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Some quantum properties such as the behaviour of particles through a double-slit plate seem to defy common logic. According to the double-slit experiment, sequential, separate and independent impacts of particles on the screen produce an interference pattern when both slits are open and produce no such pattern when detectors are placed at the slits. Another strange phenomena concerns entanglement where the constituents of a system cannot be described independently. In this paper we conjecture a falsifiable three-dimensional-time model that fits the observed results and that seems to maximize simplicity for explaining some quantum properties without contradicting the established principles and laws of quantum mechanics.

Introduction

Conventionally, the startling features of quantum mechanics such as "measurement" and the "particle-wave duality" are illustrated by the double-slit experiment. When particles such as electrons are sent one at a time through a double-slit plate (hereafter called slit A and slit B), single random impacts are observed on a screen behind the plate as expected out of individual particles. However, when the electrons are allowed to build up one by one, the cumulative effect of a great number of impacts on the screen reveals an interference pattern of light and dark bands characteristic of waves arriving at the screen from the two slits. Meanwhile, the interference pattern is made up of individual and sequential impacts and although these sequential impacts are separate and independent, yet it seems as if the electrons work together to produce the interference pattern on the screen. This phenomenon seems to entail that the electrons embody a wave-like feature in addition to their particle nature hence illustrating a particle-wave duality structure.

When the electrons are made to build up one by one while detectors D A and D B are placed at slits A and B respectively to find out through which slit each electron went, the interference pattern disappears, and the electrons behave solely as particles. It seems thus impossible to observe interference and to simultaneously know through which slit the particle has passed. The best explanation that can be made from these strange features is that the same electron seems to pass simultaneously through both slits when no detectors are present and through only one slit when detectors are present [START_REF] Cohen-Tannoudji | Laloë Mécanique quantique I[END_REF][START_REF] Rickles | The Philosophy of Physics[END_REF]. This seemingly paradoxical statement is in conformity with the experimental data.

The state vector of an electron passing through slit A may be denoted , similarly, the state vector of an electron passing through slit B may be denoted . An electron passing through both slits A and B at the same time is said to be in a superposition state and its state-vector is denoted , where "a" and "b" are called the probability amplitudes. The mod-square of " " represents the probability of the particle to be measured by the D A detector at the slit A and likewise the mod-square of " " represents the probability of the particle to be measured by the D B detector at the slit B.

Conventionally, when no detectors are present, the state-vector of the electron is said to evolve per a deterministic continuous unitary evolution U whereas, when detectors D A and D B measure from which slit the electron passes, the deterministic evolution of the state-vector is transformed into a probabilistic discontinuous and non-linear state reduction R as explained by Penrose [START_REF] Rickles | The Philosophy of Physics[END_REF]. The two processes U and R create a conflict in the formalism of quantum mechanics. Different ontologies have been proposed to interpret the strange combination of the deterministic continuous U process with the probabilistic discontinuous R process.

According to the Copenhagen interpretation [START_REF]Penrose The Road to Reality[END_REF][START_REF] Wimmel | Quantum physics & observed reality[END_REF], the state-vector and the U and R processes should be regarded as a description of the experimenter's knowledge. There exist several other interpretations amongst which the Everett interpretation or what is more commonly known as the many-world interpretation [START_REF] Everett | The Theory of the Universal Wave function[END_REF][START_REF] Everett | [END_REF], according to which there is no wave function collapse and all measurement results exist but in different worlds. In line with this interpretation, it is claimed [START_REF] Wallace | Emergent Multiverse[END_REF] that when a measurement is conducted on an electron in the superposition state , a deterministic branching takes place where on one branch detector A detects the electron while detector B doesn't and at the same time but on the other branch (i.e. another world), detector A doesn't detect the electron while detector B does detect it. However, this interpretation pauses some probabilistic as well as ontological problems. In particular, the axioms of quantum mechanics say nothing about the existence of multiple physical worlds [START_REF] Kent | [END_REF].

Another interpretation is the De Broglie-Bohm deterministic theory according to which particles interact via a quantum potential and are assumed to have existing trajectories at all times. This model seems to make more sense of quantum mechanics than the other interpretations as discussed in detail by Jean Bricmont in his book "Making Sense of Quantum Mechanics [START_REF] Bricmont | Making Sense of Quantum Mechanics[END_REF].

In this paper, it is intended to introduce an alternative explanatory hypothesis that makes sense of the double-slit experiment and other remarkable features of quantum mechanics, and in which the process of measurement does not come in conflict with the deterministic evolution of the states of a particle.

It is learned from the above double-slit experiment that when no measurement is conducted, the state-vector is a bloc of two states and whereas, an act of measurement reveals only one of these two states. In this article both states and are considered as separate and equally real events. Indeed, it is conjectured the existence of a three-dimensional-time composed of the usual one-dimensional-time augmented with an unnoticeably small twodimensional cross section. According to this model, time can be viewed as a non-geometrical line presenting a thread-like-form having a certain tiny "thickness" such that the two states and form separate events with respect to the cross-section (or thickness) of this threedimensional-thread of time. Meanwhile, in the conventional picture of time, the cross-section of the time-thread is considered as a geometrical point and thus, the two states and are astonishingly considered to form a single event.

Formalism

Time-threads

Time remains one of the strangest concepts in physics and its concept depends on the domain we are studying. Commonly, time is used to label moments in the universe and to measure duration elapsed between events. In relativity, time is not treated separately from space and is considered as making part of a space-time continuum. However, in conventional quantum physics, unlike space time is not an observable and is usually considered as a scalar quantity used to parametrize a quantum system and sometimes it is considered as an emergent property derived from quantum correlations. However, in certain cases time may be considered as a time operator as demonstrated by M. Courbage [START_REF] Courbage | [END_REF].

In this paper, it is simply intended to model time in a way that makes sense of certain phenomena of nature such as superposition, measurement and particle-wave duality in quantum physics. Time is here considered to have a three-dimensional thread-like-form, hereinafter referred to as "elementary-time-thread". The "longitudinal direction" of the elementary-time-thread corresponds to the usual physical-time-axis where each point is specified by a physical-time-index. However, the "cross-section" of the elementary-timethread is referred to as a "state-time-plane" where each point is specified by a "state-timeindex" defined by a couple of state-time-coordinates. Finally, each point -referred to as "elementary-time-instant" -of the elementary-time-thread is specified by a triplet of timecoordinates (one physical-time-coordinate and two state-time-coordinates).

Each elementary-time-thread can be defined in a reference frame consisting of a threedimensional coordinate system in R 3 (or in R-C) composed of the ordinary "physical-timeaxis" ( ) along a real coordinate axis R, a "first-state-time-axis" ( ) and a "second-state-time-axis" ( ). The elementary-time-thread has thus its cross-section comprised in a "state-time-plane" defined by the and and its longitudinal orientation defined along the ordinary physical . Each "elementary-timeinstant" of the elementary-time-thread is specified by a point where , and are real numbers. For simplicity, the coordinates in the state-time-plane are defined by a single symbol called a "state-time-index" which can also be defined by a complex number of the form: [START_REF] Cohen-Tannoudji | Laloë Mécanique quantique I[END_REF] where and are the magnitude and argument of the state-time-index . Thus, each "elementary-time-instant" of the elementary-time-thread is specified by the point .

Quantum features with respect to dynamical time-threads

Conventionally, a quantum system (e.g. spin of a particle) can be defined by a state-vector in an orthonormal eigenvector basis. For any observable Q, the state-vector is defined by a superposition of vector projections in an eigenbasis . In other words, the state-vector is defined as a linear combination of the different possible states. The normalized conventional state-vector of the quantum system is expressed as follows:

(2) where are orthonormal states of the quantum system verifying (Kronecker delta) and the coefficients of the state-vector define the "probability amplitudes" in the specific orthonormal eigenvector basis .

In contrast, according to the present three-dimensional-time-model, the quantum system can be represented by a fundamental-state-vector -noted hereafter . The different points (i.e. the different state-time-indices belonging to the state-time-plane) visited by the different states of a given fundamental-state-vector at a given physical-time-index form a "state-time-domain" denoted " " belonging to the "state-time-plane" . The "state-time-domain

" is an open subset of the "state-time-plane" . The area or magnitude (denoted " ") of the state-time-domain is a measure " " of (i.e. ) which represents the "state-time-magnitude" (hereafter called the "state-timeterm") of the fundamental-state-vector at a given physical-time-index .

The fundamental-state-vector may thus be viewed as evolving with respect to a threedimensional-time-manifold (i.e. a "time-volume" referred hereafter "3d-time-manifold") embedded in the elementary-time-thread and made up of elementary-time-instants wherein, each physical-time-index is mapped to a corresponding state-timedomain whose measure represents the "state-time-term" of the fundamental-statevector at that physical-time-index . Schematically, a state-time-domain belonging to a 3d-time-manifold is formed by the intersection between the 3d-time-manifold and the cross-section (i.e. the state-time-plane ) of the elementary-time-thread at the physicaltime-index . In the following text, the suffix " " in the expressions or is sometimes dropped as it is implicitly clear that any state-time-domain is defined with respect to a corresponding physical-time-index .

The fundamental-state-vector associated to a given observable and evolving with respect to its corresponding 3d-time-manifold (t, s) can thus be expressed by a complex valued statevector as follows:

(

The above expression (3) indicates that at any current physical-time-index , the different states with respect to can be viewed as forming a "state-time-block" wherein, all potential state-outcomes coexist but do not occur at once, or "simultaneously", with respect to the corresponding state-time-domain . In the "state-time-block" all states are labelled by different "state-dates" and thus, at any given time-index , the different states do not occur simultaneously with respect to the state-time-domain , but may be considered to occur "at once" only with respect to the physical-time . In this case these states may be called "physical-time-simultaneous" or simply "partially simultaneous" implicitly with respect to only the physical-time . 

Therefore, a given fundamental-state-vector evolving with respect to its state-timedomain at a given physical-time-index , can be expressed by its different states , as follows:

(5)

The above equation is defined at any given physical-time-index and may also be expressed as follows: [START_REF] Everett | [END_REF] where is the Dirac measure (or indicator function) defined by: (

The dynamics of the fundamental-state-vector of the present model obeys a deterministic process with respect to the 3d-time-manifold and can be decomposed into a set of two equations comprising the above equation ( 6) defined with respect to the state-time as well as the underneath Schrodinger equation defined with respect to the physical time: [START_REF] Kent | [END_REF] Equation ( 6) expresses the form of the fundamental-state-vector with respect to the "state-time-plane" and in particular, with respect to the state-time-domain at each physical-time-index . Thus, at each , the state-vector can be viewed as an "intrinsic signal" in function of bounded by the state-time-domain . In contrast, equation ( 8) is the conventional Schrodinger equation that governs the evolution of a "bloc signal" with respect to the physical-time-indices .

Equation ( 6) can also be expressed in a continuous spectrum as follows:

where for a given , represents the set of all the state-time-indices during which the quantum system is in the state and where: [START_REF] Courbage | [END_REF] Conventionally, the solution of the Schrodinger equation ( 8) has the following form: [START_REF] Binney | The Physics of Quantum Mechanics[END_REF] where the mod-square of (i.e.

) represents the probability associated to the state and where: [START_REF] Susskind | Quantum Mechanics[END_REF] All the states are visited by the state-time-indices while spanning and thus, each state should be the image of a corresponding state-time-sub-domain . In other terms, for each , there exists a bijective correspondence between the set of statetime-sub-domains and the set of states . This bijective correspondence is indeed expressed by equation ( 6).

On the other hand, when the state-time-index is made to span the state-time-domain , then at each physical-time-index , the state-vector should satisfy the normalisation property: [START_REF] Laloë | Do we really understand quantum mechanics ?[END_REF] The last equality in equation ( 13) is justified because when the whole state-time-domain is spanned by the state-time-index , then necessarily for each and thus, equation ( 13) is consistent with equation [START_REF] Susskind | Quantum Mechanics[END_REF].

It is to be noted that when the state-time-index spans the state-time-domain , the state of the system at a given is defined by a set of states:

(14)
The "average" of the above set of states can be expressed as follows:

(15) where is the probability associated to the state which is also equal to as expressed in equation [START_REF] Susskind | Quantum Mechanics[END_REF].

On the other hand, the average of the above set of states of equation ( 14) can also be expressed by normalising the sum of the fundamental-state-vector over all the state-time-domain as follows:

(16)

However, the left-hand side of equation ( 16) can be expressed as follows:

(17

)
where and are the "measures" (named "state-time-terms") of the state-time-domain and the state-time-sub-domain respectively and where . Equation (17) can thus be expressed as follows:

(18)

Comparing equation (18) to equation ( 16), it is deduced that the probability is:

(19)
However, and thus which is also consistent with equation [START_REF] Susskind | Quantum Mechanics[END_REF].

Therefore, the probability amplitude can be expressed as follows:

(20

)
where is a phase function that may depend on and .

Thus, equation ( 11) -solution of the Schrodinger equation -can be expressed as follows:

(

The state of a quantum system can be therefore specified by the set of equations ( 6) and ( 21) as follows:

(

In a continuous spectrum, the above set of equations becomes:

(23) (24) 
At each physical-time-index , equation (6) (i.e. first equation of system ( 22)) expresses the state-vector with respect to all eigenvectors while having a single outcome at each state-time-index . However, equation (21) (i.e. second equation of system ( 22)) describes the state-vector as a superposition of eigenvectors in a conventional manner but where the probability associated to a given state is proportional to the state-time-term during which the state has been visited. Indeed, when the structure and details in the state-time-domain are not taken into consideration, it is evident that all the states would be seen as superposed and would seem to occur at once when in fact according to this model, it is not the case. However, the dependence with respect to the state-time-domain remains intrinsically in-built in the probability amplitudes which depend on and . Nevertheless, the intrinsic dynamics is occulted by equation (21) leading to the seemingly mysterious measurement problem.

Measurement

If we take the conventional equation [START_REF] Binney | The Physics of Quantum Mechanics[END_REF] where the state-time-indices are completely ignored, and their existence is not even suspected, the different states would appear to occur at once and thus, a measurement at any physical-time instant , would seem to impose a collapse of the state-vector into an arbitrary outcome. Thus conventionally, measurement occurs when the superposition of different states collapses to only a single state considered as the measured state of the system. However, according to the present 3d-time model even if we don't have any knowledge about the state-time-indices, then equation (21) shows that the outcome of a measurement taking place at any physical-time-instant could be any state with a corresponding probability (in the classical sense of probability) without any collapse whatsoever because the different states as shown by equation [START_REF] Everett | [END_REF] do not occur at once with respect to the state-time-indices. More precisely, when a measurement is conducted at any physical-time-instant , the interaction between the measuring apparatus and the measured system can take place at any state-time-index with a probability entailing the associated outcome which corresponds to the state that happened to exist at that elementary instant . It makes sense that the probability of interaction between the measuring apparatus and the measured system at the statetime-index depends on the size of the state-time-sub-domain with respect to the size of state-time-domain .

It should be noted, that the outcome can be deterministically predicted if in addition to the physical-time-index , the state-timeindex is also known. Thus, by taking into account the act of measurement according to the present threedimensional-time model, Schrodinger equation ( 8) can be expressed as follows: The factor indicates the physical-time-instant of the act of measurement: means that no measurement has been conducted yet while means that a measurement has been conducted at a given physical-time-instant . The factor indicates the state-time-index of the interaction between the measuring apparatus and the measured system given that a measurement process has been conducted at the physical-time-instant . The factor means that the interaction took place at the elementary-time (i.e. and ).

Thus, the above equation (25) simply expresses the fact that when no measurement is conducted (i.e. ) then, the right-hand side is equal to zero and we get the traditional Schrodinger equation [START_REF] Kent | [END_REF]. However, when a measurement is conducted at the physical-timeinstant , then there exists a state-time-index at which the interaction between the measuring apparatus and the measured system took place with a probability generating a unique outcome .

Introducing equation ( 6) into equation (25), we get:

(28) Equation ( 28) indicates that when a measurement is conducted at the physical-time-instant , an interaction between the measuring apparatus and the measured system would take place at the state-time-index with a probability leading to a unique outcome .

It is clear that even though we "ignore" the state-time-indices, the evolution and measurement of a system according to equation ( 28) is deterministic without any reduction.

Meanwhile, the act of measurement seems to have a double effect: on the one hand, it reveals one of the substantially pre-existing states of the system with a corresponding probability and on the other hand, "creates" a new "state" by freezing the outcome state for a "certain" physical-time-period that may depend on the "intensity" of interaction between the measured system and the measuring apparatus. The outcome of a measurement can be considered as "trapped", "frozen" or "captured" for a certain physical-time-period due to the interaction between the measured system and the measuring device.

Thus, just after a measurement at the physical-time-instant and during a "definite physicaltime-period" , the state-vector relative to the measured state becomes stationary with respect to the state-time-indices (i.e. ) and can be expressed as follows:

(29)

In other terms, immediately after the measurement the state-time-term of the sub-domain corresponding to the measured state becomes equal to the state-time-term of the whole state-time-domain (i.e. and ) entailing a stationary statevector that can be expressed as follows:

(30)

It should be noted that the phase term in equation (30) expresses the dependence on the physical-time-indices .

More generally, a measurement or a detection of a particle may be considered as consisting of two types. The first type corresponds to a weak interaction between the particle and the measuring apparatus such as the detection of a particle at a slit, while the second type corresponds to a strong interaction such as the impact of the particle on a screen.

The first type of measurement is a two-steps operation. At the first step, the state (for example the position) of the particle that happened to exist at the elementary date of detection is "selected". At the second step the evolution of the detected state is "frozen" only with respect to the state-time-domain and during a "definite" physical-time-period . However, the state (example, the position) keeps evolving with respect to the physical-time. Thus, when a particle is detected at a slit of a double-slit experiment, the evolution of the detected position is frozen only with respect to the state-time-domain and during a "definite" physical-time-period while the position of the particle keeps evolving with respect to the physical-time. In other terms, the position of the particle is well defined (or restricted to a limited space) at each physical-time-index for a certain physical-time period. After this period, the evolution of the particle's position with respect to the state-time-domain may be resumed such that the particle's position evolves with respect to the state-time-domain as well as the physical time .

In the second type of measurement, such as the impact of a particle on a screen, the particle's position stops evolving with respect to the state-time-domain as well as with respect to the physical-time .

In summary, according to the present model, measurement occurs when the process of transition between the different states of a system with respect to the thickness of time is stopped at a particular state considered as the measured state of the system. This can be very schematically compared to a spinning ball visiting several numbered compartments of a roulette before settling or stopping into one of these numbers which is considered as the measured value rather than the "magical collapse" of the several numbered compartments of a spinning roulette into a single numbered compartment considered as the measured value. To make the analogy more accurate, the jumping of the spinning ball from one compartment into another should be considered as taking place in a "hypothetical-time" and not the habitual time.

Free particle

The state of a free particle can be specified by the Schrodinger equation [START_REF] Kent | [END_REF] in combination to anyone of equations ( 9) and (24) which can be expressed in a one-dimensional position representation along an x-axis as follows:

(31) (32) where the kets are the states in which the particle is definitely at the position and where and are the probability amplitudes. In particular, the probability amplitude is a binary function which can only be equal to either 1 or 0 and hence, specifies whether the quantum system is in the position (i.e. state

) or not at a given and a given .

In contrast, the probability amplitude indicates the "rate of presence" of a given state at a specific physical-time-index . In particular, represents for a given physical-time-index , the total rate of the state-time presence of the particle at the position , which is also equal to the probability of finding the particle at that position. Indeed, it is straightforwardly evident that the probability of detecting the particle at the position is proportional to the state-time duration (which may not be continuous) spent by the particle at that position.

The free particle occupies a volume in space at each physical-time instant and can thus be viewed as a spatial cloud formed by the different positions visited by the particle at the different state-time-indices of its state-time-domain. Indeed, at each , the particle may be considered as having an oscillatory-like movement in space with respect to the state-time and thus, at each , the particle has multiple positions as if there is not only one particle but plenty of particles that can be represented by a wavelet with respect to . The oscillatory-like movement of the particle with respect to the state-time-indices in combination with its proper dynamics with respect to the physical-time-indices create the wavelike movement of the particle.

For simplicity, it can be assumed as described in Binney et al [START_REF] Binney | The Physics of Quantum Mechanics[END_REF], that the free particle has a well-defined energy . Thus, the phase term in equation (32) can be expressed by which can be approximated by a state of well-defined momentum and can be described by a plane wave of wavelength as follows:

(33)

where is the distance covered by the particle with respect to the physical-time .

On the other hand, it is reasonable to suppose that the spatial points of the cloud furthest away from its centre are visited less "frequently" by the particle than those nearest to the centre.

Here, the term "frequently" is to be understood with respect to the state-time and not with respect to the physical-time. Thus, it is sensible to suppose that at a given physical-time , the probability amplitude of the particle's positions is the square-root of a Gaussian:

(34)
where is the variance of the distribution.

Inserting expressions (33) and (34) into equation (32), one gets:

(35) Equation ( 35) expresses the state of the particle at a physical-time-index . However, at the given physical-time-instant , all the different positions of the particle do not occur at once with respect to the state-time-indices and thus, if a measurement is to take place, the outcome could be any position with a corresponding probability as expressed in equation (32) without any collapse. Now, suppose that at the elementary time-instant , the particle has been detected to be at the position . Then, just after the measurement, the position becomes stationary (during a definite physical-time-period ) with respect to the state-time-indices (i.e.

) but not necessarily with respect to the physicaltime . In other words, just after the measurement the position of the particle may evolve only with respect to in the same way as a classical evolution of a point particle. At each physicaltime immediately after the measurement, the particle would have only one definite position knowing that the particle's position remains stationary with respect to the state-time-indices (i.e. the position of the particle with respect to the state-time becomes a rectangular function ). Thus, immediately after the measurement, equation (31) becomes:

(36) On the other hand, the state-vector of equation (35) also becomes stationary (i.e. ) and thus immediately after the measurement, the outcome probability of finding the particle at the position is:

(37)

Revisiting the double-slit experiment

In this section, we consider a double-slit apparatus comprising a source S of particles, a double-slit-plate and an impact-screen according to the representation described for example in [START_REF] Binney | The Physics of Quantum Mechanics[END_REF]. Let the double-slit plate and the impact screen be disposed on parallel (x, y) planes with respect to a cartesian coordinate system (x, y, z) having its origin at the source S. Let be the distance between the slits along the x-axis and let the source S be equidistant from the slits A and B. Let the x-coordinates of slits A and B be and respectively. Finally, let be the distance along the z-axis between the impact screen and the double-slit plate. We are essentially interested in the particle's impact on the screen along the x-axis and thus, it is sufficient, without much loss of generality, to define the state-vector of a particle only with respect to the x-coordinates.

As described in section 2.4, a free particle emanating out of the source S can be viewed at a given physical-time-instant , as a wavelet formed by the different positions visited by the particle at the different state-time-indices of its state-time-domain whose dynamics is defined by equations (31) and (35).

According to equation (35), the probability amplitude of the particle can be expressed as follows:

(38) When the particle (represented at each physical-time-instant , by a wavelet of different positions) strikes the double-slit-plate, two outgoing wavelets emerge out of the slits. In other words, the primary wavelet coming from the source is separated into two secondary wavelets both of which are spanned by the same particle at each given physical-time-instant .

The primary wavelet represented by the state-vector can thus be expressed as the sum of the secondary wavelets represented by the state-vectors and in accordance with equation (31) as follows:

(39)

The state-vectors and represent the different positions of the same particle around slits A and B respectively, at different state-time-indices belonging to the state-time-sub-domains and respectively ( ) but at the same physical-time-index .

Similarly, in accordance to equation (32), the main wavelet represented by the state-vector can be expressed as follows:

(40)

where and represent the state-time-terms during which the particle is in the state of being around slits A and B respectively. In other terms, at a given physical-time-instant , the particle spends the fraction of its state-time-term around slit A and the fraction of its state-time-term around slit B.

Meanwhile,

and it is realistic to suppose that both states have equal state-timeterms (i.e.

). Moreover, it is reasonable to suppose that the probability distribution of the particle around each slit with respect to is a Gaussian. In addition, it is assumed that the particle coming out of the slits retains its former wavelength and thus, the particle around each slit can be described (as in section 2.4) by a plane wave of wavelength such that equation ( 41) can be expressed as follows:

(42)

According to equation ( 42), the probability amplitudes and arriving at the point on the screen after covering distances and from slits A and B respectively are given by: (43) (44) Thus, the same particle has a movement at each physical-time-instant that can be assimilated to two waves and thus, the particle "interferes with itself" or in other words, viewed from the perspective of the physical-time, the particle seems to be formed of an infinite number of point-particles moving in a wave-like structure. Each point-particle represents the particle at a specific position at a corresponding state-time-index.

The probability of the particle to be at the position on the screen is thus given by: (45)

The last term refers to the interference between the two probability amplitudes:

(46) However, by using Pythagoras' theorem and by assuming that both and are much smaller than , it is deduced:

(47) (48) 
Therefore:

(49) Equation ( 46) can thus be expressed as follows:

(50)

The above equation (50) illustrates a Gaussian distribution of the interference phenomenon produced on the screen as confirmed by experiment.

On the other hand, once detectors are placed at the slits, the particle is detected at either slit A or slit B according to the first type of measurement. Indeed, suppose that the particle at the elementary-time-instant happened to be at the position , then this position is "frozen" by the interaction between the particle and the detector at that elementary-timeinstant and thus, the particle is observed at slit A. Immediately after the detection, the position at which the particle was detected becomes stationary with respect to the state-timeindices . That is, during a definite physical-time-period , or equivalently the state-time-term during which the particle is at the position is equal to the total state-time-term . Therefore, the particle may evolve only with respect to having only one definite position at each and thus, no interference can take place. Thus, after detection the electron simply behaves as a simple classical particle coming from slit A and impacts the screen (according to the second type of measurement) at a specific point as confirmed by experiment.

Uncertainty

The uncertainty principle arises from the fact that a particle may have different states with respect to the state-time-indices at any given physical-time-index . Indeed, consider a particle whose position is defined by a one-dimensional representation along the x-axis according to equations (31) and (32). Equation (31) implies that when the state-time-index spans the state-time-domain , the position of the particle at a given can be considered as a continuous random variable that takes its values in R. Equation (32) implies that the probability distribution density of the position is given by: (51) where is the wave function defining the position of the particle. It should be noted that the probability distribution reflects a statistical distribution of the different positions of the particle in the state-time-domain at a given physical-time-index .

Fourier analysis shows that the probability distribution of the momentum of the particle is given by where is the Fourier transform of . A variance for the distribution of position and a variance for the distribution of momentum satisfy the following well-known classical mathematical relation [START_REF] Cohen-Tannoudji | Laloë Mécanique quantique I[END_REF], [START_REF] Bricmont | Making Sense of Quantum Mechanics[END_REF]:

However, it should be emphasised that according to the present model the above uncertainty relation (52) comes from the statistical distribution at one given physical-time-index of the different positions and momenta of a single particle visited by the different state-time-indices belonging to the time thickness. It does not come from a statistical distribution of the different positions and momenta of different particles neither from a statistical distribution of the different positions and momenta of a particle at different physical-time-instants . It should be clear that here we are considering only one particle at only one physical-time instant and the statistical distribution is generated by the time thickness.

The down bound of the uncertainty relation ( 52) is attained when the probability distribution is Gaussian. Indeed, let the probability distribution of the different positions of a particle at a given taken with respect to different state-time-indices be defined by equation (34). Thus, by making abstraction of the phase term, the probability amplitude of the particle at a given can be expressed as follows:

(53) where is the dispersion with respect to the position of the particle around an origin.

On the other hand, it is known [START_REF] Binney | The Physics of Quantum Mechanics[END_REF] that the normalised wave-function of a particle of momentum in the one-dimensional space representation is given by: (

The probability amplitude of momentum of the particle at a given can thus be expressed as follows:

(55) By calculating the Gauss integral, the above equation (55) becomes:

(56) where and thus:

(57) Equation ( 57) indicates that at a given physical-time-index , a single particle has a spectrum of different positions scattered with a dispersion and a spectrum of different momenta scattered with a dispersion such that their product is a constant equal to .

It is to be highlighted that the particle has a definite position and momentum at each elementary instant but of course, for each physical time-index , there exists a plurality of state-time-indices at which the particle has its position and momentum scattered according to the dispersions and which are related in accordance to equation (57). If the position of the particle is measured, the particle would be confined to a small delta of space with respect to the state-time-indices whereas, the dispersion of its momentum would be enlarged. Indeed, the thickness of time provides a particle with a wave-like nature that creates interference as already discussed in section 3. Thus, a particle that has a wide range of momenta taken by the different state-time-indices at a given physical-time index , creates a high interference pattern leading to the confinement of the particle to a smaller space. Actually, for a given physical-time index , a particle that keeps changing its momentum with respect to the state-time-indices stagnates around its position. In contrast, for a given , a particle that has a definite momentum creates less interference and thus spreads out in space. This leads to a non-commutating measurements of the position and the momentum of a particle.

Thus, the uncertainty principle seems to be caused by the thickness of time and hence, an estimation of that thickness may be evaluated out of the uncertainty principle. For instance, the uncertainty principle with respect to the position and momentum of a photon is expressed as . Assuming that the speed of the photon with respect to the state-time is equal to its speed c with respect to the physical-time, then the uncertainty in space of a photon having a determined momentum p can be expressed as where represents the total state-time-term . Thus, and hence the higher the energy of the photon the smaller is its corresponding thickness of time. To give some numerical estimates, a photon having an energy of the order of 10 -5 J (gamma rays) would have a minimum time thickness of the order of 10 -30 seconds, while a photon having an energy of the order of 10 -7 eV (radio waves) would have a minimum time thickness of the order of 10 -8 seconds.

Entanglement

Consider a quantum system composed of first and second entangled particles travelling in different directions. Suppose and are two eigenbasis of the first and second particles respectively. The composite state of the quantum system is defined by the tensor product which can be expressed as follows:

(58) Similarly to equation ( 6), the fundamental-state-vector in the composite space of states of the two particles can be expressed in function of the vector projections in the eigenbasis of an observable as follows:

(59) where is the Dirac measure that labels the composite states along the statetime-domain and where in general . The first and second parts of the ket represent the states of the first and second particles respectively. Equation (59) indicates that the composite states do not occur at once and only one composite state exists at each state-time-index . The state-time-domain can be assimilated to an "inherent-state-clock" that uniquely makes part of the "entity" composed of the two entangled particles. The transition from one composite state into another is thus governed by the "unique" inherent-state-clock "materialized" by the corresponding state-time-domain . Indeed, at each physical-time-index t, the inherent-state-clock governs the entangled system as a single entity thus, synchronizing the transitions of both particles. In other words, both particles are "connected" by the same 3d-time-manifold whatever is the spatial separation between them. Both particles can thus be considered as "connected" by a same "timefilament" belonging to the 3d-time-manifold at each ticking of the inherent-state-clock. Suppose a measurement is to be made at the side of the first particle. Let denotes the state-vector of the measuring device and the state vector for the combined system "measuring device + particle". At the beginning (t=0) and before measurement, the state vector for the combined system is:

(60)

Under the action of the linear Schrödinger evolution with respect to the physical-time, the state vector for the combined system of the above expression evolves into the following entangled state:

(61)

The above equation can be expressed as :

(62) where represents on the one hand the state in which the first particle is in the state and the second particle is in the state and on the other hand, the state in which the first particle is in the state and the measuring device being in the state indicating the state .

This indicates that once the state of the first particle is observed to be at the state (i.e. it has been "selected" by the measuring device when it was at the state ), no more transitions can take place simply because the state-time-term of the sub-domain corresponding to the measured state becomes equal to the state-time-term of the whole state-time-domain (i.e.

). In other words, the inherent-state-clock materialised by the state-time-domain "stops ticking" and therefore the state of the second particle is "held-up" at the corresponding state .

Hence, when at a specific physical-time-index , a measurement is made at either side of the entangled system, the inherent-state-clock governing the fundamental-state-vector simply stops the transition of the entangled system into any other state. In other words, the inherent-state-clock synchronizing the transition of states of both particles stops ticking and thus, the action of measurement on any particle fixes the outcome result for both particles.

Consider for example an entangled system of two particles characterized by two spins specified by the z components travelling in opposite directions and emanating from a source midway between two detectors. The composite state of the two-spin system is a tensor product having the following basis vectors [START_REF] Susskind | Quantum Mechanics[END_REF]:

; ; ; (63) 
where the u stands for spin "up" (i.e. an upward direction of spin with respect to a z-axis) and the d for spin "down" (i.e. a downward direction of spin with respect to the z-axis) and where the first and second parts of the ket represent the states of the first and second particles respectively.

Let the two-spin system be in a maximally entangled state corresponding to the singlet state conventionally expressed as follows:

(64)

The fundamental-state-vector can be expressed as follows:

(65)

where and are the state-time-sub-domains corresponding to the states and respectively such that and .

Equation (65) expresses the fact that both particles are "connected" by the same 3d-timemanifold composed of an ordered sequence of two "time-filaments" corresponding to states and respectively. In other words, the state transition of both particles is synchronized by the same inherent-state-clock, and thus, when a measurement is made at either side, the inherent-state-clock simply stops the transition into any other state.

The following affirmations can be concluded out of the above formalism:

-Any physical object has a definite state at each elementary-time independently of our observing it.

-The states of the entangled particles are synchronized by an inherent-state-clock materialised by the state-time-domain . Thus, before measurement, the two entangled particles are governed by a common cause (i.e. the inherent-state-clock) that screens off the apparent correlation between them and that synchronizes their states.

-An act of measurement at one end "fixes" (or "traps") a pre-existing state of the particle that happened to be present at the elementary instant of measurement. Consequently, the inherent-state-clock stops ticking (i.e. stops the transition process along the state-time-domain ) and thus halts the transition process at the other end. The measured state of one particle at one end "instantaneously" with respect to the physical-time (i.e. at the same physical-time-index ) affects the state of the other particle at the other end whatever is the distance between them. However, this "interaction" between both particles takes place through the state-time-domain common to both particles and instantaneously with respect to the physical-time without any transfer of information through space. Thus, there exists a non-local link between the entangled particles, but this link (hereafter named "state-timelink") is governed by a state-time-domain common to both particles and does not take place through space. In other terms, entangled particles while being separated in space are linked non-locally through the state-time-domain without any transfer of information through space. This "state-time-link" does not contradict locality in the sense of relativity because no instantaneous message has been transmitted from one particle to the other through space.

It is habitual to represent time by a spatial axis, but this may be misleading especially in the case of entangled particles. Indeed, entangled particles are described by a single fundamentalstate-vector, defining them as a spatially extended bloc (two particles separated in space) while having a common elementary-time . It is to be noted that elementary time could be regarded as a characteristic of the entity in the same way as mass, charge, or spatial extension. Thus, once the state of one particle is affected (i.e. measured), the state of the other particle is necessarily and instantaneously affected by means of their common statetime-domain .

To summarize, there is a common cause (internal-state-clock) that synchronizes the entangled particles before measurement and the act of measurement on one particle instantaneously (by means of the state-time-domain ) affects the state of the other particle.

It should be emphasised that the above three-dimensional time model does not contradict Bell's theorem as long as "locality" is abandoned as clearly indicated by F. Laloë [START_REF] Laloë | Do we really understand quantum mechanics ?[END_REF] and Bricmont [START_REF] Bricmont | Making Sense of Quantum Mechanics[END_REF]. They have clearly shown that among the following three self-contradicting assumptions: "validity of the notion of elements of reality", "the prediction of quantum mechanics are always correct", and "locality", the third hypothesis (i.e. locality) has to be given up. Bricmont has clearly shown in detail how "Bell's results combined with the EPR argument, is not a 'no-hidden variables theorem', but a non-locality theorem" and that some action at a distance does exist in Nature. It is to be remarked that the additional "temporal thickness" may at most be considered as "additional variables" in the sense given by Bricmont [START_REF] Bricmont | Making Sense of Quantum Mechanics[END_REF] and Laloë [START_REF] Laloë | Do we really understand quantum mechanics ?[END_REF] rather than "hidden variables" and more precisely in this case it would be more appropriate to call them "missing variables". These missing variables do not contradict the "no-hidden variables theorem" because it is still true that at any given physicaltime t, the particle has a plurality of states and the outcome of a measurement (at a given physical-time t) is not necessarily an eigenvalue.

Conclusion

The notion of time-thickness seems to make more sense of some quantum features such as the superposition principle and measurement. Indeed, from the viewpoint of the physical-time, the particle has a plurality of equally real positions at each physical-time-index and thus seems to behave as a plurality of different particles having a wave-like movement. However, when a measurement is conducted, the interaction of the particle with the measuring device takes place at one specific elementary-time-instant (i.e. one specific physical-time-index and one specific state-time-index) and the state that happened to exist at that elementary-timeinstant is "selected". The evolution of the measured state is "frozen" with respect to the statetime during a "definite" physical-time-period whereas the evolution with respect to the physical-time may continue. The concept of the above interpretation may be summarised à la Wheeler by the following statement: the thickness of time is particle's way to be all over "at once".