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Abstract. The periodically supported beam is an analytical model of the dynamics of a railway
track, where each rail together with its supports (sleepers) is independent of the other one. How-
ever, the sleepers connect the two rails and their behaviour could influence the response. This
study develops an analytical model for this type of track by considering the sleepers as Euler-
Bernoulli beams resting on a visco-elastic foundation. By using a relation between the reaction
forces and displacement of the periodically supported beam [1|], we can obtain a dynamic equa-
tion of a sleeper based on Dirac delta distribution. Then, the response of the sleepers can be
obtained by using the Green function. This model is a fast method to calculate the dynamic
responses of railway sleepers and track.
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1 Introduction

Currently, there are many kinds of railway tracks constructed using different technologies.
Among many choices of sleeper types, the concrete monoblock sleeper remains popular. In
addition, the sleeper dynamic response is important because it affects the stability of the railway
track and the maximum speed of the train. Substantial researchs using analytic methods for rail
track have been carried out, for example : the effect of wheel-rail contact forces [17, [18] or
the vibration of the railway track (by considering the model of a ballasted track with discrete
supports [8, 9, [13] 14, [1]] or the model of the infinite beam placed on a continuous foundation
[10L [7, 16 [11]). The studies of each component of the rail track were performed on the rail
[19,116,(15], or on the ballast [20, 22].

An other important component of the railay track is the sleeper which has been investigated
by using several different methods. The main objective is to analyse the sleeper behaviour
and model it in the case of different moving charge values. The dynamic lateral resistance of
the sleeper has been studied to better understand the interaction zones between the sleeper and
the ballast layer [5]. Kaewunruen S. [23] researched the influence of the rail pad on the free
vibration of the concrete sleeper by using finite element analysis. By using experimental and
numerical methods, Laryea et al. [4] compared the sleeper’s perfomance when made out of
different materials. Some works focus on the pre-stressed concrete sleeper using FEM in 2D
and in 3D [24} 21]].

In this paper, an analytical model is presented based on the the theorie of a beam resting
on visco-elastic foundation. Indeed, the ratio L/h of the sleeper is greater than 10 and we
can consider the sleeper as an Euler-Bernoulli beam. The dynamic equation of the beam in
the frequency domain by using the Fourier transform. Then by using the relation between the
reaction forces and displacement of the beam [1] in the frequency domain and the Dirac delta
distribution, the dynamic equation fot he beam (sleeer) toghther with the rails and foundation
is written and solved by using Green functions. The method of Green function to obtain the
response of a beam structure to a moving mass has been successfully applied previously [25,
26]. The use of Green function not only leads to exact results but also involves less cuambersome
manipulations. Finally, the inverse Fourier transform gives the time responses of the beam.

The dynamic response of the sleeper has been investigated in two cases of moving charges.
The numerical computations shows the displacements and reaction forces in the time domain.
The model can be used for parametric analyse to study the influence of sleeper on the dynamic
response. This simple model shows an efficient and fast way to estimate the responses of railway
sleepers and can be further developed for the analysis of more complex cases.

2 Formulations

Let us consider a periodically supported beam subjected to moving forces as shown in Figure
(1I). In the steady-state, we suppose that all sleepers have the same response but with a delay
which is equal to the time for the moving forces to cover the distance between two sleepers.
By using this condition, Hoang et al. [1]] have shown a relation between the beam displacement
(w,) and reaction force (R) at the sleeper position as follows :

R(w) = K(w)i,(w) + Q(w) (1)
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Figure 1: Periodically supported beam subjected to moving loads

where /C(w) and Q(w) are so-called equivalent stiffness and pre-force of the periodically sup-
ported beam, calculated by :

-1
K(w) = 4B, L, | — A siblh
coslA, —cos - coshl\, —cos <
(2)
K(w al D0
Q W) = ( 1 ZQje v

4 prSrw2
EnI. °

longitudinal inertia of the rail respectively.
We now develop an analytical model for the dynamics of sleepers based on this equivalent
system. Let us consider a railway track as shown in Figure[2] This track contains:

where A\, = pr, B, S, and I, are the density, Young’s modulus, section and the

Two rails: modelled by two periodically supported beams

Rail pads: modelled by spring-damper systems

Sleepers: modelled by Euler-Bernoulli’s beams

Ballast and foundation: modelled by a Kevin-Voight foundation

Loads of train: concentrated moving loads

i

Sleeper

Ballast

Figure 2: Dynamic model of a sleeper

The vertical displacement w(z,t) of the sleeper under a force F(x,t) is driven by the dy-
namic equation :
0w (z,t)
Ozt

O*w(x,t)
ot?

E,I, + psSs + kw(zx,t) + C% = F(x,1) 3)
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where pg, E, S5 and I are the density, the Young’s modulus, the section and the longitudinal
inertia of the sleeper respectively; &k and ( are the stiffness and the damping coefficient of the
ballast layer.

The total force of two rails applied on the sleeper can be written with the help of Dirac
functions as follows :

F(z,t) = —=R1(t)0(z — a) — Ra(t)0(z + a) 4)

where 2a is a distance between two rails, and R, R, are the reaction forces of the sleeper
applied on two rails. These forces are driven by the equivalent systems of the two rails (equation
(2)) as follows:

Rl = Ky (w) + Oy )

RQ = ]CUAJQ((JJ) + QQ

In addition, the reaction forces Ry, R, can be expressed by the constitutive law of the two
rail pads :

~

Ry = —ky (i (w) — @(a,w))

: 6
Ry = —ky(s(w) — w(—a,w)) v

where £, = k,, + iw(,, are the dynamic stiffness of the rail pad (k,,, ¢, is the stiffness and
damping coefficient of the rail pads) and 2a is the track gauges. By substituting the aforemen-
tioned equation (3] into equation (6)), we obtain

Y :

b= ptlew) + e

kK k @
_ " Al p

B = pt-aw) + e

By combining equations (3)) and ({7), then by performing the Fourier transform, we obtain :

I oM (z,w) . .

E; Erra (pSw® — k) W(z,w) = =Ry (w)d(z — a) — Ra(w)d(z + a) (8)

where k, = k + iw is dynamic stiffness of the ballast.
Equation (8) describes the dynamics of the sleeper on the ballast. In order to solve these
equations, we will use Green function for the dynamics of the beam defined by:

0'G(z,a)
Ox*

[pSw?® — k
where A\, = ¢ % The general form of the Green function is :

G, a) {Al cos Asx + Ay sin \;x + Az cosh @ + Aysinh A,z forx € [—L, d]
x,a) =

— MG(z,a) = 0(x — a) )

10
By cos A gx + By sin A\ + Bz cosh A\;x + Bysinh A,z forx € [a, L] (10)
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where 2L is the sleeper length. The boundary conditions of the Green function are :

G"(-L,a) =G"(L,a) =G"(-L,a) = G"(L,a) =0
G(at,a) —G(a",a) =0
G'(a",a) — G'(a",a) =0 (11)
G"(a",a) —G"(a",a) =0
G"(a*,a) — G"(a",a) =1
where the prime (") stands for the derivation with regard to z. By using this boundary condtion,

we can obtain the expressions of A;, B; (i = 1, 2, 3, 4) as shown in Appendix
The solution of equation (8) can be written with the help of the Green function as follows:

~ ~

R R
w(x,w) = ES}SG(x, a) + E:ISG(x, —a) (12)
In order to calculate Rl and Rg, we substitute x+ = a and + = —a in the aforementioned

equation and obtain:

N ~

w(a,w) fi G(a,a) + s G(a,—a)

By Bl 13)
w(—a,w) = T } G(—a,a) + E; G(—a, —a)

By combining equations (7)) and (13]), we obtain

ho_ Q1 [G(~a, —a) + x] — Q2G(a, —a)
Ry = EI [x + G(a,a)] [x + G(—a,—a)] — G(—a,a)G(a, —a) (14
PR Q. (G(a,a) +x] - Q1G(~a,a)
UIx + G(a,a)] [x + G(—a, —a)] — G(—a,a)G(a, —a)
k, + K

where x = F I, . Equation (14) defines the reaction force of the sleeper on the two

P
rail. Then, the response of the sleeper can be obtained by using

3 Applications

The dynamic response of the sleepers is calculated by using the formulae established in
previous section for two cases : the same charges in both rails ((); = ()2) and the different
charges in two rails (@) # Q)2).

As the charge applied to the rail is periodic and moreover to simplify the comparison of
results, the calculations are carried out in case of a point force. Some of the results in the case
of a series of charges are shown in Appendix [B] We consider a railway track parameters in Table

Figure [3] shows the displacement of the sleeper in two cases: ()1 = )2 = 100 kN and
Q1 = 100 kN, Q2 = 75 kN. The figures are obtained through the inverse Fourier transform of
equation (12). The two rails positions are presented by two dash lines. The sleeper displacement
in the two cases is minimum in the interval between two rails. In the first case, the minimum
displacement is at the sleeper center (z = 0) and in the second case, it is 0.39 mm and this point
is not the center.
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Content Unit Notation Value
Young’s modulus of the rail GPa E, 210
Moment d’inertie of the rail m? I, 3.055E-5
Density of the rail kgm3 Or 7850
Section of the rail m? 5y 7.69E-3
Young’s modulus of the sleeper GPa B 35
Density of the sleeper kgm™3 Ps 2350
Height of the sleeper m hs 0.22
Width of the sleeper m W 0.29
Length of the sleeper m 2L 2.2245
Track gauge m 2a 1.435
Stiffness of the ballast MNm ! k 158.11
Damping coefficient of the ballast kNms™! ¢ 41.30
Stiffness of the rail pad MNm™! Krp 60
Damping coefficient of rail pad kNms™! Crp 77.76
Train speed ms ! v 44.4
Charge on the first rail seat kN Q- 75
Charge on the second rail seat kN Q1 100
Sleeper distance m [ 0.6

Table 1: Parameters of the analytical model
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Figure 3: Displacement of sleeper for the same loads and different loads on two rails
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Figure 4: Sleeper displacement under the moving charge at 3 positions : middle point (green curve), the first rail
seat (red curve) and second rail seat (blue curve)
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We observed this phenomenon because the displacement of the beam is not symmetric re-
sulted by the different charges values. The sleeper displacements at the middle point and at the
two rail seats are given by the Figure

Figure 4al shows that the sleeper displacement at the rail seats are the same. The maximum
value of the displacement at the rail seat is 0.57077 mm. However, the displacements at the
rail seats in Figure @] are not the same. Precisely, the first rail moves 0.41495 mm and the
displacement of the second rail is 0.58390 mm (the red and blue curve). Moreover, Figure [3]
shows the sleeper displacement in the two loading cases.

T
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— Deformed form
Rail positions |

ol

ok 4
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0.2 |- — Deformed form
Rail positions

1

Displacement (mm)
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L L L L
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Sleeper (m)

o

1 1 1 )
-1.5 -1 -0.5 0 0.5 1 1.5
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() Q1 = Qs = 100 kN (b) Q1 = 100 kN, Q5 = 75 kN

Figure 5: Deformation form of the sleeper under the moving charge

Under the action of the same forces, the deformation of the sleeper is symmetric and the
displacements at the positions of two rail seats are at the same level. But in the second case, the
displacements are different. The difference between two positions is referred to as the levelling
of 0.17 mm. This phenomenon shows that the sleeper is not only deformed but also tilted.
When there is a signification difference between the moving charges, the levelling will change
the distance between two rails and influence the risk of derailment.

The reactions forces R, and R are calculated by the equation (14). Obviously, the reaction

forces at the rail seat R1 and R2 are equal when (); = (). The reaction force is 42 kN in this
case.

a
3

50

T
—Rail seat 2
~——Rail seat 1

T
— Rail seat 2
- - Rail seat 1
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N w IS
S 8 5
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() Q1 = Qo = 100 kN (b) Q1 = 100 kN, Q2 = 75 kN

Figure 6: Reaction force

When the two moving charges are different, the reaction force is bigger when the rail is
subjected to the bigger charge (42 kN and 31 kN respectively). The damage of the wheels, rails
etc., can lead to significantly different charges on the two rails.

4 Conclusions

In this study, an analytical model of the dynamics of railway sleeper has been investigated
using the relation between the reaction force and the displacement in the frequency domain. The
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time responses are obtained by the inverse Fourier transform. The displacement at the critical
sections (rail seats and center) has been evaluated for various moving charges. In the case of the
imperfection of the moving charges, the phenomenon of levelling on the railway track occurs
and it could influence the railway track stability. In future research, this model will be developed
by using the Timoshenko beam in order to take in account of the sleeper rotation. Moreover, this
model can be developed with other foundation behaviours such as a multi-layered foundation

of ballast.

A Calculation of Green function

By substituting into equation (T0)), the first condition of the boundary condition in equation
(TT), we obtain can be rewritten as follows:

—Aicos AL + Aysin \(L + Azcosh A\(L — Aysinh A\,L =0
—A;sin \;L — Ay cos A\;L — Azsinh AL + Ay cosh A\;L =0
— By cos(AsL) — Bysin(AsL) + Bs cosh(A;L) + Bysinh AL =0

(15)

By sin(AsL) — By cos(AsL) 4+ Bysinh(AsL) + Bycosh AsL =0

We can also rewrite the four last conditions of equation (L)) as follows:

(B1 — Aj) cos Asa + (By — Ay) sin Aga + (Bs — As) cosh A\ga + (By — Ay) sinh Asa = 0
—(By — Ay)sin Aga + (By — Ay) cos A\sa + (Bs — As) sinh Aga + (By — Ay) cosh Asqa =0
—(By — Aj) cos A\sa — (By — Ag) sin A\sa + (Bs — A3) cosh A\sa + (By — Ay) sinh Aga = 0
(By — Ay)sin A,a — (By — Ay) cos Aga + (Bs — As)sinh A,a + (By — Ay) cosh A,a = \.*

The aforementioned equation leads to the following result:

B, A = sin Asa and B, A, — _ cos A
22, 27 (16)
SEDRE Y
By substituting equation (16) into equation (I3)), we obtain
1 —cosh A;Lcos A\(L — a) + sinh Ay Lsin A\;(L — a) + cosh A\sa
! 4N3 cos A\sL sinh A\, L + sin A\, L cosh A\, L
1 —cosh AgLsin As(L — a) + sinh A;L cos As(L — a) + sinh Asa
2T N3 cos A, L sinh A, L — sin \, L cosh A, L
1 —cosA;Lcosh A\(L — a) —sin \,Lsinh A\;(L — a) — cos A\;a
2 4N3 cos A\gL sinh \;L 4 sin A; L cosh A\, L
A 1 sin Aga + sin AL cosh Ag(L — a) — cos A\;Lsinh As(L — a)
4 4N3 cos A\gL sinh A\;L — sin A\;L cosh A\, L (17)
B 1 = cosh Asa + sinh A;Lsin \;(L + a) — cosh Ay L cos A\s(L + a)
4N cos A\gL sinh A;L + sin A, L cosh A\, L
B, 1 cosh A;Lsin A\;(L + a) — sinh A;L cos A\;(L + a) + sinh A\;a
4N3 cos A\sL sinh A\;L — sin \;L cosh \;L
B, 1 —cosAsa —sin AgLsinh Ay(L + a) — cos AgL cosh A\;(L + a)
4N3 cos A\gL sinh A\, L + sin A\, L cosh A\, L
1 —sinAga — cos AgLsinh Ay(L + a) + sin A;L cosh A\ (L + a)

B,

4N3 cosh AL sin A\;L — sinh A\;L cos \;L

8
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B Example in the case of series of charges

Here, we present an example with the series of charges on two rails. The distance between
two wheels is D = 3 (m) and the length of the wagon is H = 18m. In this example, we have
one imperfection at the wheel number 2 on the first rail with Q = 75kN and the other moving
charges Q = 100kN.

B S 02
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0.4 -
0.6 | 04
08 -
2 Displacement t ~ -0.5
0 o .
1 .
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~-Rail 1 ) . . . . . , . .
- -Rail 2 = 06 0.1 0 0.1 0.2 03 04 05 06
04 08 Time (s)
o 0.2

Sleeper (m) -2

Time (s) (b) At 3 positions : middle point (green curve), the
(a) Sleeper displacement first rail seat (red curve) and second rail seat (blue
curve)

Figure 7: Sleeper displacement
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Figure 8: Reaction forces at two rail seats
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