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bPSA Peugeot Citroën, Automotive Research and Advanced Engineering Division,
Centre Technique de Vélizy A, Route de Gisy - cc vv1415, 78943 Vélizy-Villacoublay, France

Abstract

We present computations of a two-dimensional nonlinear ring in contact with a rough surface for the analysis
of tire dynamic behaviour at low frequencies in both non-rolling and rolling conditions. For the ring,
the assumptions of a Timoshenko beam and finite displacements are considered to build the model. The
analytical formulation is established successfully in linear/nonlinear static and dynamic states in non-rolling
and rolling conditions using an Arbitrary Lagrangian Eulerian approach. Then, the contact with a real road
is introduced. In particular, the calculation of the contact is divided into a non-linear stationary analysis
followed by a linear dynamic calculation. The validation of this model is successfully done by comparisons
with test results like rolling on simple shapes or with Abaqus computations.
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1. Introduction

The interior noise of vehicles has an important source coming from tires in the low frequency range,
typically up to 400Hz. For these frequencies the rolling noise is mainly due to tire vibrations. These
vibrations are themselves created by the unsteady contact between road asperities and the tire tread pattern.
For predicting this noise generation a tire model is necessary. In the past, various tire models have been
developed focusing on different aspects of the problem.

A first class of models is the two and three-dimensional circular ring models. For instance Böhm [1], Heckl
[2] and Kropp [3] have modelled the tread as a circular Euler-Bernoulli beam. Sidewalls are represented by
radial and tangential springs. This model takes into account the effect of the internal pressure and is linear.
These circular ring models are very useful for analysing the radial vibrations of tires for low frequencies.
Several authors added the effect of rotation, see for instance Meftah [4], Périsse [5] and Campanac [6, 7]. In
addition, Huang [8] has analysed the rotating ring model under a suspension system. So, two-dimensional
circular ring models allow the modelling of the dynamic behaviour of tires for low frequencies [0-400Hz] and
analytical transfer functions can be obtained to deal with contact problems. All these models are linear and
do not allow to consider, for instance, the influence of the vehicle load or nonlinear material behaviours on
tire vibrations. For higher frequencies, plates models were developed by [9–12]. Regarding three-dimensional
numerical models, Fadavi [13] and Brinkmeier [14] used Abaqus to model a tire. Another possibility is to
use waveguides as in Waki [15] or Duhamel [16, 17].
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Figure 1: Description of the circular ring model

Figure 2: Contact forces

Often, authors have neglected the quasi-static deformation of tires and confused the stationary configu-
ration with the configuration of reference. Under the load of the vehicle and the effect of the air pressure,
tires undergo nonlinear deformations. It is thus necessary to distinguish the non-deformed and deformed
configurations. This configuration is not known and is obtained by solving the equilibrium equations in sta-
tionary regime. This point was for instance developed by [18–20] which used a FEM model for computing
the response of tires including the quasi-static deformation and gyroscopic effects. However, these FEM
models leads to heavy computations.

This paper aims at developing a nonlinear circular ring model with a good representation of shear
deformations to get a mostly analytical model able to estimate the influence of non linearities and to use it
for solving contact problems with a rough surface. The structure of the paper is the following. In section
two a Timoshenko beam model including shear and rotating effects with large deformations is considered.
In section three the contact model is developed. Finally, in section four, examples and validations are given
before a conclusion.

2. Beam in finite transformation

The description of the circular ring model representing a tire is illustrated in figure (1). The tread is
described as a circular beam. The sides are modelled using radial and tangential springs with respective
stiffness kR, kθ. The pressure is modelled as a uniform load on the ring. The circular ring has a radius R, a
straight section A and a thickness e. The beam is assumed very thin with e

R
≪ 1.

Each material point in the rotating configuration is defined by two variables (z, θ) in the polar coordinates
defined by (uR,uθ) with z varying in the range [− e

2 ;
e
2 ] and θ in [0; 2π]. In the rotating configuration, a

material point can be represented in the following way:

OP = OS + SP = (R+ z)uR (1)

with S is a point on the neutral fibre of the beam. S and P belong to the same section. Four configurations
are defined: the reference configuration, the rigid rotating configuration, the stationary configuration (rolling
on a flat road) and the final configuration (time dependent vibration of the ring). They are referred in the
following with indices 0, r, s and t respectively. By switching to the stationary configuration, a displacement
field is applied so that P → P ′ and S → S′. Point S moves to point S′ by two translations (u(θ), w(θ)).

2



Point P turns by an angle α to point P ′. So a Timoshenko beam model is used. The displacement vector
of a material point is:

u = OP ′
−OP = (u+ z(cosα− 1))uR + (w + z sinα)uθ (2)

and the strain tensor of the transformation is computed by e = 1
2 (

TF .F − I), whose components are:

eRR = 0

eRθ = eθR =
1

2R

(

ζ2 − ζ + 1
)

((u′
− w) cosα+ (R+ u+ w′) sinα)

eθθ =
1− 2ζ + 3ζ2

2R2

(

(u′
− w)

2
+ (R+ u+ w′)2 + 2Rζ (α′ + 1) ((R+ u+ w′) cosα− (u′

− w) sinα)
)

+R2ζ2 (α′ + 1)
2
)

−
1

2
(3)

with ζ = z/R.
Material behaviour of the elastic ring is assumed linear elastic. The stress tensor can be written with

the engineering notations as:
(

Sθθ

SRθ

)

=

(

E 0
0 G

)(

eθθ
2eRθ

)

(4)

with E and G are the Young and shear modulus. Active forces on the cross section are the normal force
N , the shear force V and the moment M , which are calculated in the reference configuration (uR,uθ) by
N =

∫

A

SθθdA, V =
∫

A

SRθdA, M =
∫

A

zSθθdA with A is the cross-section area.

In our case, different forces are applied on the ring and consist of the air pressure, the contact force and
the reactions of springs. Air pressure results in a pressure p uniform along the ring. For the nonlinear case,

the pressure follows the deformation and is given by p = −pOz ∧

(

∂OS
′

R∂θ

)

. At first, the tire/road contact

is simply modelled by a point force in the radial direction

(

fR
0

)

. The forces of the springs are given by
(

f spring
R = kR.u

f spring
θ = kθ.w

)

. The components (f spring
R , f spring

θ ) are respectively in the direction of uR and uθ in

the case of linear deformation and follow the deformation of the neutral axis for the nonlinear case.
The equations of equilibrium are finally given by (see [21] for details):

1

R

(

V
′

t cosα−N
′

t sinα− α
′

t (V sinα+N cosα)
)

+ p
ut + w′

t

R
+ pt

R + u+w′

R
−

αt

R

(

V
′ sinα+N

′ cosα
)

−

α′ + 1

R

(

Vt sinα+Nt cosα+ αt (V cosα−N sinα)
)

+ fR
t
− kRut − ρΩ2

A
(

u
′′

t − 2w′

t − ut

)

= ρAüt + 2ρΩA
(

u̇
′

t − ẇt

)

1

R

(

V
′

t sinα+N
′

t cosα+ α
′

t (V cosα−N sinα)
)

− p
u′

t − wt

R
− pt

u′
−w

R
+

αt

R

(

V
′ cosα−N

′ sinα
)

+
α′ + 1

R

(

Vt cosα−Nt sinα− αt (N cosα+ V sinα)
)

− kθw − ρΩ2
A
(

w
′′

t + 2u′

t − wt

)

= ρAẅt + 2ρΩA
(

u̇t + ẇ
′

t

)

1

R
M

′

t +
1

R

(

(

u
′

t − wt

)

(V sinα+N cosα)−
(

ut + w
′

t

)

(V cosα−N sinα)
)

+

1

R

(

(

u
′

−w
)

(Vt sinα+Nt cosα)−
(

R + u+ w
′
)

(Vt cosα−Nt sinα)
)

+

1

R

(

αt

(

u
′

− w
)

(V cosα−N sinα) + αt

(

R + u+ w
′
)

(V sinα+N cosα)
)

− ρΩ2
Iα

′′

t = ρIα̈t + 2ρΩIα̇′

t (5)

with Ω is the rotation speed, I the inertia of the cross-section and the forces and displacements are decom-
posed into a stationary part, without index, and a time dependent linear perturbation with indices t. This
system can be put under the form:

M üt +C u̇t +Kut = ft (6)
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with

K =
∂g

∂us

(7)

if the stationary equilibrium equations are written under the form:

g(us) = fs (8)

with g represents the function of the internal forces in the beam. The mass matrix M and the gyroscopic
matrix C are easily constructed by discretizing their respective terms in the dynamic equation (5).

3. Contact with a rough surface

It is assumed that the springs can be lengthened or shortened only in the direction normal to the surface

of the ring and that the stiffness of the springs represents that of the rubber pads (see figure 2). If the ith

point on the pad is in contact, the spring is compressed by δli. The displacement of the ith point on the ring
always has the expression ui = uXieX + uZieZ . But we must add the deformation of the pads (of original
length l0):

xli = Xi + uXi + (l0 − δli)ni.eX
zli = Zi + uZi + (l0 − δli)ni.eZ

(9)

The geometrical condition of the contact is given by the following relation:

zli = fch(xli) (10)

with the profile of the road described by the function fch(xli). The contact force is decomposed in two
directions:

F c = Fr n+ Ft (n ∧ eY ) (11)

Where n is the unit vector in the direction of the deformed spring and eY = eZ∧eX . The frictionless contact
hypothesis leads to F c.t

ch = 0 with tch the tangential vector of the road at the point of contact (xli, zli)
given by tch = eX + dfch

dx
(xli)eZ

The forces are transmitted at the corresponding point on the ring and a torque is created by the vector
of the tangential force leading finally to:











F r = kδln

F t = −
k δl (n.tch)
(n∧e

Y
).tch

.(n ∧ eY )

m = Ft (l0 − δl) = −
k δl (n.tch)
(n∧e

Y
).tch

(l0 − δl)

(12)

Taking into account the forces determined by (12) and the equilibrium equations (5) of the ring, we can see
that F r, F t are functions of variables (δl, n, u, w). So the unknowns of the equations (5) are (δl, n, u, w, α).
These equations can be written in the following implicit form:

ℵ(δl, n, u, w, α) = 0 (13)

It is considered that the dynamic configuration is confused with the stationary one of the case of contact
with a smooth road. The dynamic equations are deduced from (13) by adding the inertial forces:







F in +
∂ℵ(us,ws,αs,δls,ns

)

∂(u,w,α,δl,n) (ut, wt, αt, δlt, nt) + ℵ(us, ws, αs, δls, ns) = 0

zli − fch(Xli) = 0
δl > 0

(14)

Where F in is obtained by the terms in second time derivatives and the terms containing Ω in (5). The
equations (14) are solved by Newmark’s numerical scheme.
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Figure 3: Undeformed and deformed configurations of the
tire due to linear and nonlinear static calculations for a
point force at the bottom of the tire
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Figure 4: Vertical reaction at the center of the wheel during
the dynamic contact on a sinusoidal ground.

4. Validation of models and rotating effects

The dynamic equations are written in the form:

M üt +C u̇t +Kut = ft (15)

The matrices M and C are constructed directly using analytical equations. In the case where the effect of
large displacements is taken into account, the stiffness matrix K varies during the deformation. Stiffness
matrix obtained at the end of the stationary state is the one considered in the dynamic calculation. The
model parameters are shown in table (1).

Table 1: Model parameters

Parameter Description Value Unit Parameter Description Value Unit

E Young modulus 2.6611e9 Pa ρ Density 1160.7 kgm−3

R Ring radius 0.285 m e Thickness of the beam 0.01 m
b Width of the beam 0.085 m kR Radial stiffness 4.35e6 Pa
kθ Tangential stiffness 3.19e5 Pa ν Poisson coefficient 0.3 -

The results of the steady state between a Matlab calculation and a calculation under Abaqus are com-
pared at constant boundary conditions and equivalent load and showed good agreement. A comparison of
the deformed configurations of the linear case and the nonlinear case in geometry is shown in Figure 3. Near
the excitation point one can expect that the stress and strains are large and so in this zone the differences
between the linear and non linear models will be the largest.

Figure 4 refers to the vertical force at the center of the wheel during a rolling of the tire on a sinusoidal
road at a speed of 10 m/s. This force is computed by the sum of the vertical reactions of the radial springs
and the tangential springs between the carcass (the ring) and the wheel center. After a transient phase of
a duration of about 1 second, the response becomes periodic. It is mainly the sum of the harmonics of the
excitation sine.

Figure 5 shows the associated spectrum. In the ascending order of frequencies, we observe successively
tire resonances, the response of the sine of the excitation and the harmonics due to the non linearity of the
contact problem. Indeed, the excitation in base of the tire is of sinusoidal form. The excitation frequency
is calculated by the ratio of the speed of the ring divided by the wavelength of the road (250 Hz). This
sine and its harmonics are present in the stationary response. Moreover, the tire resonances participate in
the final response due to the small shocks at the inlet or outlet of the contact area. This is the reason for
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Figure 5: Spectrum of the stationary part of the vertical
force at the wheel center during dynamic contact on the
sinusoidal ground.

Figure 6: Vertical force and longitudinal force at the wheel
center during dynamic contact on a 5 x 10 mm bar for the
circular ring.

observing the ring resonances on the spectrum curve. Finally, the contact problem is non linear because the
contact area changes at each instant. The non linearity generates periodic harmonics in the response.

In another case, the responses are calculated at the center of the wheel during a rolling on a bar of
rectangular section of 5 mm high and 10 mm wide. The temporal responses of the vertical (in red) and
longitudinal (in black) forces are plotted in figure 6. As the running speed is 10 m/s, the passage on the
bar is very fast (about 0.01s). Thus, the excitation due to the bar can be assimilated to a vertical impact
in the base of the tire. It is noted that the level of the vertical force is greater than that of the longitudinal
one. The oscillation of the red curve is essentially around the first frequency of the mode of the tire of oval
shape (116 Hz).

5. Conclusion

The model developed here allows a good estimation of tire vibrations for low frequencies and includes both
linearities coming from the tire behaviour and from the contact with the road. The solution is decomposed
into a stationary rolling with a linear dynamic perturbation. Results from rolling on a sinusoidal road or on
a bar are given and show the main physical phenomena. Air interior resonance could for instance be added
to get a complete model for low frequencies.
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