# Sustainability performance evaluation for selecting the Best Recycling Pathway During its Design Phase Guilhem Grimaud, Nicolas Perry, Bertrand Laratte # ▶ To cite this version: Guilhem Grimaud, Nicolas Perry, Bertrand Laratte. Sustainability performance evaluation for selecting the Best Recycling Pathway During its Design Phase. Life Cycle Management 2017, Sep 2017, Luxembourg, Luxembourg. pp.10. hal-01696299 HAL Id: hal-01696299 https://hal.science/hal-01696299 Submitted on 30 Jan 2018 **HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. # Sustainability performance evaluation for selecting the Best Recycling Pathway During its Design Phase Guilhem Grimaud<sup>1,2,\*</sup>, Nicolas Perry<sup>2</sup> and Bertrand Laratte<sup>2,3</sup> <sup>1</sup>MTB Recycling, Trept, France <sup>2</sup>Arts et Métiers ParisTech, CNRS, I2M Bordeaux, F-33400 Talence, France <sup>3</sup>APESA-Innovation, France \*guilhem.grimaud@ensam.eu Abstract As the end of life products are becoming more and more complex, the recycling systems encountered many difficulties in valuing all the materials contained in each product. This involves not only recovering a large number of materials but also doing so with the minimal environmental impact. Although the benefits of recycling are well established, the industrial processes need to be designed in regard with their environmental impacts. That is why recyclers need robust assessment tools to make the right choices during the design of recycling processes. This evaluation's work should enable them to choose the right recycling solutions for a wide range of end of life products. In this article, we present how we develop a methodology for evaluating the performance of recycling processes during their design phase. This methodology is our answer to help optimize the recycling of multi materials products based on the evaluation of the sustainability performance of the processes chosen. **Keywords** Recycling, ETV, design phase, Decision support tool, Performance Evaluation #### 1 Introduction The rise of the world's population and its life conditions go hand in hand with the growth of energy and raw material consumption as well as the steady growth of CO2 concentration in the atmosphere [1, 2]. As the economy is mostly linear, the consumption's growth comes with an increase in the amount of waste produced annually [3]. Because the primary resources used are consumed and lost, the demand is not tenable in a long-term [4, 5]. It is therefore vital to find industrial solutions to maintain standards of living equivalent while also decoupling resource use and demand [6]. The circular economy offers a partial answer to resource depletion [7]. Recycling is inherent in the circular economy strategies that is why industrial companies look for stepping recycling rates up. To do so they implement product centric End-of-Life (EoL) strategy using closed loop recycling [8]. Those strategies show good environmental performances but they rely on specific EoL processes. Furthermore, those EoL strategies require a suitable and efficient supply chain to reach the recycling plant. The different steps of an EoL scenario are shown on the Fig. 1. Unfortunately, the generalization of closed loop recycling is slowed down, if the economic balance is not favorable [9–11]. Fig. 1 Main steps of the End-of-Life chain including recycling pathway MTB company, an international manufacturer of recycling technologies and a recycling operator in France, has launched a sustainability strategy. The aim of the strategy is to reduce the environmental impact of its industrial activities. To do so, MTB started to evaluate its environmental performance with evaluation tools such as Life Cycle Assessment (LCA) and Materials Flow Analysis (MFA). The first evaluation has been realized on an aluminum recycling process using only mechanical separation process instead of smelting. Results show the advantages of mechanical processes [12]. Based on these results from environmental evaluations, MTB implemented corrective measures to increase its environmental performance level [13]. Beyond optimizing recycling pathways in operation, these results also helped us to guide the research for new recycling processes which have been designed to be more sustainable [14]. All these steps help to enrich the company's own knowledge, but the evaluation process is long and requires strong stakeholder involvement at each assessment step. To systematize this new practice and provide data relevancy to decision makers, a methodology was needed to integrate the Life Cycle Management (LCM) approach during the design phase. The technologies used for pre-recycling processes are multiple and it is important to determine the best combination according to different categories of indicators and not only financial performance. The purpose of our work is to provide the engineering team with the results of the environmental evaluation during the design phase. Based on this information, the engineering team will be able to select the best recycling pathway. This method is intended more specifically to the wastes that are not recycled so far. The construction of our approach has been broken up into several key stages. First, the evaluation tools (LCA, MFA) were used to characterize technologies and to identify the key impact category indicators. Next, the Environmental Technology Verification (ETV) was used to draw the evaluation framework for recycling pathway. Then, the final stage is the implementation of a decision-making tool for the engineering team. In this article, we present the interlinking of tools to conduct an evaluation during the design phase of recycling processes. # 2 Methodological framework ## 2.1 Segmentation of recycling processes The recycling pathways are mostly based on common elementary technologies. The elementary technology selection and order have a strong influence on the overall performance of the recycling chain [15]. This assembly achieves the targets of purity and quality specific to processed waste. The performances largely depend on the pathway rather than technological innovations [16], hence, the assembly choices of common sub-processes are one of the key points to design efficient recycling pathways. The Fig. 2 shows EoL's pathway alternatives for the same waste. The technologies used and the streams vary with recycling process choices. We have determined that recycling processes can be classified in three types [17]: shredding, separation and transport. In addition to these three families of process unit, there is the flow unit family. Fig. 2 Presentation of different pathways for the same waste ## 2.2 Unit process database To support the evaluation, we launched the construction of a database for recycling processes. This database includes technical, environmental and economic dataset. On the one hand, for each data a part of the values is fixed. They are invariant data regardless the type of transformation performed by the unit process. This is mainly the impact of manufacturing, its price without the options or the weight of the equipment. On the other hand, in addition to these fixed values, the engineering team define values to adjust the unit process to the specificities of the customer needs. These are the operating variables. These actions will have a direct effect on the performance of the recycling pathway. Each unit process and its associate in/output flows can be modeling as shown on the Fig. 3. Fig. 3 Modeling of a recycling pathway step with a separation unit process To define the technical characterization of each unit process, we have chosen to implement the Environmental Technology Verification (ETV) protocol [18,19]. The main steps of the ETV program are given on Fig. 4. The whole ETV verification steps combine together last eight to eighteen months [20]. In comparison, the average designing time for a recycling pathway is between three and six months. Although ETV's verification time is too long for designers, the program provided general requirements, allowing to develop a self-assessment framework [21]. #### Fig. 4 Main steps of the European Environmental Technology Verification process For the three families of unit process, the Tab. 1 gives the associate operational details and the technical characterization define using the ETV program. For each specific unit process, technical characterization will help to define the most suitable process for each purpose of the recycling pathway step. Tab. 1 Variables and characterization for recycling each unit process family | Туре | Operational Details | Characterization | |--------------------|---------------------------------|----------------------------------| | Shredding | Type of technology (constraint) | Reduction rate/Fineness | | | Cost of purchase | | | | Material losses | | | | Capacity | | | Separation | Type of technology (constraint) | Effectiveness/Separation quality | | | Cost of purchase | | | | Material losses | | | | Capacity | | | Transport | Type of technology (constraint) | Rate flow | | | Environmental characterization | | | | Cost of purchase | | | | Material losses | | | | Capacity | | | Elementary<br>flow | Composition flow | Purity | | | Physical properties | | | | Input or Output | | | | Market price | | # 3 Results # 3.1 Step by step evaluation methodology Our assessment methodology has been developed to provide a coarse result in early design phases and to promote sustainable solutions. The methodology can be divided into several key steps. First, the general framework is built based on the customer needs and with the waste type specifications. This step allows to determine the specific constraints, delays and costs of the project in order to determine the initial specifications for the recycling pathway. In the continuity, the customer provides its main orientations for the recycling process purpose. The customer defines the purpose and objectives for the recycling pathway. Next, the engineering team validate or not the main orientation of the recycling chain. From this orientation, the engineering team starts working on the recycling pathway proposal. The aim is to provide: treatment synoptic definition, selection of the main steps and the choice of technological bricks. According to the recycling chain synoptic, for each step of the recycling pathway, MTB's Sales Team needs to select the appropriate technology and thanks to the expertise from MTB's Engineering Team the operating variables are selected. It is from this point that the database makes it possible to calculate the unit performances. This calculation is made according to the general settings, the specific information flow and the variables. At the end, a synthetic evaluation of the global process and unit steps is provided to allow discussion. # 3.2 Unit process performance calculation #### 3.2.1 Technical performances The technical performance indicators are oriented towards the capacity of the pathway to recycle the waste, so each unit process is described by three indicators. The calculation of these rates is made according to the standard [22]. - Recycling rate - Recovery rate - Landfill rate #### 3.2.2 Economic performances For the economic dataset, data is easily accessible through the information provided by manufacturers and recyclers feedback. The Life Cycle Cost (LCC) analysis is used to determine the economic performance of each unit process. The LCC methodology used to consider both the costs of each system in addition to the profit from the sales of the sorted materials. However we do not include the costs of the environmental impact [23]. The economic performance is described by using three results: - Initial investment costs - Operating costs (cost per ton) Profit from recycled materials sales #### 3.2.3 Environmental performances On the contrary, environmental data are rare and not available in the current Life Cycle Inventory database (ELCD, Gabi, Ecoinvent). Inventory data remains to be collected and assessed to build a strong dataset. Our team has started to build an environmental database for recycling processes. The result of environmental performance is given with one inventory indicator and two impact factor indicators (using ILCD methodology [24]): - Total energy consumption - Climate change - Non-renewable resource depletion #### 4 Discussion The decision tool aims to help the design team to implement more sustainable recycling pathway. It is not a matter of providing a comprehensive assessment for each recycling pathway during the design phase, but it is to communicate to industrial customers the performance indicators in addition to the economic indicators. These additional performance indicators should allow designers to propose optimization on recycling pathways and give a quantified result of the improvements. With an iterative approach, designers could optimize the flows and processes to contain impacts. Although recycling lines are not new, industrial optimization has not been fully conducted [25]. The unconstructive approach, the complexity of waste and the lack of control over incoming flows limit the drafting of theoretical principles. The increasing interest in waste recycling and the evolving regulations in force steer the waste sector to adopt an increasingly industrial approach. To accompany this transition, it is a question of advancing the design methods with specific tools. #### 5 Conclusion Even though plenty of technical options exist for developing recycling products, the recycling solutions selecting motivations are too often led by the pursuit of profit growth which leads to a greater inefficiency [26]. By communicating additional performance indicators, we are convinced that this approach can evolve. And that new issues will be introduced in trade negotiations for recycling pathway. As a next step, we need to build a sufficiently complete and robust database to support the evaluation of recycling pathway. This approach must be enriched in the future. It is also required to facilitate the improvement of the quality of results during the refining process variables and input parameters. # 6 Acknowledgment The authors want to thank MTB Recycling and the French National Association for Technical Research (ANRT) for the funding of the PhD study (CIFRE Convention N $^{\circ}$ 2015/0226) of the first author. #### 7 References - [1] T.F. Stocker, D. Qin, G.-K. Plattner, M.M.B. Tignor, S.K. Allen, J. Boschung, et al., Climate change 2013: the physical science basis. Climate change 2013: the physical science basis, Cambridge, Intergovernmental Panel on Climate Change Thomas, Cambridge, 2013. - [2] C. Yao, K. Feng, K. Hubacek, Driving forces of CO2 emissions in the G20 countries: An index decomposition analysis from 1971 to 2010, Ecol. Inform. 26 (2015) 93–100. doi:10.1016/j.ecoinf.2014.02.003. - [3] EUROSTAT, Statistics on Waste in Europe, Stat. Explain. (2015). http://ec.europa.eu/eurostat/statistics-explained/index.php/Waste\_statistics/fr (accessed April 3, 2016). - [4] R. Miehe, R. Schneider, F. Baaij, T. Bauernhansl, Criticality of Material Resources in Industrial Enterprises Structural Basics of an Operational Model, 23rd CIRP Conf. Life Cycle Eng. 48 (2016) 1–9. doi:10.1016/j.procir.2016.03.035. - [5] Markus Hametner, A. Dimitrova, A. Dimitrova, P. Schindler, Sustainable development in the European Union 2016 Edition, EUROSTAT, Brussels, 2016. doi:10.1002/(SICI)1099-0976 (199711)7:6 <181::AID-EET134>3.0.CO; 2-S. - [6] H. Schandl, Decoupling global environmental pressure and economic growth: scenarios for energy use, materials use and carbon emissions, J. Clean. Prod. (2015) 1–12. doi:10.1016/j.jclepro.2015.06.100. - [7] W. McDonough, M. Braungart, Cradle to cradle: Remaking the Way We Make Things, Edition al, Manifesto, Paris, 2012. - [8] G. Rebitzer, P. Fullana, B.P. Weidema, O. Jolliet, Recycling, Close-Loop Economy, Secondary Resources, in: 10th LCA Case Study Symp., 2003: pp. 106–108. - [9] J. Butterworth, A. Morlet, H.P. Nguyen, J. Oppenheim, M. Stuchtey, Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition, Ellen MacArthur Found. Vol. 1 (2013) 98. doi:10.1162/108819806775545321. - [10] A. Gahleitner, Closing the loop: Next steps critical for Europe's Circular Economy, Eur. Alum. Assoc. 2 (2015) 2. - [11] G. Lavery, N. Pennell, Le Nouveau Modèle Industriel: Plus de bénéfices, plus d'emplois et moins d'impact sur l'environnement, Interface, 2014. - [12] G. Grimaud, N. Perry, B. Laratte, Life Cycle Assessment of Aluminium Recycling Process: Case of Shredder Cables, in: Procedia CIRP, Berlin, 2016. doi:10.1016/j.procir.2016.03.097. - [13] G. Grimaud, N. Perry, B. Laratte, Reducing Environmental Impacts of Aluminium Recycling Process Using Life Cycle Assessment, 12th Bienn. Int. Conf. EcoBalance. October (2016) 7. doi:10.1016/j.procir.2016.03.097. - [14] G. Grimaud, B. Laratte, N. Perry, To Transport Waste or Transport Recycling Plant: Insights from Life-Cycle Analysis, in: Soc. Mater. Int. Conf. (SAM 11), SOVAMAT, Trondheim, 2017: pp. 1–18. - [15] UNEP, Recycling Rates of Metals, Internatio, Paris, 2011. - [16] A. Fisher, Functional versus Innovative Products, (2012) 8. - [17] K. Heiskanen, Theory and Tools of Physical Separation/Recycling, in: Handb. Recycl., Elsevier Inc., Amsterdam, 2014: pp. 39–61. doi:10.1016/B978-0-12-396459-5.00005-2. - [18] European Commission, General Verification Protocol for EU Environmental Technology Verification proragmme Version 1.1, (2014) 74. - [19] European Commission, EU Environmental Technology Verification, Environ. Technol. Verif. Progr. (2016) 15. http://ec.europa.eu/environment/etv/(accessed July 13, 2016). - [20] European Commission, A Comprehensive Guide for Proposers to the EU Environmental Technologies Verification Pilot Programme, Project Ad, European Commission, Luxembourg, 2012. - [21] G. Grimaud, N. Perry, B. Laratte, Decision Support Methodology for Designing Sustainable Recycling Process Based on ETV Standards, Int. Conf. - Sustain. Mater. Process. Manuf. SMPM 2017. 7 (2017) 72–78. doi:http://dx.doi.org/10.1016/j.promfg.2016.12.020. - [22] International Standard Organization, ISO 22628:2002 Road vehicles -- Recyclability and recoverability -- Calculation method, 2002. https://www.iso.org/standard/35061.html (accessed May 31, 2017). - [23] Office of Acquisition and Project Management, LIFE CYCLE COST HANDBOOK Guidance for Life Cycle Cost Estimation and Analysis, (2014) 89. http://energy.gov/sites/prod/files/2014/10/f18/LCC Handbook Final Version 9-30-14. pdf. - [24] JRC Institute for Environment and Sustainability, Characterization factors of the ILCD Recommended Life Cycle Impact Assessment methods EUR 25167, European Commission, Brussels, 2012. doi:10.2788/60825. - [25] J. Martínez Leal, C. Charbuillet, S. Pompidou, N. Perry, Recycling Chains: A proposal for an Exhaustive Definition, in: 10th Int. Conf. Soc. Mater., Roma, 2016: p. 21. - [26] J.M. Allwood, M.F. Ashby, T.G. Gutowski, E. Worrell, Material efficiency: A white paper, Resour. Conserv. Recycl. 55 (2011) 362–381. doi:10.1016/j.resconrec.2010.11.002.