
can control the system, in particular to a prescribed traveling wave target. Control of traveling
waves has been investigated in [7] in multi-D by means of additive controls and optimal control
strategies are developed with the aim of building sparse controls with a narrow support. The
results of [7] show that optimal controls have a localised moving support near the locations where
the traveling fronts reach maximal values. The links between these results and ours, relying on the
use of the Allee threshold effect, would be worth to be explored.

General patterns. The control problems addressed in this paper also make sense for more
general multi-D models in which target solutions have a richer geometry such as radial waves or
Turing patterns. General kinetic models arise also naturally in this context. Their analysis from a
control perspective in relation with population dynamics issues is an open subject. Controllability
issues are interesting and problems can be formulated within an optimal control viewpoint.

Stochastic models. The control of stochastic models and their limiting behavior when taking
mean field limits towards the controls of the diffusive models considered in this paper could also
be investigated more rigorously, following the modelling approach presented in Section 2.
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