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Coordination via Advection Dynamics in

Nanonetworks with Molecular Communication

Malcolm Egan, Trang C. Mai, Trung Q. Duong and Marco Di Renzo

Abstract—A key challenge in nanonetworking is to develop
a means of coordinating a large number of nanoscale devices.
Molecular communication has emerged as a promising technique
to assist in the coordination problem. Devices in molecular com-
munication systems—once information molecules are released—
are typically viewed as passive, not reacting chemically with
the information molecules. While this is an accurate model in
diffusion-limited links, it is not the only scenario. In particular, the
dynamics of molecular communication systems are more gener-
ally governed by reaction-diffusion, where the reaction dynamics
can also dominate. This leads to the notion of reaction-limited
molecular communication systems, where the concentration pro-
files of information molecules and other chemical species depends
largely on reaction kinetics. In this regime, the system can be
approximated by a chemical reaction network. In this paper, we
exploit this observation to design new protocols for both point-to-
point links with feedback and networks for event detection. In
particular, using connections between consensus and advection
theory and reaction networks lead to simple characterizations of
equilibrium concentrations, which yield simple—but accurate—
design rules even for networks with a large number of devices.

I. INTRODUCTION

Nanonetworks consisting of nano-scale devices have been

proposed to solve problems in environmental monitoring,

health (in the form of nanomedicine), and a range of other

domains [1]. A key challenge facing the design of nanonet-

works is how these nano-scale devices can reliably exchange

information. This is due to the limited resources of each

device and their restricted ability to act in isolation. As such,

collaboration is required for efficient sensing and actuation [2].

An emerging means of supporting communication between

nano-scale devices is molecular communication. In molecular

communication, information is encoded in the type, quantity or

timing of molecules released by a transmitter. These molecules

are then either carried, drift, or diffuse from the transmitter to

a receiver, where decoding can take place.

Molecular communication systems where information

molecules diffuse from the transmitter to the receiver has

proven to be a popular design approach [3]. This is due to the
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fact that free diffusion requires no external energy to transport

information molecules from the transmitter to the receiver.

In this approach, the main factor affecting the reliability of

the transmission is randomness in the arrival time of each

information molecule, leading to a noisy channel.

However, design based only on the fluid channel does not

capture a number of important features of nano-scale devices.

In particular, this approach neglects the chemical processes

that produce information molecules at the transmitter and

allow the receiver to decode information. For example, these

reactions can create complex concentration profiles for the

information molecules themselves as well as for the substrates

used to produce and decode the information molecules. In this

case, the standard impulse response obtained based only on

diffusion [4] is not accurate. In particular, the channel response

must be obtained by solving the reaction-diffusion equations

that govern the system [5], which are typically difficult to solve

analytically (for an important exception, see [6] for the study

of a special case related to Ca2+ signaling).

Nevertheless, when the ratio between the characteristic time

for diffusion and the characteristic time for the reactions

to occur—known as the Damköhler number Da, which we

discuss later in more detail—is large compared with one,

the pure diffusion models are accurate approximations of the

reaction-diffusion equations. On the other hand, it is also

possible to consider systems where the Damköhler number

Da ≪ 1, where the effect of the chemical reactions in

the transmitter and receiver dominate the diffusion. In this

case, the reaction-diffusion equations are well approximated

by chemical reaction networks [7], governed by systems of

ordinary differential equations (ODEs) that determine the time

evolution of the concentration for each type of molecule. As

a consequence, the dynamics of the molecular communication

link are constrained by the rates of the chemical reactions

rather than the diffusion time of the information molecules.

In this paper, we explore the notion of reaction-limited

molecular communication, where the dynamics of the com-

munication link is dominated by the chemical reactions in the

system rather than the effects of diffusion. This communi-

cation strategy can be contrasted with the standard approach

based on diffusion, which can be identified as diffusion-limited

molecular communication. A key advantage of the reaction-

limited approach is a natural coupling or feedback between

the transmitter and receiver, in the common situation where

reactions are reversible. This feedback is exploited in nature

by bacteria colonies in the form of quorum sensing [8], which

provides a means of establishing a distributed consensus on



the size of the colony.

In order to design reaction-limited molecular communica-

tion links, it is necessary to characterize the time-varying

concentrations of each type of chemical species in the sys-

tem. As these concentrations are determined by typically

nonlinear systems of ODEs, closed-form characterizations are

not feasible. Nevertheless, it is possible to obtain a simple

characterization for the equilibrium concentrations of each

chemical species. This is achieved by exploiting recent results

that link chemical reaction networks to advection dynamics

which are dual, in a sense explained later, to the well-known

consensus problem [9], [10].

Using this characterization of the equilibrium concentra-

tions we propose reaction-limited point-to-point molecular

communication links with feedback. We also apply the same

principles to develop event detection strategies in the presence

of imperfect nano-scale sensing devices. In particular, we

provide a design strategy to ensure that the network satisfies

a maximum miss-detecton probability constraint. In order to

optimize the detection time, we numerically optimize the

nanonetwork by solving the system of ODEs governing the

concentrations of each species in the network.

II. SYSTEM MODEL

A. Chemical Reaction Network Preliminaries

Before introducing a general model for reaction-limited

molecular communication systems, we review concepts from

the theory of chemical reaction networks that we will use in

the remainder of the paper. To illustrate these concepts, we

begin with the ubiquitous class of enzyme-activated chemical

reaction networks. These networks consist of four chemical

species: the enzyme E; the reactant S; the complex ES; and

the product P . The set of chemical species in this example

is then SE = {E, S,ES, P}. In this system there are three

reactions:

E + S
k1→ ES

ES
k2→ E + S

ES
kcat→ E + P, (1)

where k1, k2, kcat are called reaction rate coefficients.

A convenient way of representing each of these reactions is

as a map from N
SE to N

SE . For example, the first reaction

is written as (1, 1, 0, 0) → (0, 0, 1, 0). In this way, we can

define a set of reactions RE = {yi → y′
i, i = 1, 2, 3}, where

yi ∈ N
SE is the vector of reactants in reaction i and y′

i ∈ N
SE

is the vector of products.

The pair of chemical species and chemical reactions

(SE ,RE) is called a chemical reaction network. In order to

characterize this network, we also need to consider the dy-

namics. Let [E](t), [S](t), [ES](t), [P ](t) denote the concen-

tration of each chemical species at time t. Under the standard

assumption of mass-action kinetics, the concentrations of each

species in the enzyme-activated system are governed by the

following system of ODEs

d[E](t)

dt
= −k1[E](t)[S](t) + k2[ES](t) + kcat[ES](t)

d[S](t)

dt
= −k1[E](t)[S](t) + k2[ES](t)

d[ES](t)

dt
= k1[E](t)[S](t) − k2[ES](t)− kcat[ES](t)

d[P ](t)

dt
= kcat[ES](t), (2)

with initial conditions [E](0) = E0, [S](0) = S0, [ES](0) =
ES0, and [P ](0) = P0. The biochemical system can then be

written as the tuple (SE ,RE , kE), where kE : {1, 2, 3} →
{k1, k2, kcat}.

We now consider general chemical reaction systems.

Definition 1. A chemical reaction system is the tuple (S,R, k)
consisting of a set of chemical species S, a set of reactions

R = {yi → y′
i, i = 1, 2, . . .}, and the rate function k.

Let x(t) ∈ R
S be the vector consisting of concentrations of

each chemical species at time t. Under mass-action kinetics,

the dynamics of the chemical reaction system is then governed

by

ẋ(t) =
∑

y→y′∈R

ky→y′x(t)y(y′ − y), (3)

where x(t)y = x1(t)
y1x2(t)

y2 · · · .

In general, it is not possible to obtain simple closed-

form solutions for the concentration trajectories x(t), which

poses challenges for communication system design within this

framework. Despite this, equilibrium solutions corresponding

to x(t) as t → ∞ can have a simpler characterization,

when they exist. This fact forms a useful basis to develop

communication protocols as we show in Section IV-A and

Section IV-B.

B. Reaction-Limited Molecular Communication

Consider a nanonetwork consisting of N devices that lie in

a fluid. Each device is a container with a partially permeable

surface. In device i, there is a set of chemical species Si. Each

set Si contains two types of chemical species, those that can

permeate the device surface Ii ⊆ Si and those that cannot

Ai = Si \ Ii. As such, the species in Ii can be used to

carry information about the concentration of species Ai in

each device throughout the network. On the other hand, the

species Ai, i = 1, 2, . . . , N form information sources for each

device.

In general, it is possible to define a wide class of chem-

ical reactions. However, for the purposes of this paper it is

desirable to instead focus on a simpler class of reaction. In

particular, we assume that for device i, the following first-

order reactions hold.

Ai

kA,i

→ I

I
kI,i

→ Ai, (4)



where kA,i, kI,i are the reaction rate coefficients for the reac-

tions between the i-th species and the information molecule.

An example of this class of reactions are isomerization reac-

tions, which have been used for diffusion-limited molecular

communications in [11].

Under the assumption of mass-action kinetics, the concen-

trations of each species in the network is governed by the

reaction-diffusion equations

∂[Ai]

∂t
= Di∇

2[Ai]− kA,i[Ai] + kI,i[I]

∂[I]

∂t
= DI∇

2[I]−
N
∑

i=1

kI,i[I] +
N
∑

i=1

kA,i[Ai]. (5)

In general, it is not possible to solve this system of partial dif-

ferential equations in closed form, even under simple boundary

conditions. However, these equations simplify in the reaction-

limited regime (where the dynamics in (3) dominate) or in the

diffusion-limited regime. These two regimes are distinguished

by the Damköhler number Da [5], which is the ratio of the

characteristic time scales for the diffusion and the reactions.

That is, given a reaction with rate k and diffusion over a length

L with viscocity D, the Damköhler number is given by [12]

Da =
kL2

D
. (6)

In particular, the system is reaction-limited if Da ≪ 1 and

diffusion-limited if Da ≫ 1. As we will show in the following

section, reaction-limited systems have several desirable prop-

erties for use in nanonetworking, which are obtained by using

reaction network theory1.

Remark 1. We have focused on the case of molecular com-

munication systems governed by first-order reactions as this

forms the basis for the protocols we develop in Section IV-A

and Section IV-B. However, the framework of reaction-limited

molecular communication can be readily generalized to more

complicated networks of chemical reactions.

III. REACTIONS NETWORKS AND CONSENSUS

In the previous section, we have established a general model

for reaction-limited molecular communication. However, in a

practical communication network, it is necessary to be able to

optimize design parameters to ensure reliable communication.

For general reaction networks, it is not possible to obtain

simple closed-form solutions for the system of ODEs in (3).

Nevertheless, it is tractable to obtain simple characterizations

of the equilibrium concentrations for useful classes of reaction

networks, which we develop in this section based on recent

connections between reaction networks and multi-agent con-

sensus problems.

Consider the graph representation of a chemical reaction

network, where each substrate and product is associated with

the vertex of a directed graph G, with edges corresponding to

1We remark that similar tools have recently been developed in the reaction-
diffusion setting for the first-order reactions in (4) in [13]. We discuss
extensions to this setting in Section VI.

reactions. In particular, suppose there are c complexes in the

reaction network, then the directed graph G with c vertices and

r edges is called a graph of complexes, which is defined by the

c×r incidence matrix D. In the model considered in Section II,

a complex consists of only one species and therefore each

vertex corresponds to a single species.

In fact, our model has linear dynamics due to the fact that

there is only a single substrate and a single product in each

reaction. In particular, the dynamics in (3) can be expressed

in the form

ẋ(t) = DKx(t), (7)

where K is the matrix with i-th column consisting of the

reaction coefficients for reactions with species i as the sub-

strate (called the outgoing co-incidence matrix in [10]). To

establish the connection between the dynamics and the graph

representation, let L = −DK. It follows immediately from the

mass-action dynamics in (4) that 1L = 0; i.e., the matrix L is

a graph Laplacian, which gives rise to advection dynamics [9],

[10]. In particular, there is a known equilibrium concentration,

depending on the structure of the graph Laplacian and on the

initial concentration.

In the case that the reaction rates kA,i = kI,i, then the

further property L1 = 0 holds. In this case, the dynamics in

(7) are equivalent to consensus dynamics. As a consequence,

we have the following theorem [14].

Theorem 1. If the graph Laplacian corresponding to the

system in (7) satisfies L1 = 0, then the dynamics in (7)

converge globally and exponentially to to consensus point x1,

where x is the average concentration over all species.

Remark 2. The link to consensus only holds in general for

single substrate single product reaction networks. When each

complex contains more than one species, then the dynamics

are non-linear.

In the case that kA,i = kI,i with i = 1, . . . , N , by

Theorem 1, the equilibrium concentration xe = limt→∞ x(t)
is given by

xe =
1

N

N
∑

j=1

xj(0)1. (8)

The simplicity of this equilibrium characterization suggests

that it might play a useful role in the design of reaction-limited

communication systems. We explore this idea in the following

sections.

We remark that it is also possible to consider other choices

of kA,i, kI,i that do not require the graph G to be balanced

(for more details see [9, Proposition 10]. For the purposes of

exposition, we focus on the case kA,i = kI,i in the remainder

of the paper.

IV. APPLICATIONS

A. Molecular Communication with Feedback

Consider a reaction-limited molecular communication sys-

tem consisting of a transmitting and a receiving device,



where the transmitter seeks to reliably transmit data to the

receiver. The transmitting device encodes information in the

concentration of the species A1, which is enclosed within

the transmitter membrane. Also present in the transmitter is

another species which forms the information molecule I . At

the receiver, there is another species A2, which is enclosed in

the receiver membrane. Only the information molecule is free

to diffuse from the transmitter to the receiver.

As the system is reaction-limited, the concentration dynam-

ics are well approximated by the chemical reactions, given

by

A1 → I

I → A1

A2 → I

I → A2. (9)

By Theorem 1, it follows that the concentration of each species

in this system will converge exponentially to an equilibrium

[A1](t) →
1

3
([A1](0) + [A2](0) + [I](0)) . (10)

An important practical issue is whether the transmitter can

obtain feedback that a transmission is successful, which might

arise when there are interfering molecules of the species

A1, A2 or I . To this end, suppose that the system is initially

at equilibrium and there is mass conservation, which means

that

[A1](0) = [A2](0) = [I](0). (11)

A transmission corresponds to a change in the concentration of

A1 inside in the transmitting device. Suppose that this change

leads to a new initial concentration [A1](0
+) = [A1](0)+∆. It

then follows that as t → ∞ the new equilibrium concentration

satisfies

[A1](t) = [A2](t) = I(t) →
[A1](0) + [A2](0) + [I](0) + ∆

3
(12)

As such, the transmitter can detect interference by comparing

the equilibrium concentration of [A1] with (12). The transmis-

sion has been corrupted if
∣

∣

∣

∣

[A1](t)−
[A1](0) + [A2](0) + [I](0) + ∆

3

∣

∣

∣

∣

> τ, (13)

where τ depends on the decoding regions at the receiving

device.

We remark that there may also be sources of noise intro-

duced by the fact that the equilibrium in (12) is obtained for the

reaction-limited regime. In particular, small diffusion effects

may induce variations in the equilibrium concentrations. Nev-

ertheless (12) provides a simple design rule for the threshold.

To illustrate the behavior of the point-to-point link with

feedback, we plot the time evolution of the concentration

for each species. In particular, Fig. 1 shows the evolution

of the concentrations of A1, A2 and I with [A1](0) =

2 M, [A2](0) = 1 M, [I](0) = 2 M with reaction rate coef-

ficients kA,1 = 1 s−1, kA,2 = 0.5 s−1, kI,1 = 1 s−1, kI,2 =
0.5 s−1, which ensures that the Laplacian L corresponding to

the reaction network is balanced. Observe that the concentra-

tions reach an equilibrium with the same value, which is given

by (10) confirming that Theorem 1 holds in this setting.
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Fig. 1. Time evolution of the concentrations governed by (9) with [A1](0) =
2 M, [A2](0) = 1 M, [I](0) = 2 M and kA,1 = 1 s−1, kA,2 =
0.5 s−1, kI,1 = 1 s−1, kI,2 = 0.5 s−1.

In order to validate the need for the balanced Laplacian

condition, we now change the reaction rate coefficient to

be kI,2 = 0.4 s−1 and plot the time evolution of the

concentrations in Fig. 2. Observe that the concentrations still

converge to an equilibrium, which follows from the general

advection dynamics characterization of the equilibrium in [9,

Proposition 10]. However, the concentrations at equilibrium

do not agree as in the case of a balanced Laplacian.
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Fig. 2. Time evolution of the concentrations governed by (9) with [A1](0) =
2 M, [A2](0) = 1 M, [I](0) = 2 M and kA,1 = 1 s−1, kA,2 =
0.5 s−1, kI,1 = 1 s−1, kI,2 = 0.4 s−1.

Consider the case that the reaction rate coefficients are the

same as in Fig. 1. Fig. 3 shows the effect of interference

on the equilibrium concentrations. In particular, [A1](0) =



2 M, [A2](0) = 1 M, [I](0) = 2.5 M , where the initial

concentration of I is affected by interference. Observe that

both the convergence to equilibrium and the final equilibrium

concentrations are affected. For this reason, the presence of

interference can be detected using the simple thresholding

scheme in (13).
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Fig. 3. Time evolution of the concentrations governed by (9) with [A1](0) =
2 M, [A2](0) = 1 M, [I](0) = 2.5 M and kA,1 = 1 s−1, kA,2 =
0.5 s−1, kI,1 = 1 s−1, kI,2 = 0.5 s−1.

B. Nanonetworks for Event Detection

In our first application, we focused on point-to-point com-

munication links. We now turn to the problem of event

detection, which is a nanonetwork coordination problem. In

particular, consider a nanonetwork consisting of N devices

with receptors that are sensitive to the presence of malicious

chemicals. In each period of time, the network seeks to

converge to a consensus based on the presence or absence of

these chemicals. We assume that each device is not completely

reliable, with a miss-detection probability pmiss and false

alarm probability pfa.

We suppose that the dynamics of the system follow (4) with

[A1](0) = · · · = [AK ](0) = [AI ](0). By Theorem 1, the

equilibrium concentration of each species is given by

[Ai]e =

∑N

i=1
[Ai](0)Xi + [I](0)

N + 1
, (14)

where Xi is a Bernoulli random variable with success prob-

ability 1 − pmiss in the case that an event occurs (H1) and

pfa in the case that an event does not occur (H0). As such,

the concentration [Ai]e is a scaled binomial random variable.

This yields the likelihood ratio test [15]

Λ =

(

1− pfa

pmiss

)N [

pmisspfa

(1 − pfa)(1− pmiss)

]

(N+1)[Ai]e
[Ai](0) H0

≷
H1

τE

(15)

where τE is the threshold. The miss-detection probability

corresponding to the hypothesis test is then given by Pr(Λ ≤
τE |H1).

Observe that the detection protocol is dramatically simpler

than in the case of diffusion-limited nanonetworks. This is

due to the fact that hypothesis test in the case where the

dynamics are dominated by diffusion depends on the hitting

time distribution [16], [17], [18]. In general nanonetworks,

the fluid may introduce anomalous diffusion where Brownian

motion models are not accurate [19]. In this case, the hitting

time distribution cannot be obtained in closed-form, which

poses a challenge for deriving detection rules.

V. THE EFFECT OF DEVICE PERMEABILITY

In the model introduced in Section II, it was assumed that

the membrane enclosing each device was perfectly permeable

to the information molecule. We now explore how this model

can be extended to include the effect of partial permeability,

which is known to play an important role in the dynamics of

reaction-diffusion systems such as in bacteria colonies [8].

To proceed, we assume that in each device i, the set of

reactions includes

Ai

kA,i

→ Ii

Ii
kI,i

→ Ai, (16)

which are the same as arising in Section II.

Once species Ii passes through the membrane of a device, it

diffuses through the fluid. Upon reaching another device, the

species Ii can also permeate through the membrane of the new

device. To model this, we introduce the following reactions.

Ii
kIi,f→ If

If
kf,Ii→ Ii, (17)

where Ii is the information molecule in device i and If is the

information molecule in the fluid. Note that each Ii and If are

physically the same species. However, we have distinguished

between the information molecules in the devices and in the

fluid to capture the presence of imperfect permeability and that

each device is an open reaction system. We remark that all the

reactions in (16) and (17) are of first order and therefore the

advection dynamics equilibrium characterization applies.

As in Section II, we assume mass-action dynamics, which

means that the concentration of each species is governed by

the following system of ODEs.

d[Ai]

dt
= −kA,i[Ai] + kI,i[Ii]

d[Ii]

dt
= −kI,i[Ii] + kA,i[Ai] + kf,Ii [If ]− kIi,f [Ii]

d[If ]

dt
=

N
∑

i=1

kIi,f [Ii]− kf,Ii [If ]. (18)

We remark that the rate coefficients kIi,f and kf,Ii are

determined by the permeability of the surface of the container.

Fig. 4 shows the effect of the permeable membrane. In

this example, [A1](0) = 2 M, [A2](0) = 1 M, [If ](0) =
2 M, [I1](0) = 0.1 M, [I2](0) = 0.1 M with rate coeffi-

cients kA,1 = 1 s−1, kA,2 = 1 s−1, kI1 = 1 s−1, kI2 =
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Fig. 4. Time evolution of the concentrations governed by (18 with [A1](0) =
2 M, [A2](0) = 1 M, [If ](0) = 2 M, [I1](0) = 0.1 M, [I2](0) = 0.1 M

and kA,1 = 1 s−1, kA,2 = 0.5 s−1, kI1 = 1 s−1, kI2 = 0.5 s−1, kI1,f =
1 s−1, kI2,f = 0.5 s−1.

0.5 s−1, kI1,f = 1 s−1, kI2,f = 0.5 s−1, which ensure that

the Laplacian is balanced. Observe that the concentrations

converge to equilibrium as expected from Theorem 1. How-

ever, the effect of the membrane is to introduce a distinction

between the information molecules inside each device and in

the fluid. This leads to additional dynamics, which differ from

Fig. 1.

VI. CONCLUSIONS

Existing proposals for molecular communication systems

have largely focused on the dynamics governing the transport

of molecules from transmitters to receivers. However, these

dynamics only form part of the complete dynamics for the

system, which is in fact governed by reaction-diffusion. As

such, typical proposals fall in the diffusion-limited regime. In

this paper, we have considered the dynamics introduced by

reactions between information molecules and other chemical

species in the system. Our approach therefore focuses on what

can be called reaction-limited molecular communication.

In contrast with diffusion-limited dynamics, reaction-limited

dynamics are governed by systems of ordinary differential

equations. These differential equations are in general non-

linear, and as such it is challenging to obtain simple characteri-

zations for the purpose of communication system design. How-

ever, in the special case of first-order chemical reactions (e.g.,

isomerization reactions), the dynamics are linear. A powerful

tool in this setting is the link with advection on graphs, which

provides simple characterizations of the equilibrium behavior,

as time t → ∞.

We have exploited the link with advection on graphs to

design new protocols for feedback in point-to-point molecular

communication systems, which is useful in identifying whether

or not a transmission has been successful. We also showed that

this approach is useful in event detection, facilitating threshold

design in order to ensure that an event is detected, even when

devices are not perfectly reliable.

There are a number of interesting further directions related

to the protocols we have introduced, and also the reaction-

limited molecular communication system design approach in

general. For example, is it possible to introduce the effects of

diffusion as noise in the observations of the concentrations

in each device? A further avenue is to study molecular

communication systems that are governed by the full reaction-

diffusion dynamics. At present, it remains an open problem to

obtain tractable characterization in this setting.
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