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Abstract  

This study presents detailed 3D unsteady CFD simulations, performed using NEPTUNE_CFD 

V1.08@Tlse code, of air-methane combustion in a dense fluidized bed containing inert particles. 

Predictions are compared with the experimental data reported in Dounit et al. (2001a, 2001b, 2008). In 

their study, the authors investigated the behavior of natural gas combustion process in dense fluidized 

bed and in the freeboard at temperatures lower than a critical value (< 850°C). The main outputs of the 

experiments are vertical profiles of gaseous-species concentrations and gas temperature. In CFD 

simulations, an Euler-Euler approach is used to compute separately gas and solid phases flows 

(primary variables for each phase are volume fraction, velocity, enthalpy, mass fraction), with detailed 

closure models to account for fluid-particle and particle-particle mass, momentum and energy 

transfers. Gaseous combustion is modeled by a two-step mechanism following Arrhenius-type 

equations (Dryer & Glassman, 1973, Westbrook and Dryer, 1981). The Eulerian modeling takes into 

account the energy exchange by radiation between the gas, the particles and the reactor walls as well. 

The 3D unsteady simulations are analyzed to characterize dynamic flow behavior, thermal spatial 

distribution and interphase equilibrium. Time-averaged quantities are computed to compare 

predictions with the available experimental measurements. 

 

1 Introduction 

Fluidized-bed reactors in which combustion takes place at relatively low temperature have the main 

advantage to minimize combustion pollutants. They are used in many industrial applications, 

especially in solid treatment applications where energy may be supplied by direct combustion of fossil 

fuels inside the bed itself. Natural gas is the least polluting fossil fuel and, when burnt at low 

temperatures, it involves lower pollutant emissions, especially NO and NO2. Understanding and 

mastered natural gas combustion process in fluidized beds is thus of great interest with respect to 

environmental issues. The present study is a theoretical/numerical investigation of the air-methane 

combustion in a dense fluidized-bed reactor for which experimental results are available by the works 

of Dounit et al. (2001a, 2001b, 2008). The experimental setup consisted of a reactor of 180 mm in 

diameter and 1400 mm in height, above which, a disengagement section of 360 mm in diameter is 

added. The experiments were conducted using sand particles with mean diameter 350 μm and density 

2650 kg/m
3
. In order to maintain a constant temperature in the bed, cooling air is made circulate in a 

double shell. A detailed description of the experiments may be found in the aforementioned 

publications. 

 



 

2 Euler-Euler model for collisional reactive flows 

Interactions between particles of the same diameter and a gas mixture composed of N species are 

predicted in a Eulerian framework using the two-fluid model formalism. Such an approach involves two 

separate sets of equations (one for each phase) including mass, momentum and enthalpy transport 

equations. In addition, and uniquely for the gas phase, a set of N-1 species equations and a state law 

are used for predicting the species evolution and the change in gas density. Particle and gas phases 

are coupled through interphase transfer terms. A description of the modeling is given in the present 

section. More details can be found elsewhere (Simonin and al., 1993, Simonin 2000). 

2.1 Mass, momentum and enthalpy transport equations 

The system of equations describing the evolution of the mean mass, momentum and enthalpy 

quantities is written, for each phase, as follows: 
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In the mass equation (1),    represents the volume fraction of the phase   (which may be either the 

gas,      in that case     , or the particulate phase      in that case     );    and      are 

phase’s density and velocity respectively. In the momentum equation (2),    is the gas pressure and    

the gravity. The term         accounts for the interfacial momentum transfer between the phases while 

the last term in the equation is the transport due to the velocity  fluctuations. It is written in terms of the 

effective stress tensor                        The quantities       and       are either the turbulent-

Reynolds and the viscous stress tensors for the gas phase      , or the kinetic and the collisional 

stress tensors for the dispersed phase      . Details concerning their closures as well as the 

closure of the momentum transfer may be found in Boëlle et al. (1995) and Gobin and al. (2003). 

Frictional forces were not accounted for since the mean particle volume fraction in the bed was found 

to not exceed the value of 0.55. In the enthalpy equation (3),    represents the total enthalpy of the 

phase  , which is not affected by the reaction. The first term on the right hand side (r.h.s.) represents 

the transport of the enthalpy by velocity fluctuations: it is modeled using a Boussinesq approximation 

through an effective thermal diffusivity    (Konan et al., 2010a, 2010b). Such a thermal diffusivity is 

composed of two contributions: for the gas phase they are the laminar and the turbulent thermal 

diffusivity coefficients,      
    

 .  For the particulate phase, the two contributions are the thermal 

diffusivity due to the particle agitation and that related to the heat transfer due to the radiation between 

particles,      
    

   the latter contribution is neglected in the present work. The second term on 

the r.h.s. of Eq. (3) accounts for the heat exchange between gas and particulate phases. It is modeled 

as: 
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where          is the relative temperature et    
  the characteristic mean thermal particle response 

time scale defined as: 
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The Nusselt number is defined as                
   

      where                         is the 

mean particle Reynolds number and           
    is the Prandtl number.    

 is the phase specific 

heat. Finally the last term in Eq. (3),       
 , accounts for the heat exchange due to thermal radiation in 

the reactor. Its model is given in Section (2.4).  

2.2 Methane-air mixture combustion modeling 

The first kinetic scheme retained for the methane combustion is a global two-step mechanism 

proposed by Dryer and Glassman (1973): 
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The reaction rates are modeled by two Arrhenius-type equations: 
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The second kinetic scheme used for the numerical simulation is that proposed by Westbrook and 

Dryer (1981). It is also based on a two-step mechanism, which is however corrected by introducing a 

reverse reaction for the carbon monoxide in order to improve the predictions of the heat reaction and 

to properly reproduce the pressure dependence of the molar-concentration ratio between carbon 

monoxide and carbon dioxide. The mechanism is modeled by the following reaction rates: 
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               and      have units of          and the species molar concentrations are given in 

      . In the numerical simulations, regardless of the kinetic mechanism that is used,     species 

are retained for the combustion, they are: methane, oxygen, nitrogen, carbon dioxide, carbon 

monoxide and water vapor. 

2.3 Balance of gas mixture species 

In order to ensure global mass conservation, the evolution of the species forming the gas mixture was 

predicted using      (rather than   dependent species) transport equations: 
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In Eqs. (15)    represents the mass fraction of the species  while    is the turbulent diffusion 

coefficient. The last r.h.s. term accounts for the change in species mass fraction due to the reactions. 

Such a source term is equal to zero if atomic instead of species mass fractions are computed, since 



atomic species are always conserved during any chemical process. For this reason, in this study it 

was decided to transport the atomic mass fractions of the atomic species  ,   and   for which 

            They are related to the mass fractions of the mixture gas species by the following 

relations             
                                

                  The remaining 

two species computed by the numerical simulation are     and   . According with reactions (11) or 

(13), the vanishing rate of methane (in        ) is modeled as     
         

  . The rate of 

change of the carbon-monoxide mass fraction has instead to account for both appearance and 

vanishing of such a species due to reactions (11) and (12), or (13) and (14), respectively. This leads to 

write the source term as                    The unknown carbon dioxide and water vapor 

mass fractions (    
,     ) are deduced from transported species while the oxygen mass fraction is 

computed according to the conservation law    
      

   
     The gas variable-density should then 

be related to the computed species mass fractions through the gas temperature and the reference 

pressure within the reactor and its value updated according with the ideal gas law: 
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where    is the gas molar mass. The gas specific heat is computed according to the expression    
 

   
 
       

. 

2.4 Thermal radiation model 

 

Concerning the gas phase, the thermal radiation model used in this study (Barlow et al. 2001) 

assumes that the medium is optically thin enough to allow each radiating point to have an 

unobstructed isotropic view of the surrounding cold; under such an assumption, the radiation heat loss 

rate per unit volume may be written as follows: 
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where                     is the Stefan-Boltzmann constant;    is the partial pressure of the 

 
th
 species in atmospheres units (mole fraction times local pressure);    is the Planck mean 

absorption coefficient of the  
th
 species;   is the number of species included in the radiation 

calculation;    is the local mean gas temperature and        and       are the surrounding medium 

temperature and emissivity, respectively.       is either the local mean particle temperature    or the 

temperature of the reactor wall,      according to a critical value of the solid volume fraction. In this 

study, we set: 
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   and    are the particles and the wall emissivities, respectively. The four species retained for the 

calculation are steam, carbon dioxide, carbon oxide and methane (     ,     ,    ,    ). Their 

absorption coefficients are made varying as a function of the gas temperature according to the curve 

fits proposed in the literature (Grosshandler, 1993, Barlow et al., 2001, Sandia TNF web site). 

Concerning the solid phase, only dilute regions             were assumed to be affected by the heat 

loss through  particles’ radiation toward the reactor walls. For such regions, the related heat loss rate 

per unit volume was computed as: 
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where    is the particle absorption coefficient,    
 

 
         



3 Numerical simulations 

Unsteady three dimensional numerical simulations of the fluidized-bed reactor have been carried out 

using a Eulerian n-fluid modeling approach for gas-solid turbulent polydisperse flows developed and 

implemented by IMFT (Institut de Mécanique des Fluides de Toulouse) in the NEPTUNE CFD 

V1.08@Tlse version. NEPTUNE CFD is a multiphase flow software developed in the framework of the 

NEPTUNE project, financially supported by CEA (Commissariat à l´Energie Atomique), EDF 

(Electricité de France), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. The 

numerical solver has been developed for High Performance Computing (Neau et al., 2013). The 

Eulerian modeling used in this work was described in Section (2). One class of particle was simulated, 

with a particle diameter            The latter represents the average sample size used in the 

experiments (the particle diameter in the sample ranges between        and        (Dounit et al., 

2001b)). Other quantities of interest for the numerical simulation are the particle mass density 

               the particle emissivity         and the particle restitution coefficient,         which 

accounts for particle energy exchanges in (partially elastic) collisions. The fluidizing gas is a mixture 

composed of methane and air injected at the following operating conditions: pressure      , total flow 

rate=             air factor=    and fluidizing velocity=     at        In the experiments, a distributer 

composed of a perforated plate with 0.4% porosity is used. In the numerical simulations, its effect is 

reproduced by assuming a perfect air-methane mixing at the reactor inlet. Such an assumption 

is justified by the fact that the pressure drop induced by the distributer is comparable to that induced 

by the particle bed (which suggests a uniform gas distribution at the reactor inlet). Three different 

simulations were performed. In all simulations the temperature of the bed was initialized at         The 

 

Figure 1. Reactor mesh. 

 

Chemical species                 
            

                 

                   

                   

                  

            

            

Table 1.  Species thermodynamic properties at standard conditions. 

Case Reaction 
Bed 

Temperature 

Number of 

cells 

DG_700_MESH0 Eqs. (11)-(12) 700 °C 31185 

DG_700_MESH1 Eqs. (11)-(12) 700 °C 45979 

WD_700_MESH1 Eqs. (13)-(14) 700 °C 45979 

Table 2. Simulation cases. 

Solid phase Gaseous phase 

Solid mass 

Initial distribution    ) 

      

     

                

   

  

       

Table 3. Initial conditions. 



three simulations differ each other for the grid refinement and the kinetic mechanism. Two types of 

meshes were employed: a first mesh referred to as MESH0 composed of 31185 cells of dimensions  

Table 4 – Boundary conditions 

 

             ,              ,          ; a second mesh more refined, referred to as MESH1, 

composed of 45979 cells of the same dimensions in   and   directions as MESH0 and            

for         and           for         with gradual connection for              . No-slip 

condition for the mean particle velocity, combined with zero-flux condition for the particle fluctuant 

kinetic energy, are used because found to be satisfactory effective boundary conditions in dense 

fluidized beds (Fede et al., 2011) for spherical particles bouncing on a very rough wall (or for particles 

with very irregular shapes bouncing on a frictional flat wall). A summary of the properties of chemical 

species, simulations cases, initial and boundary conditions are given in Tables (1)-(4). A sketch of the 

reactor geometry realized using the grid MESH1 is shown in Figure (1). 

 

 

Figure 2. DG_700_MESH0: numerical against experimental mean pressure drop (Pa) 

4 Results and discussions 

Results obtained for the case DG_700_MESH0 are first analyzed. The numerical simulation has been 

made run for 80 seconds in order to ensure to reach a permanent regime. In such a regime, particles’ 

and fluid properties are supposed to be statistically stationary and mean (time-averaged) quantities 

may be retained for comparisons. Figure (2) shows numerical results against experimental 

measurements of the mean pressure drop along the reactor axis. Globally, the pressure-drop behavior 

is well reproduced. The difference observed (and estimated to be around 5 %) may be due to the 

elutriation phenomenon and to the uncertainty in experimental measurements.  Numerical against 

experimental results about the gas temperature in the reactor are shown in Figure (3). In the 

experiments, the temperature is measured by means of temperature sensors located at several 
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reactor heights, near the wall. This quantity represents one of the most relevant ones in the fluidized-

bed combustor and it needs to be carefully investigated. In their previous studies, Pre et al. (1998) and 

Dounit et al. (2001a, 2001b, 2008) showed that the combustion zone moves in the reactor depending 

on the temperature of the dense bed. In particular they showed that for temperatures higher than 

800°C the combustion mainly takes place into the bed, while for temperature lower than 800°C, the 

combustion zone moves towards the freeboard region and over. At the operating point of 700°C, one 

expects that most of the combustion is in the freeboard region. This is indeed what observed looking 

at the results illustrated in Figure (3). However, it is worth of note that the numerical simulation 

overestimates the gas temperature in this region while its predictions are quite accurate into the bed. 

Further, the temperature-gas predictions are not radially homogeneous and an important difference is  

observed between  the  reactor  center (X=0 m) and the walls (X±0.09 m, as an example). This may 

be due to the relatively short simulation time. Comparisons between numerical results and 

experimental measurements of the species molar fractions are given in Figure (4). In the experiments, 

gas samples are taken at the center of the reactor using sampling tubes connected to the cooling unit 

in order to eliminate the steam. Species molar fractions are then measured by means of infrared 

or paramagnetic type analyzers depending on the species. One can observe that oxygen and carbon 

dioxide, as predicted by the numerical simulation, do not match the experimental values at the exit. 

This is due to the fact that in the numerical simulation pure methane was taken into account while, in 

the experiments, natural gas with 97% methane content was used. The presence of small quantities of 

hydrocarbons such as ethane, propane, butane is sufficient to explain the difference observed in molar 

  

Figure 5. DG_700_MESH1 : numerical against 

experimental mean gas temperature (°C) 

Figure 6. WD_700_MESH1 : numerical against 

experimental mean gas temperature (°C) 

  

Figure 2 DG_700_MESH0: numerical against 

experimental mean gas temperature (°C) 
Figure 3. DG_700_MESH0: numerical (lines) 

against experimental (symbols) mean molar 

fractions 
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fraction of reaction products. Otherwise, results of the numerical simulations show that the methane 

molar fraction is quite well reproduced into the bed while it is underestimated in the freeboard region.  

These results are consistent with the observations about the gas-temperature overestimate at the 

freeboard. In this region, the methane conversion is faster compared to the experimental 

measurements. In order to understand the reasons of such a difference, two additional cases were 

simulated. A first case, referred to as DG_700_MESH1, in which the mesh of the reactor was refined, 

and a second case, referred to as WD_700_MESH1, in which the kinetic mechanism of Westbrook 

and Dryer (1981) together with the finest grid were instead retained. The temperature-gas predictions 

of these two additional cases are illustrated in Figures (5) and (6). Comparing Figure (5) with Figure 

(3) one can observe that the numerical predictions are definitely improved using a refined grid. 

Compared coarser and finest-mesh results, a large difference between the maximum of the 

temperatures near the wall is observed (about 200 °C). No significant difference is instead noticed 

compared coarser and finest-grid results about the predictions of the species molar fractions (not 

shown). The kinetic-mechanism effect on the gas-temperature predictions may be assessed by 

comparing Figures (5) and (6). Globally, the two models yield similar temperature profiles; 

nevertheless, the mechanism of Westbrook and Dryer leads to more homogeneous values in the 

radial direction at each reactor station. A comparison between mean gas temperatures as obtained 

from all numerical simulations is given in Figure (7). The main difference between the two kinetic 

mechanisms selected in this study relies on the way to model production/destruction of the carbon 

monoxide. This species is in fact differently reproduced by the two kinetic models; in particular, it is 

overestimated by the Dryer and Glassman mechanism within the bed and at the bed surface as 

illustrated by Figure (8). Moreover its predictions are even more overestimated if a coarser grid is 

used. As a direct consequence of the better prediction, in the bed, of the carbon monoxide molar 

fraction as modeled by the Westbrook and Dryer mechanism, a slight improvement of the accuracy of 

the other species involved in the reaction is observed, as illustrated in Figure (9). However, it is 

observed that this model leaves unreacted carbon monoxide above the freeboard region. The effect of 

the mesh size on the bed hydro-thermodynamics may also be observed by Figure (10) in which 

snapshots of the instantaneous gas-temperature and particle volume fractions for two different grid 

sizes are shown. Results give the evidence that a better resolution of the bed hydrodynamics has a 

strong effect on the bed temperature predictions as well.  

 

5 Conclusion 

In this study, unsteady 3D numerical simulations of the air-methane combustion in a fluidized-bed 

reactor containing inert particles were carried out. Numerical simulations were performed using a two-

fluid model, which computes separately gas and solid phases flows in a Eulerian framework. Two 

  

  

  

Figure 7. All simulations: numerical against 

experimental mean gas temperature (°C) 
Figure 8.  All simulations: numerical against 

experimental carbon monoxide molar fractions 
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distinct combustion mechanisms (Dryer & Glassman, 1973, Westbrook and Dryer, 1981) were tested 

over two different grids in order to investigate the influence of the kinetics and of the mesh size on the 

numerical predictions. Time-averaged results were compared with the experimental measurements 

available in the literature (Dounit et al., 2001a, 2001b, 2008). Results showed that the mechanism of 

Westbrook and Dryer leads to more homogeneous results of the gas temperature in the radial 

direction and improves the predictions of the carbon monoxide in the dense bed. But most important, 

results showed that the gas-temperature predictions are definitely improved if a refined grid is used. 

This is not the case for the predictions of the species molar fractions. It is conjectured that a finest 

mesh matches better the hydrodynamics of the bed making it possible to reproduce the bubble-

eruption zone at and above the bed surface more accurately. Not enough accurate predictions of the 

particle volume fraction in such a zone may dramatically affect the gas temperature predictions. This 

point is crucial and deserves to be further investigated. A mesh sensitivity analysis for different 

operating points and sample sizes will be conducted as a future work.  

 

 

Figure 9. WD_700_MESH1: numerical against experimental mean molar fractions  
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Figure 10. Snapshots at time = 64 seconds of, from the left to the right, DG_700_MESH0 

instantaneous gas temperature (°C), DG_700_MESH1 instantaneous gas temperature (°C), 
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DG_700_MESH0 instantaneous particle volume fraction, DG_700_MESH1 instantaneous particle 

volume fraction. 
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